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Excitation System Modeling Automatic Voltage Regulator (Contd.) 
  

We are now in the 27th lecture of this course; and we are focusing on the modeling of 

the automatic voltage regulator, just to you know view things in perspective, we have 

modeled two kinds of power apparatus in this course. One is the synchronous machine 

itself, and also the excitation system, which feeds the field voltage to the synchronous 

machine. Both of these are power apparatus, we the dynamical system is also contributed 

by the excitation system controllers, and the primary function of the excitation system 

controllers, which are in fact feedback controllers which are made by us is to regulate the 

voltage at a terminal of a synchronous machine. 

We saw that if you look at the block diagram of a excitation system controller, we also 

saw that we can implement other functions like improving the stability of you know, the 

electromechanical system, this is something we have not shown yet, but in general and 

excitation system can also provide for this function. And also it can change the field 

voltage if certain limits are hit; for example, if the field current limit is hit or later on we 

will see that if the load angle becomes larger or delta becomes larger of the machine, 

then also you can actually change the field voltage and try to rectify this situation. 

So, in today’s class, what we will do is consider certain further transfer function blocks, 

we were discussing transfer function blocks, which essentially make up the automatic 

voltage regulation system in a synchronous generator excitation system. The transfer 

function blocks we have considered so far are the simple first order transfer function and 

also wash out circuit; both these blocks are very essential and important in the discussion 

of any practical control system.  

Remember, that we are talking of a transfer function block diagrams, because you will 

find that most of the representation of the control systems will be in this form. So, if you 

will open the manual of a synchronous machine in real life you will find it, you know the 

nature of the AVR etcetera is expressed not in terms of state space equations or 

differential equations, but in terms of block diagrams. So, we have to interpret the state 



space relationship or the mathematical functions in terms of what is given to you in block 

diagram. So, today we will continue that; so today’s lecture is continuation of our 

discussion of the automatic voltage regulation. We are really looking at a few transfer 

function blocks. 
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So, the first transfer function block, which we will discuss, pertains to the regulator.  
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In fact, what we did was in the previous class was in fact a first order transfer function 

block, whose block diagram is represented by the figure given at the bottom, and the 



transfer function represents or rather the state space representation of this is given by 

this. 
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So, if somebody gives you 1 upon 1 plus ST you should write it down immediately like 

this. There is no unique state space representation of a transfer function. Also, if you 

give, you have given a transfer function like this. It also means it is a linear system; it is a 

linear time invariant system. You can actually add some complexities to the transfer 

function block diagram which make it linear for example, non-linear for example, we 

could have limiters etcetera, which we will discuss shortly. 
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The second transfer function, which we discussed last time was in fact a wash out circuit; 

this is in fact a system which is represented by the block diagram which is given below. 

The block diagram is kind of expanded, but remembers it really the block diagram is a 

manifestation of the state space equations which are given here on this, on the sheet. You 

will find that there is a minor difference between the block diagram given previously and 

the block diagram given here. In terms of its complexity, but the functions can be in 

some sense opposite of each other. 

Whereas, the first order transfer function block here has got characteristics of a low pass 

filter, the wash out block here has got the characteristics of a high pass filter. In the 

sense, that this is got a unity gain for high frequency and 0 gain for low frequencies. So, 

it is essentially used in situations where you want to pass through transients, but you 

want to block, you know any offset or steady state input. 
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Now, the state space representation of this block diagram is as given on the sheet here so, 

you can have a look at that. We derived it in the previous lecture, again there is no 

unique representation state space representation of this, but this is the most common 

representation you will find. The step response of this transfer function is like this, in 

steady state if you give a step here in steady state you will get a 0 here eventually 

whereas, the transient gain is one. 

So, as soon as the step occurs this also responds. So in this sense, this particular transfer 

function is different from the previous one of course, these are transfer functions you will 

encounter, but as I mentioned sometime back the regulator transfer function is usually 

slightly different, it does contains these blocks sometimes, but the main regulator 

function of course, is to drive the error between a set value and the actual value to 0. 
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So, what are regulator transfer functions? We shall see shortly. But before we do that we 

will just look at one more transfer function which is very important, and that is 1 plus sT 

1 upon 1 plus sT 2. Now, this is another transfer function which you can which you will 

encounter very often in practice in fact, if T 1 is greater that T 2 the numerator time 

constant is greater than the denominator time constant then it is known as phase lead 

compensator, you will find that if you give a input u which is a sinusoid then in steady 

state y, which is also sinusoid will lead the input u that is if T 1 is greater than T 2. 

So, the block diagrammatic representation is of course, given below here, so this 

particular compensator it could be a lead or lag compensator depending on the relative 

values of T 1 and T 2 is a transfer function which is encountered quite often in practice. 
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Now, if you look at the how we got this particular block diagram, you will just see that 

the transfer function y of s by u of s is basically 1 upon 1 plus sT 1 by 1 upon 1 plus sT 

2. You can represent this as K 1 plus K 2 upon 1 plus sT 2 and you can easily verify that 

K 1 is nothing but T 1 by T 2 and K 2 is nothing but T 1 minus T 2 by T 2 this is the first 

order block, which we have seen already so, that is why we get this transfer function 

which or rather the lock diagrammatic representation in terms of the integrator as shown 

in this figure. 
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Now, a thing about the steady state response of this to a step change, if you give a step 

change to this transfer function 1 plus sT 1 upon 1 plus sT 2 what you will get at the 

output, is depending suppose if T 1 is greater than T 2 what is the steady state gain of 

this transfer function, well it is very apparent that this transfer function has got a steady 

state gain of one, you just put s is equal to 0 here you will get what is known as the 

steady state gain for a step input. So if you have got a step unit step in that case, your 

steady state value is equal to the output input so, the steady state value will be one so this 

is the steady state value this time and this is y. 

Now, the transient value if T 1 is greater than T 2, you will see that for high frequencies 

which also define the transient gain, you will find that if you put s is equal to j omega 

and make j omega tend to infinity you will find that the gain of this is T 1 by T 2 which 

is greater than 1. So what you can expect is, if you give a gave a step input if I give a 

step input the output will be like this, so this is one this is T 1 by T 2 on the other hand in 

case T 1 is less than T 2 your output will be like this is T 1 by T 2. 

So in this case, this it is called a lag compensator, why it is a lag compensator? And why 

it is lag compensator, when T 1 is less than T 2 is something, which you can easily try to 

find out, by looking at the frequency response of this, I leave it to you. Now, the state 

space representation of this is quite easy to find out in fact, if you look at the block 

diagram, which is given on your screen, it is quite easy to derive this; so what comes 

before the integrator is your state the derivative of the state. 
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So you can write this as, dx by dt is equal to, minus 1 by T 2 x minus 1 by T 2 into u so, 

this is actually the state space the differential equation, the output is T 1 minus T 2 by T 

2 into x this is minus of it and this is T 1 by 2 into u, so this is what you get as a state 

space representation so just remember, that for every transfer function representation you 

can get a state space representation, a state space representation is in some sense more 

rich, in the sense that it tells you, a you know the underlined differential equation, it also 

tells you because a looking at the Eigen value we can even tell about tell the time 

response what the time response is going to be of course, using the transfer function 

representation itself in the Laplace domain, you can also get the time response depending 

on the Laplace transform of the input. 

But working with the state space, if equations and differential equations is more 

convenient later on, when we will be doing numerical integration as well as linearized 

analysis, Eigen analysis of the system. It is better to write everything in the state space 

form but typically, what you will be given in most of your manuals, and you know work 

sheets of your synchronous generator excitation system; you will find that it is usually 

block diagram will be in this form, using transfer function blocks. Now, the reason why I 

have discussed these three important transfer functions, in fact you have not yet gone 

come to the main thing that is the regulator transfer function. 



Usually, most of our controller including regulators, stabilizer, limiters, will be made out 

of transfer functions of this kind, the first one is the simple first order transfer function, it 

is basically a low pass filter kind of characteristic wash out circuits, which allow 

transients through but do not allow this steady state to go through because it has got low 

gain for low frequencies, this lead lag block on the other hand is something which you 

can by choosing the appropriate values of T 1 and T 2 get the frequency response of your 

choice of course, you have only 2 degrees of freedom that is T 1 and T 2 here. Some of 

the obvious blocks which you will, I am not discussed explicitly or the gain block you 

know, you just have a gain, a summer, a multiplier; a multiplier is a non-linear block, so 

it cannot be really you know you cannot form an integrated transfer function in case you 

have got multiplier blocks anywhere. 

Here, you do not have multiplier blocks in these three transfer functions which I have, 

the block diagrams which I have shown you here, they have got only summers, gains, 

and integrators but you could have under certain circumstances limiters and multipliers 

coming into the block diagram, which make your system non-linear, so the linear part of 

the system is usually shown with the block diagram, the transfer function block diagram 

and I hope, you have got now an idea about what kind of differential equations they 

represent in some special cases, you know how the they behave as well, the three special 

transfer function which I described to you, the regulator itself will be made out of some 

of these blocks. 
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But the typical structure of a plane regulator, it could be containing some of the blocks 

which I had mentioned sometime back but a plane regulator a plane P I regulator or a 

proportional integrator regulator has the got this kind of transfer function, or this kind of 

representation. So, this is a P I regulator block diagram in which this is the simplest 

possible regulator, in which in fact I would not call this simplest regulator you can have 

just a proportional regulator as well, the P I regulator here, shown obtains the error 

between the set point and the measured value, multiplies it with or gives it a gain K p this 

is by mistaken it is been written here K I. Usually the representation is K p, K p is the 

proportional gain, you also multiply it by integral gain K I and integrate it, then sum the 

output of the integrator as well as proportional gain and get your output y. 
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So, the transfer function representation of a P I controller, is the simplest possible P I 

controller is this, in fact you can have what are known as P I d derivative controllers as 

well, by adding a derivative block this is u ref. 
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So, this is a p I controller, you can also have a P I D controller which in principle is 

something like this plus K D into S, This is the derivative, S denotes a derivative. So, this 

is again the summing junction, which sums the reference value and actual measured 

value. Of course, if you look at these transfers, these components of your block transfer 

function block, there is one point which I must make at this point is that, usually it is not 

possible using a cosel or real physically realizable system, to make a derivative, you can 

chew on this on what I have just said you cannot physically realize the derivative 

function using cosel systems.  

So, in such a case a derivative is actually an approximate, is approximately realized by 

using a transfer function of this kind with T very small. So, if you are having transients 

which are much slower than this T then this behaves almost like a derivative. Similarly, 

this play a plain gain without any dynamics is often not used usually if you have a plain 

gain just a gain here. Any noise or distortions in the measured value will get amplified by 

this gain K so, usually instead of just a proportional gain; you will have a proportional 

gain with a low pass filter kind of first order transfer function. 

So, this is what a P I D controller this is a P I D this is a practical P I D controller. Now I 

am not really told why this is a regulator transfer function the reason is simply that you 

take out the difference between the set point and the actual value and you try to amplify 

it and change the output. 
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So, why it is a regulator because if you are for example, in a excitation system you have 

got you are the voltage regulator, the set point is given by u it compares it with the actual 

voltage. Suppose you have got a P I controller which I have said so, this error is 

amplified, it is also amplified an integrated in case there is an integral controller and 

given the output of this, is a control signal, which is fed to the controlled exciter 

controlled rectifier of a excitation power apparatus, that in turn changes the field voltage 

of the synchronous machine the synchronous machine field voltage changes the terminal 

voltage of the machine so, this is E fd and this is controlled signal we call it V c this is 

how the system works. 

So, if you have got an amplifier it tries to change this till this error goes down to 0, now 

of course there is a catch here, should error here become 0 in steady state if you use a P I 

controller the answer is yes. Look at the block diagram, which is given in your screen 

note that you have got an integrator at the bottom here this is an integrator. 

Now, if you have got an integrator what is the job of an integrator, well it integrates so, it 

integrates whatever appears at its input here, which is just after the propositional integral 

gain. So, the thing is that if you want to reach steady state you should stop integrating, 

now what is that mean if you are in steady state it means that the all the variables reach a 

steady value. Now if a integrator has got an input, which is non zero there is no way, you 

will be in steady state, because the integrator keeps on integrating whatever is there at 



the input. So, if you are using a P I regulator in that case, the input to the integrator has to 

become 0 the input to the integrator is nothing but K i into the error that is the U ref 

minus U measured. 

So, it follows that in case, you are in steady state and you are using a p I regulator, then 

the steady state error is 0 so you can say that if your system is working well it is stable 

that is of course, not something which I have proved, the point is that if you are designed 

your system, your feedback control system well it is stable, then in steady state if you are 

using a P I controller and a controller, which has integral component as shown there in 

that case a steady state error is driven to 0 is that so just to do a quick example. 

(Refer Slide Time: 21:14) 

 

Suppose I have got a P I controller, say this is got a gain of 100 this is a proportional 

controller this is a integral controller, suppose this gain is 500 and this is added here, you 

have got an integrator here of the P I controller so, this is a I channel the P channel this is 

your input this is U this is U ref this is U measured, suppose the system which you are 

trying to, this is just an arbitrary system. 

Suppose I have got a system of this kind, this is the P I controller which is trying to get 

the output y equal to U ref so, this y has to become equal, we want it to become equal to 

U ref so, if you have got a system like this you will find that in steady state, this error 

which appears here this is the error has been driven to 0 in steady state. So, in fact if U 

ref is a step input from 0 to 1 in steady state this error has to be 0. 



So this will be 0, if this has to be 0 and this is a feedback system of this kind y also has to 

be 1, if y has to be 1 can you tell me what is the steady state value out here? Well it is 

going to be one, remember that the steady state gain of the transfer function 1 upon 1 

plus sT is 1 so if this is one what is the value here see this is 0 the error is 0 if you just 

multiply anything with 0 of course, it is going to be 0 here. And this is one.  

So, the output of the integrator is one, the output of the integrator is one, does it mean 

that the input has to have a certain value. Well no this is the value which the integrator 

has integrated up to the input to the integrator in steady state has to be 0 otherwise, the 

integrator will integrate whatever input comes and changes this value. So, this is the 

steady state values in case you have a step change given to this system of this kind which 

has got a P I regulator and the thing to be controlled has a under transfer function 1 upon 

1 plus sT, in our case you will have to replace this 1 upon 1 plus sT by the dynamical 

system corresponding to the excitation power apparatus and synchronous generator, the y 

is nothing but the terminal voltage.  

So, this plant is very simple in our system the plant which we are trying to control will 

consist of the excitation system apparatus as well as the synchronous generator. So this is 

just a toy example, in actual practice for our systems you will have a complicated plant, 

which has to be controlled so, a regulator is you can say trying to control a plant. 

Now so a regulator, if you look at it consists typically of a proportional controller or a 

proportional integral controller or a proportional integral derivative controller, if you 

have got a proportional controller for example, something simple like this simply a gain 

and here is the output, this is a proportional controller. 
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So this is u ref and u, remember a regulator is defined something which is trying to get a 

measured value equal to the set point value so, this is all the regulator now this is the 

proportional controller, now the proportional controller to have any non zero output. It 

has to have a non zero input so it follows that if you are using a proportional controller in 

that case, steady state error between the set point and the thing you want to follow the set 

point is not 0, not equal to 0. 

Why? Because in case you want to have this to have any control signal which is going to 

affect your excitation apparatus, then this has to be non zero. Now if this gain is very 

large, then to get a certain control signal in order to obtain the voltage you desire or near 

the voltage you desire, in that case the error need not be too large. 

 So, if I use a larger gain in a proportional controller, then the steady state error is going 

to be lower because to get the same value of the excitation required to get a certain value 

of u, you require a smaller value of error. So, in a proportional controller steady state 

error is not equal to 0, but a high gain proportional controller will have lower 

corresponding steady state error, now as in any control system design it is not guarantee 

that you system is going to be stable for any kind of gain so, you actually have to do a 

control system design in order to ensure that your system is stable under various 

situations. 



In fact we have, I am sure you have done a course on control system design sometime. In 

the previous years, now this particular system which I had showed you which is shown 

here on the sheet, is in fact, you can show that this is going to be stable if t is greater than 

0 then you can show that this particular system is stable or you need to any feedback 

system is stable for any value of P and I.  

So, we can have a system of this kind which is stable, you can just verify this that at least 

if I have got just a proportional controller it is easy to show that the system is always 

stable so, this is something you can just check out is proportional is it stable with just a 

proportional controller, is it stable with proportional integral controller and what are the 

gains for which it is going to be stable in terms of this cap this time constant t so, this is a 

separate you know subject of control system design, which is related by power system 

dynamics, if you are going to do power system dynamics you should know a bit of a 

little bit at least about control systems design and stability.  
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Remember that just using a proportional controller or proportional integral controller is 

sometimes not adequate, that in that context you may actually have to use the transfer 

function, which I have discussed before for example, instead of a plane proportional 

integral controller you may you may not get a stable performance so, you may have to 

add a lead block or a lag block in order to improve the performance of the P or P I 

controller, which you will use. 



So, this is the one thing, which you may see in a you know in a control system, that in 

addition to the proportional or proportional integral controller, you also have these 

blocks which try to improve the response, what do I mean by improved response? Well 

one of the things you should ensure with your regulator is that if for example, I give a 

step change this is one way you specify the performance of a regulator if I give a step 

change, how much time does u require to settle down so, u is actually determined by 

fairly complex processes, remember that for AVR this will the output of this is the 

control signal to the excitation apparatus, the excitation apparatus itself may have very 

significant dynamics as we see in a brushless excitation system then that determines the 

field voltage. 

The field voltage again changes results in the terminal voltage change of a synchronous 

generator it is a fairly complicated way. Because you will have to actually solve all the 

differential equations either numerically or if you feel linearize it around an operating 

point you can even do a linearized kind of analysis, what I want to say is that eventually 

the u in a automatic voltage regulator is going to be determined by a fairly complicated 

set of dynamical processes. 

So, eventually a response is going to be something like this it could be something like 

this so, for a step change if you look at this for a step change in the input you could have 

for example, so this is your voltage reference the actual v could be like this now 

obviously you should design your system so that it settles fast. If a system settles down 

fast it also means that the modes which are observable in the voltage are more stable, 

they are more having real parts which are having more on the left hand side of the 

complex plane, and as a result of which they decay very fast. 

You also would like your rise time to be fast, you do not want it to rise like this the best 

possible response could be something like this; you wanted to rise and settle down 

immediately. 

So that kind of response you could want, in case of a excitation system remember that 

the conditions of the synchronous generator whether it is open circuited or no load or it is 

at half load or a full load will really change the kind of response you will get, the plant of 

the system this is the excitation excite a power apparatus as well as the synchronous 

generator and power system to which it is connected will really determine the response. 



So you what you need to do when you are trying to designing a system is to use not 

proportional only integral controller but you may require to use a lead or a lag block in 

series with the proportional controller, in order to get some degrees of freedom, the 

degrees of freedom are in fact he time constant T A and T B of the lead or lag 

compensator, you get these degrees of freedom in order to improve the response so this 

is what is very important which you should know. 
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So, if you look at a typical regulator, it is not just consisting of proportional controllers 

typically you will find that it is consisting of V ref V, a lead or lag block usually you 

know depending on the situation you could use most likely you will use a lag block if 

you want to achieve some functionalities and a P I controller in often you will find is just 

a high gain proportional controller integral component is absent in many kinds of AVR. 
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So, this is often called an excitation system stabilizer, remember it has got a transfer 

function which is s K f upon 1 plus s T f, so this is essentially like a wash out block with 

a slightly difference in gain of course, the steady state gain would be K f. So this sorry 

this the transient gain would be K f and the steady state gain is 0, now one of the thing 

we should remember though this excitation system stabilizing is being fed into this 

summing junction its output in steady state is going to be 0, so it will not interfered with 

the regulation function out here, So, in steady state this will be 0 so we will try to be 

driven to be V ref by this controller, so this does not contribute anything at the summing 

junction if something gets something non 0 is contributed at the summing junction then 

the regulation function will get compromised. 

But, this is not the case because in steady state the output of this is 0 so you may find, we 

will not actually go into the design of the AVR itself but you may find blocks like this in 

addition to the regulator the basic regulator which is a proportional controller. So, this is 

what our controllers typically look like. There is another block, which I need to discuss 

at this point, we have already a kind of got a flavor of that block before that is a limiter. 



(Refer Slide Time: 36:58) 

 

Now, we have without much spending too much time, if u recall this was the a kind of 

you know, symbolic representation of a limiter which was given so if you have got an 

input u you get a clipped to the values specified here so if I specify this value as plus 1 

and minus 1 in that case this input, suppose you have got output y dash, y will not be 

equal to y dash if y dash exceeds these limits it will get clipped at that limit, this is often 

called what is known as a soft limiter, in fact we have used the limiter to model the 

converter, static converter which is used in the excitation power apparatus. 

Now, this is only a simple clipper it simply clips the output. So, if you find if you have 

got something like this is simply clipping the output, which appears here but remember it 

does not affect, the output y dash, so it allows y dash to get any value you want but it 

clips the value of y dash in order to get y so this is a soft limiter you can have another 

class of limiter which is called hard limiter in order to do that let us take the example of a 

simple integrator. 
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Suppose, I have got an integrator and I try to limit it, this is a soft limit so if you have got 

an input u it will get integrated in order to get y dash y will be the clipped value of y dash 

of course, y dash will not exceed any of the limits specified here; for example plus one or 

minus one this is an example of a limit in that case y dash is equal to y so only, when the 

limit is exceeded that these limiters come into play. A limiter makes a system non-linear 

so although our transfer function representations excreta are actually of linear time 

invariant systems, when you have limiters included in the transfer function blocks 

effectively our system becomes non-linear. 

 So, let us now look at another kind of limiters it is represented in this fashion, the 

difference between these two limiters, this limiter and this limiter is that, in case the 

output y exceeds the limit or tends to exceed the limits the integrator stops integrating, so 

just try to chew on this statement the integrator stops integrating in case the limits are 

exceeded, here the integrator does not stop integrate it keeps integrating the output 

simply gets clipped. 

So, y dash and y need not be equal and the output gets clipped, here if y dash exceeds the 

limits specified here say plus 1 and minus 1 say this could be anything in that case, the 

integrator simply stops limiting in some sense you can say that it starts integrating 0 

instead of u, it starts integrating again when there is a chance that the limit the output y 

can come out of the limits. 



So for example, if the output is at plus one which is the limit specified here then this 

integrator stops integrating till u starts becoming negative and there is a chance for the y 

to come out or start coming out of the limit, you can take say an example of a simple 

system like this. 
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So, you have got an integrator and I am going to integrate the input u say u is cos omega 

t. So, let us assume that this integration has been going on for a while, I will just show it 

this way, suppose u is cos omega t then of course, the output y would be, so if you have 

got input as omega into cos omega t and you try to integrate it and you will get sine 

omega t, so omega into cos omega t suppose is this, will eventually get sine omega t is 

something like this yeah, so this is your sine omega t this is your output y, now suppose I 

have got a soft limit which is put at plus 0.5 and minus 0.5 in that case the output would 

be clipped so, what you will get in fact at y is not this something which is clipped at 0.5 

plus 0.5 and minus 0.5  

So, this is the response of a soft limiter so it just clips the output, so what you will at 

output is what is in black that is this, I will darkened it a bit, so that you can see it, what 

we see is the integrator does integrate as per its rule, so the red curve is what you get 

simply by integrating omega cos omega t. But what you get at the output is the clipped 

version of this the integration operation itself is not affected. 
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Now, if you on the other hand try to integrate via using in the presence of a hard limiter. 

So, you have not very much well drawn but anyway so this is cos, if you look at how this 

particular system behaves you will see that it integrates up to 0.5, this will not actually 

will not meet at 0.5 but anyway will integrate up to 0.5 after that it gets limited now it 

will go on staying at the limit. So, what happens is it that the integrator itself stops 

integrating, it is not that integration is going on at this point we do not continue with the 

integration we stop the integration and the output remains at this value this is exactly as 

we got before but. 

Whenever the integrant this is u the input becomes negative, there is a chance of coming 

out of the limit because if you integrate a negative quantity then you start decreasing 

from where you are, so what will happen is you will come out of the limit right away, so 

this is this is what happens in case of a hard limit in fact, if you have got a soft limit its 

this and hard limit it is this, so whenever you have got an integrator which is hard limited 

you will find that it stops integrating as soon as the hard limit is hit in fact this is 

desirable under certain circumstances, in this earlier circumstances with a soft limit what 

happens is the integrator goes on integrating and you may really go on, although your 

output is being clipped the integration here is continuing and you may find, it is taking 

much longer time to come out of its limit, even though the input u has got become 

negative in this case. 



So, the input you has become negative at this point but it comes out of the limit only at 

his point whereas, here with the hard limiter at this instance itself the integration resumes 

because there is a tendency to reduce the value, because u has become negative, so this is 

what is known as a limiter, so you will find in it most control systems will be designed 

with limiters in order to prevent, see what happens if you know your limit has been 

reached, you do not want to go on making the controller trying to do something anyway 

it is not getting implemented. So, it is a good idea to put limiters wherever feasible and 

wherever it is reasonable to do so. 
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So, you will find typically you have a limiter here on the hard limiter on the integrator 

and soft limiter here will clip the output as well of course, if you are just in integral 

controller which is a hard limited you do not have to put a soft limiter again. But here 

since you have got combination of p and I you can have a hard limiter as well as a soft 

limiter. So, on the whole you will prevent the values from going out of range. So, this is 

what typically you will find in your AVR controllers. Now suppose, we want to take up 

now a simulation of automatic voltage regulator, we have actually discussed the way 

control systems are typical control systems associated with the regulator R, we have of 

course, not discussed limiters etcetera right now we will focus on the regulator itself 

regulating function itself remember that V ref of the synchronous of this AVR can be 

modified by the limiters and stabilizing functions, whenever there is a need to do. 



 So, for example, if the synchronous machine field current is exceeded you may wish to 

sacrifice the regulation function but reduce the field voltage so as to reduce the field 

current, some equipment limit is being hit then the limiter may wish to reduce the field 

voltage instead of carrying on with the regulation of function; so in some sense the V ref 

objective the objective of being making V as close as V ref as possible, is compromised 

and you would rather maintain limits. We saw that if you want to improve the dynamics 

of one or more modes of the system, you may actually put in stabilizing function one of 

the functions we saw was an excitation system stabilizer, but the main characteristic of a 

stabilizer is that its output in steady state is 0. 
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Now, we will move on to try to simulate an automatic voltage regulation system along 

with a AVR. So, if you really look at what is involved you have got the mathematical 

functions of the state space representation, which describe how an AVR works. 
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So AVR of course, will require you to have a set point which is given, it takes the 

feedback of voltage, the terminal voltage of a generator the excitation system gives the 

control signal to the excitation power apparatus, that gives the field voltage to the 

synchronous machine, the synchronous machine output is of course, what you measure 

using a potential transformer which is straight to the AVR, remember the AVR is not a 

power apparatus this is not a control system.  

The AVR itself may take feedback signals like the field current. So, this is a typical 

structure of the system. What we will do in this the next class is try to analyze a system 

of this kind so what we will, the simplest thing we can do is, suppose we take a static 

excitation system.  
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So if you have got a static exciter as shown in the on the on the screen, then the converter 

model is usually a static one. And only thing which you need to represent is the field 

voltage limits, the limits of the converter itself I am sorry, the field, the limits of the 

converter are determined by the terminal voltage of the generator itself because the 

power apparatus of the excitation system is fed from the terminal voltage of the 

synchronous machine itself so, if you look at this its fed from the terminal voltage of the 

synchronous machine so, the limits are effectively decided by the terminal voltage of the 

synchronous machine.  

So, the converter itself will assume that it is a static model it is a simple model in the 

sense that it implements whatever the control system tells it to do subject to the limits. 
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So if I want, so will kind of have, let us say we will just model it this way this is the 

terminal voltage of the synchronous machine, these are the limits imposed on the 

converter output by the terminal voltage of the synchronous machine, this is the field 

voltage. 

Let us assume that the field voltage is in per unit, we have defined the per unit system 

before E fd is one if it results in open circuit line to line voltage for the star connected 

synchronous generator at a rated speed so, it develops a rated voltage the rated speed 

then we call that voltage as one per unit. 

 So we will not represent it in volts but in per units now the control signal which gives 

this E fd, again can be expressed in terms of voltage it is a signal which is given to this 

converter but if I say that one per unit of lets define our normalized control signal in such 

a way that one per unit here or control signal of one per unit results in one per unit E fd, 

then the gain of the converter becomes one so, this is also is represented in per unit. 

 The AVR, this is the excitation apparatus the AVR let us assume is a simple 

proportional controller of this kind, this is the error signal, this is V ref, this is V, so this 

is what is your AVR and power excitation system block diagram, K A is typically you 

know it could be say around 200 to 300 or even 400 per unit by per, unit the gains are in 

per unit. So, what I will do is, I will also do this sum so all these gains are excreta 

expressed all in per unit so, I have already described what this per unit system means, as 



far as the field voltage, the control signal, the terminal voltage is expressed in per unit on 

the generator terminal voltage base there is the rated K V of the synchronous machine so, 

if I represent it this way then k a is typically of this value, it would be say 200 300 or 400 

it is usually kept high, so that to get a value of say E fd one here the amount of steady 

state error required here is very small, remember that the now T A is usually very small 

this is of the order of one cycle that is all say twenty milliseconds so, this is the block 

diagram of the excitation system with just the regulator included we could have included 

many more possibilities in fact in this course in the course we will not do that. 

 We will included a simple excitation system model, using a static exciter and this we use 

to study the voltage regulation of a synchronous machine, what I will do is now 

incorporate these equations which are you know embodied in this transfer function or 

this limiter and summer blocks write them a state space equations, interface them with 

the synchronous generator equations connect the synchronous machine to another 

voltage source and try to regulate the terminal voltage of the synchronous machine. 

 We will do one extra thing, we will not connect the synchronous machine directly to a 

voltage source we will connected it via a model of a transmission line a very simple 

model of a transmission line, modeling of a transmission line is something we will do in 

brief later in this course we will just take a simple model when we are studying this. So, 

with this we will come to the end of this lecture. In the next lecture, stay on for the 

incorporation of an AVR into the synchronous machine equations and the simulation of 

the voltage regulation action. 


