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In the present module in this course, we have been studying about various techniques to 

understand how a dynamical system behaves. Now, our treatment of these various 

methods is not very rigorous. But, I trust whatever we are doing will give you some kind 

of introduction and reassurance in case you have already done it before. In particular in 

the past two lectures we have been studying about numerical integration. Numerical 

integration is a very general tool which can be applied to the study of dynamical systems 

unlike Eigen value and Eigenvector analysis which is applicable only for linear systems. 

Now, we have been studying the basic features of some of the numerical integration 

method. 

It is very important with the proliferation of a lot of simulation on numerical integration 

software, it is very important to know the characteristic characteristics of various 

numerical integration tools which are available. And to do this, we have to kind of bench 

mark our behavior of dynamical systems and then compare it with what we get when we 

numerically integrate. Remember, numerical integration always involve some error 

because it is an approximation of a continuous time system. In the previous lecture, we 

started on analyzing on how numerical integration methods behave when we are 

confronted with a stiff system. A stiff system is a system in which the various patterns 

which you see in the response are widely varying time constants or widely varying rates 

of change. In a linear system ofcourse, one can correspond these fast and slow transients 

to large and small Eigen values. Very often in engineering, we do encounter such 

systems. In fact, if you do encounter such systems, you often are able to do modeling 

simplifications, a point which we discussed in about three lectures ago. 

So today, what we will do is consider the same system for which we did Eigen value 

analysis and see how it behaves or how what what answer we get when you numerically 

integrate and try to get the time response. Now, remember ofcourse at this point that we 

are you know, doing the numerical integration of a linear system. The real linear system 



response off course is fully known in terms of simple functions like exponents and 

sinusoids .We can use our powerful Eigen analysis tools to obtain Eigen values and 

Eigen vectors and write down the system response. There is no need to do integration. 

But, as I mentioned some time back that we use these two benchmark how our numerical 

integration, numerical methods work. 

Now, this system which we considered in that particular, you know linear and when we 

did our linear analysis, we considered a particular system which was very typical in the 

sense that it brought out the stiffness in the system. That system was basically an RLC 

circuit which was excited by our step in the input voltage. 
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So, the system we were considering was this; a relatively large inductor here and again a 

capacitor here. The system is a linear system and we can write down the differential 

equations in this form where a is and b is. So, this is our system and we of course, in our 

previous lecture we took out a time response of this system. 
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The Eigen values of the matrix when you do linear analysis are given by this and this. So 

in fact, there is a complex conjugate pair which will correspond to a damped sinusoidal 

response, a damped oscillation. 

And off course, there is an real Eigen value, a negative Eigen value which will 

correspond to a pattern which will be seen in the response which is e raise to minus 0.1 t. 

It is very clear that this system is stable because the real part is negative of all the three 

Eigen values. Another issue which is important is that the rates of change associated with 

the pattern correspond or mode corresponding to this Eigen value is very slow as 

compared to this. Look at this frequency. It is extremely high. So, the kind of movement 

you will get in the response is going to be having a large rate of change for this pattern. 

So, your response is consisting of two patterns; a fast mode and the slow mode. This is in 

fact typical of a stiff system. You have got you know, both fast and slow modes. 

Now, if one tries to numerically integrate this particular system then, one may use Euler 

method. For example, if one wants to apply Euler method to this differential equation 

with a time step of h; 
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In that case, your iteration which you will, I would not say an iteration, if you know the 

value of x k you can get the next value of next value of x x k plus 1, the next sample of x 

by using this relationship. So, A x k plus b u k. Now, this implies you have seen in a 

previous lecture that I indicated that this system, Euler method when it tries to 

numerically integrate x dot is equal to A x plus b u; the discretized system which you get 

may be stable, if is stable, in case where lambda is the ith Eigen value. The important 

point is this should be true for all Eigen values. 

So, Euler method will be stable or rather the response which you get by using this 

relationship, the samples which you get by using this relationship will be stable if for all 

Eigen values this is satisfied. Lambda i is goes the Eigen values of a. So, this is the basic 

property of Euler method. Now, remember that the original system is stable. But, Euler 

method under certain circumstances may not able to mimic the stability of the original 

system. It may show an originally stable system to be an unstable one because this 

relationship may not be satisfied. 

And in Euler method, for example, if I apply this to one of the Eigen values that is 

lambda 1 is equal to this. Suppose, I want to check this relationship for this Eigen value, 

we will find that the relationship we will get is this, which boils down to this. Even if I 

choose a time step of point double 0 1, you are not going to have this relationship 

satisfied. 
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For example, you expect that this frequency is the imaginary part off course corresponds 

to the frequency of the oscillation in radian per second. We expect that, if I choose a 1 

mille second time step it should be able to you know mimic the response. But, 

unfortunately that is not true because this relationship is not satisfied. Thousand and 5 

radians per second corresponds to around thousand five divided by 2 pi as a frequency 

the time period of this is off course. 

So, we expect that if we choose a 1 mille second time step we should be able to mimic 

the response. But, that is not true if you discretize using Euler method this relationship is 

not satisfied and you will find that the system which you have numerically integrated or 

rather the sys, the discrete time system which you get by discretizing the original 

continuous time system by Euler method will not be in stable. So, you are getting a 

qualitatively wrong answer if I try to use Euler method with this time step. Ofcourse you 

may say lets reduce the time step further one can go on reducing this to for example, 10 

raise to minus 5 6 or 7. But, remember the time required to do this you know, numerical 

integration will keep on increasing if I reduce the time step. So, if I want to simulate 1 

second of the response if I choose h is equal to 1 millesecond in that, I will I will require 

thousand steps. 

And if I choose 10 raise to minus four seconds, you will require 10 thousand steps, just 

for a 1 second simulation. So, the problem here ofcourse is that if I am interested in this 



slow response, if I am primarily interested in how the system behaves the slow response 

of this system; in that case if I use Euler method I will still be constrained to use a very 

small time step in order to prevent the faster mode from being unstable. I mean the 

numerical integration should not display instability. I mean that will be a qualitatively 

wrong answer and that something I do not want to have. 

So, Euler method has a problem in such a stiff system to make your time step very, very 

very small. So that is one issue which you should remember. Now ofcourse somebody 

may ask what is this interested in the slow transient, not interested in fast transient, I 

mean what are the situation where you you would be interested in the slow transient and 

not interested in fast transient time and so on. For example, let me give you a simple 

example; you want to study what happens when you start a d c motor or you have got a d 

c motor running and the load torque on it, the load torque on the d c motor suddenly 

changes and you are interested in how this speed varies. 

Now, the point is when you are trying to see how this speed of the d c motor varies; what 

kind of transient are you interested in? See, if you look at a d c motor it has got some 

resistances, it has got a some inductance, it has got a small, it has got inter winding 

capacitances and so on. So, if you model everything including the mechanical system, 

the electrical system, you will find that it becomes a stiff system because the electrical 

time constants or the electrical transients are much faster than the mechanical transient. 

So, if you are model all the transients but, you are interest is on the in seeing how the 

slow speed transient behaves you know. The slow you know pattern in the response. 

Then you come up with similar situations. So, whenever I say that you have got a stiff 

system and you are interested in the slow response, you can remember this kind of 

examples. So, if you got d c motor and your interested in the speed transient and your 

model all the electrical transient, all the electrical components of the system which are 

relatively faster then this particular situation does arise. 

So, let me retreat, we are thinking of a system which has got both fast and slow transients 

and we want to replicate the slow transient. So, that would be a particular situation which 

we may face. Ofcourse you may be interested in the fast and the slow transients. That is 

the another situation that is another thing you may may encounter. If you are interested 

in the slow transient of the slow transient behavior of a system but, you are not interested 



in accurately representing the fast part of the response, you know fast part of the 

response is there but, you are not very very interested in the accurately you know getting 

the fast response. 

In that case, Euler method is not a good idea because you have to really decide your time 

step based on the fast response and if you choose any thing which is larger than what is 

mandated by that particular condition, you will find that your system simulation blows 

up. So, that is one of the problems which you will face if you try to use Euler method. 

So, Euler method is taught but, rarely used. so that is the basic interesting thing you will 

understand by experience. 

What we will do now, I will just show you this particular aspect by doing a numerical 

simulation on psi lab. So, what I will do is, I will just show you a clip of a program. We 

just, I will just you how you can run it and then I will display the result. So, if you look 

direct your attention to this particular program which I have used to simulate the system. 

So, this is a psi lab program. We will ofcourse, I will tell you the main steps in the 

program. You have given the a matrix of the system k, will tell you the Eigen values if 

you are interested in them let us not bring them out. 
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This is a time step say you want to simulate the system for 2 just for 20 mille seconds 

using a time step of 0.0 0 1. Just for 2 mille seconds and using Euler method. 
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So, let us assume that the initial conditions on the states are 0 but, the system is excited 

by a step in the input. So, we are getting some kind of forced, we are having a forcing 

function. 
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Suppose, I numerically integrate using Euler method. I delete this. So, what you have 

here is, the Euler the method. X is equal to 1 plus A h into X plus h into u that b is kind 

of absorbed in this vector. So, I have not written it separately. 



So, I will comment the discretization by trapezoidal rule. So, what we have here is, this 

program and ofcourse I will plot the values once I have simulated them. So, if I run this 

program and save it and I run this program. 
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This is the response I get. The green and the blue denote the inductor currents; the small 

inductor and the large inductor. The small inductor is blue, the large inductor is green 

and red is the capacitor voltage. It may not be very clear in your screen but, the value 

here is 1200, 1000 200 and this time off course is 0 to 0.0 2 seconds. So, you see this 

response is kind of blowing up, you get a blowing up response. 

So, this is one of the problems which you will find in Euler method that when you have 

got a fast transient you have to, the time step you may choose really as really may not 

satisfy the stability condition and you will get a spurious response. Before we go ahead 

and you know try out the other methods, let us quickly look at what is the actual 

behavior of this system. 
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The correct time response is this, how did I get this correct time response? The correct 

time response if you recall, is not obtained by numerical integration. But, by simply 

evaluating the response at various time steps from the analytical functions that we 

derived using Eigen values and Eigen vectors. 
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If you recall the response of I one, using Eigen value analysis is 10 minus 10 e raised to 

into sine of thousand and 5 t, i 2 is this is approximate. Not exact. But, this was 



analytically derived using Eigen values and Eigen vectors. So, this is the response for 

this RLC circuit I 1 I 2 and V c. So, this is time response but, this is derived analytically. 

So, this what we are showing on the screen is the same response which is evaluated by 

simply plugging in t into the these functions which I have just written down and so this is 

the correct time response. 
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So, this is what I should be getting and at a if I try to simulate this just from 0 to point 5 

seconds, this is what I should be getting this V c and this is i 1 and i 2 green and blue. 
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So this is the correct time response and just to replot what I got just now using Euler 

method with 0.0 0 1 and the simulation just 20 mille seconds you see, the beginnings of 

the fact that this discrete time system obtained by using Euler method, it is just blowing 

up. So, we are no where going to be nowhere close to either this response or that 

response. 

So, Euler method is giving a horribly wrong solution. In fact, it is giving a qualitatively 

wrong answer. Also, it is not only inaccurate, it is giving a qualitatively incorrect you 

know, conclusion or inference about stability. If I use backward Euler method remember, 

the backward Euler discretization is done for x dot is equal to A x plus b u by the 

following. 
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u k off course is constant, u is constant so you have less trouble about this. But, what you 

get eventually by just solving this, I am skipping a few steps is, 1 minus A h inverse x k 

plus 1 minus A h inverse b h u k. 

So, this is basically the iteration which I will have to use in case I want to use backward 

Euler method. So, this is backward Euler method. Now, if I use backward Euler method, 

the important thing ofcourse here is that, you have to take out the inverse of a matrix for 

linear. So, this involves extra computations. It is not as straight forward as the explicit 

method. That is the forward Euler method which has an explicit method. 



Now, normally taking out an inverse is not a big problem. I mean it does not, is not a 

fraught with problems as far as computation is concerned provided if the system is small. 

If your system is very large, then computation of inverse can be quite intensive. For 

example, its very common in a power system to have a size of the order of the system 

may be with thousand you may be thousand of states. So, in that case to try to compute 

this, may be a bit comp may we be fraught with a lot of hurdles because inversion is a 

computationally intensive you know operation and at every time step you have to do this 

you know, this particular function that is, x k plus 1 getting x k plus from from from x k. 

Now, since 1 minus A h inverse is appearing at every step you do not you can compute it 

once in your program and then simply do a matrix multiplication when you are running 

this algorithm to implement backward Euler method. So, you can actually take out the 

inverse and keep it before hand and only perform matrix multiplications. But, again if 

you are working with very large systems, it is not a good idea to compute the inverse 

explicitly. The reason being, that if a is powers, the inverse of i minus A h i is 

incidentally an identity matrix, something which I did not mention earlier. This particular 

matrix is the inverse, may not be power. So, may you even have to store a very large 

number of values if you are going to explicitly compute the inverse and keep it stored 

before hand. What would be a pragmatic thing to do? It would be to compute the l u 

factors, the lower and upper factors of o l u factors of 1 i minus A h and just do backward 

and forward substitution during each iteration. 

So the l u factor ofcourse you may have to do ordering of the states etc. So that, you get 

the l u factors as powers if a is powers. But, remember storing the inverse of even a 

powers matrix you know is a problem because the inverse may not be powers. So, these 

are the some of the issues which you may face may if your developing a program for 

large systems. But, ofcourse right now we are talking about third order system. You can 

just as well take out the inverse. You can even keep on taking out the inverse at every 

time step though it is not necessary. So this is basically how you will implement 

backward Euler method. Trapezoidal rule is again similar. 
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You will get x k plus 1 minus x k by h is equal to A x k plus 1 plus A x k upon 2 plus b u 

k plus 1 by 2 plus b u k by 2. So, this is how you will discretize it. Again, I you will need 

to take out an inverse. So, the of a matrix so that is one of the critical features of 

trapezoidal rule as well as backward Euler or any implicit method. 

Remember, since this is a linear system our job in implicit method requires inversion of a 

matrix. If your system is non-linear, you may require even to do iterations to get x k plus 

1 from x k using some method like n r that is Newton Raphson or Gossie Gauss Seidal 

method. 
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Now, coming back to the qualitative results if I used backward Euler method with h is 

equal to 1 mille second and a simulation interval of 0.0 2; this is the response I get. One 

thing you can notice here is that, backward Euler seems to have killed the oscillation 

very quickly. So, the fast transient which I expect to be seen in this 20 mille second 

window, is in fact seems to be very well damped, damped out. Better damped than what 

in fact it actually is. So, you if you like at the original response, it takes at least a second 

or so to damp out more than a second damp. 

Whereas here, backward Euler with a 1 mille second time set, the oscillation dies down 

very soon. So, if you look at if you just recall how this the correct time response should 

be like this, in about 0.5 seconds. Your oscillation is gradually dying down. So, this 

oscillatory part of a transient takes at least a second or two to completely die out. 

Whereas backward Euler has simply killed at oscillation and you do not even see an 

oscillatory response. 
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On the other hand, if I choose a large value of h, in fact this h is more compatible with 

the slow mode, that is e raise to minus 0.1 t you know, the time constant corresponding 

to the decay time constant corresponding to e raise to minus 0.1 t is 10 seconds. So, it 

makes sense to choose h is equal to 1 second only if you are interested in this slow 

response. 

The interesting part which you see here ofcourse is, all though the initial part of the 

transient is not captured very well, the system is able to capture the slow transient 

nonetheless. This would not have been possible with forward Euler method because you 

would find that the fast transient is getting destabilized. That is what we saw in  one of 

the previous simulations. yeah This one. So, we could not have ofcourse use the same 

strategy with forward Euler method even though our main response of interest was the 

slow transient. 

So, backward Euler method in fact is a good method to use if you are not too worried 

about how the fast transient involves. Ofcourse, we would be worried if the fast transient 

were actually unstable. But, if it is known that is stable, if you you from your engineering 

judgment you are sure that the fast transients are not unstable. In that case if you are 

interested in the slow transient it is good idea to use a method like backward Euler 

method with a large time steps which is compatible with this slow transient. 
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Trapezoid rule with 1 millisecond and has stimulations interval of 0.1 second seems to 

capture the fast transient quite well. This is unlike backward Euler which introduces 

some damping, extraneous damping into the original system. 
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However, if I use trapezoidal method with h is equal to 1; all though the response is not 

destabilized you are getting a highly inaccurate response as far as V c is concerned. So, 

trapezoid rule is not very very good you cannot use it with very large time steps or time 



steps corresponding to the slow response if your system is very stiff like the one which 

we are encountering here. So what is the solution to these issues? 
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The solution to this problem is, use variable step sizes. For example, you can use 1 

millisecond for 1 second and 1 second h is 1 second for 30 seconds. So, variable time 

step sizes can be used in order to obtain a response. So, you easily program it in psi lab. I 

will just show you the program. So, if you look at if you look at the program for variable 

time steps. 
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You will have to, when you program define two time steps, h 1 which is 1 millisecond. 

Let us say we stimulate only for 1 second then, after some time you can shift over to a 

last time step and stimulate for a longer time. And ofcourse, you will have to program it 

appropriately so, that you can get the appropriate response. 

Now, so ofcourse one important point in this, whatever stimulation we are trying to do is 

that, our choice of h is somewhat adhoc. And I mean, the choice of h 1 and h 2 is adhoc 

and also it is adhoc that we switch over from the smaller time step to the larger time step 

at 1 second. Why 1 second it could have been 10 second and so on? The point is in this 

particular case, I do know the response. So, since I know the response I can actually tell 

you at what point to switch. But, implementing variable time step methods for systems in 

general may be a bit tricky. I mean if you know nothing about the system then, how do 

you decide that you should switch over at 1 second from the fast, slow, the small value to 

the larger value or even more importantly, how do you choose these values h 1 and h 2. 

And, I here there is an ad hoc switch from 0.0 1 point or rather 1 millisecond to 1 second. 

The key to this of course is that, often when we are stimulating a system, we know 

something about the system. So, that is one way you can actually use your engineering 

judgment and come to a particular conclusion about what time steps to use or you can 

use a bit of try line error. But, most industry grade programs will actually have some way 

of finding out you know, the truncation error, estimating the truncation errors at every 

step. And, if the errors at every step are not too large then they may even permit 

adaptively to start increasing the time steps. So, in a you know if you look it at 

commercial software or software’s like matlab other software they do implement 

variable time step methods and they would have one way of checking out or estimating 

the truncation errors and adaptively changing the time step. Here of course, I do it one 

short, I just change from 1 millisecond to 1 second. 

Now, if I use the variable time step method, the question is can I use variable time step 

method with Euler method? So, the question is can I use Euler method with variable step 

sizes in a step system? The answer is no. The point is that, the moment I switch over 

from a small time step to a large time step the remanence remainants of the fast mode 

may not be completely zero. In fact they are never zero because of numerical precision, 

can never be infinite. So, you will find that there are remanence remainants of the fast 



response which are there in your, there is if the fast response wouldn’t have completely 

died down when you rigorously speaking it never completely raise dies down. 

So, if I use a Euler method, the moment I switch over to lager time step, the faster 

transient even though we have waited for the fast transient to die down after some time, 

you will find a whatever remanence remainants of the fast transient are there, they will 

again start becoming unstable. And you will find that the whole system blows up. So, 

that is the major issue which you will face when you use methods like Euler method with 

variable time steps. So, Euler method is actually is not suitable or variable time steps for 

the stiff system. So, Euler method is you keep it in the background. 
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So for example, I actually try to program and do this stimulation for Euler method; you 

see this, I do not know whether it is clear on your screen but, it is 2 into 10 raise to 3 

hundred and 6. So, you know you are by trying to implement this variable step method 

for just a few seconds has resulted in a complete blow up of the solution. 
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So, forward Euler cannot be used in conjunction with a variable time step method. On 

the other hand, backward Euler method if I use variable time step method, it gives a 

reasonably good response for the first few, first 1 second or so it gives a step. Really it 

does not capture the fast transient quite well any way you know. It does not capture the 

fast transient any way. The slow transient it is captured pretty well. 
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Trapezoid rule with this kind of thing works well because when we make the time step 

very small for the first few seconds, it captures the fast transient correctly and also the 



slow transient. So, that is the basic deal you can say whenever you are using a variable 

time step method. So, these are these are the things you have to keep in mind. 
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So, to summarize this part of the lecture; for non stiff system where stiffness is not there 

there is less less of a worry that the system will become unstable if you choose your time 

step appropriately. Appropriately in the sense, if you know something about the system 

you can choose your time step roughly to correspond to the fastest time constants in your 

system. So, if it is a non stiff system and you know that well this exponential rate of 

change or the sinusoid is roughly going to be in this range, then you can actually choose 

a time step. Use any method. In fact of course prefer high order methods. In case you are 

using explicit method, so of course avoid using Euler method it is not a very good 

method to use because it is inaccurate as well. 

So, what one can try to do is, if you are coming with you a non stiff, if you are 

encountering a non stiff system and you have some rough idea about time constant 

associated with this system or the frequencies of oscillatory response if any, then you can 

choose the time step corresponding to the fastest such transient. And you can use a 

higher order explicit method. Why explicit method? Because explicit methods are easier 

to implement they do not require inversions and or in a non-linear system. They do not 

require iterations within a time step and so on so. 



So, however if one is faced with a stiff system; so you can direct your attention to the 

screen, if only slow transient is of interest, in that case you you must look at implicit 

methods. So, if slow transients are of interest you can try to use backward Euler method. 

Methods like backward Euler method with larger time step. So, if you see the this 

particular slide what I have written if this the slow transients are of interest and the fast 

transients are known to be stable either from engineering judgment or some prior study 

with somebody else is done; if you know something about the system and you know that 

the fast transient are indeed stable and the slow transients are what you are really 

interested in, you can use backward Euler with larger time steps. Larger I mean 

compatible with the time constants associated with the slow transients. 
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If you have got a stiff system and both fast and slow transients are of interest you can use 

higher order explicit methods or implicit methods with the time small time step. So, if 

both fast and slow transients are of interest, you can use higher order implicit or explicit 

method with a small time. Small ofcourse corresponds to the fast transients. The time 

constants of the frequencies associated with the fast transients. Even here, even higher 

order explicit methods may be a problem. So, I actually, if you are encountering a stiff 

system, I think it will, it is a very safe to use implicit methods with small time steps if 

both fast and slow transients are of interest. 



It is a bit risky to use explicit method because they do not, they are do not have very 

good stability properties. You will have to use extremely small time steps otherwise you 

may end of these destabilizing some response. Especially true, this is especially true with 

Euler like methods. Ofcourse if this is what, you want a fast and slow transients are of 

interest in a stiff system; the best solution or a better solution would we to use a variable 

time step with in conjunction with backward Euler or trapezoid. That is initially keep the 

time steps small so that, you capture your fast transient well and then increase your time 

step. And you know, you can capture your slow transient even with the larger time step. 

the off course The important thing implicit in all what I am trying to say is that we are 

trying to you know complete our numerical integration as fast as we can. 

Somebody may ask well, you have seen this RLC circuit you know, simple RLC circuit; 

what you know to integrate numerically integrate this for say thirty second even with a 

time step of say, you know hundred microseconds or fifty microseconds? Should not be a 

problem on today’s computers. But, this is not true when you consider larger order 

systems. Now, when you have got very large order systems and if you are forced to use a 

very small time step like you know, fifty microseconds or hundred microseconds and 

you want to stimulate for say, hundreds of seconds. This really may be a big bottle neck 

and you may take hours sometimes to stimulate this system. This actually happens. So, if 

those of you who are doing power electronic systems or you know large scale power 

system stimulations would have encountered this problem if they use then inappropriate 

method. 

As I mentioned sometimes back proliferation of so many you know software tools for 

numerical integration of circuits power system and other systems control systems and so 

on, it is very important to know this basic know the basic properties of these integration 

methods. 
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So, although our, you know treatment here has been very, very brief. I mean the aim of 

introducing you to analysis methods right in the beginning of the course is to give you a 

feel of these kind of methods which we will now apply when when we do the modeling 

of power system components. 

So, when once we finish our modeling of power system components, we will directly use 

these tools like numerical analysis or Eigen value analysis. Later on, in case you have 

forgotten what we have covered you come back to these lectures and just revise. Now, 

one small point which I did not mention as far as numerical integration is concerned; is 

that if you are faced with a stiff system, if you are having a stiff system, rather than do all 

the jugglery of using either very small time step sizes or variable time steps and these 

vary some kind of things, one thing you can do right away when you are considering a 

system when you are modeling a system is to get rid of the fast transient. Get rid in the 

sense, make modeling simplification so that your system is of lower order and it kind of, 

you know, kind of does not have the fast transient at all. And this is something we have 

discussed before. If you are encountering a stiff system, you can neglect the fast 

transients. What you what you get? Because of that, is that you are going to get a lower 

order system, the differential equation is corresponding to the states associated with the 

fast transients you know, are converted to algebraic equations. So, you know what you 

are really doing is that, the states for example, the inductor current or the capacitor 



voltage in this particular circuit, the differential equation corresponding to the states are 

converted into algebraic equations. 
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For example, we have done this before. What this as a revision in this particular circuit 

through participation matrix, the participation matrix or through by engineering 

judgment, you know that the states associated with the fast transients are this and this. 

That is 10 mille Henry and 100 micro ferret and state associated with the slow transient 

is this. This is something we have done before. So, why not use a modeling 

simplification? You know for example, here you have got you can use the modeling 

simplification that this capacitor is actually open circuit d V c by d t is equal to 0 and d i l 

1 by d t is equal to 0. In that case, you are going to get effectively a circuit of this kind of 

lower order is just a single dynamical element or a single state. 

This will be an acceptable approximation provided you are interested only in the slow 

transient. So this something we have done before. The point is that, if I have got this 

system to begin with a if I want to numerically integrate it; I will have to worry about 

you know, what method I am going to use? What is the time step I am going to use? The 

possibility of using variable time steps to speed up your numerical integration and so on. 

But, if you look at this system, this is a non stiff system. Actually this particular system 

we I can use Euler, forward Euler, backward Euler trapezoidal or say Runge Kutta say 

for fourth order method which I have discussed. I have just mentioned sometime in the 



lecture previous to the previous one. You can use all of these which say a time step of 1 

second without you will get a reasonably accurate solution because this is not a non this 

is not a stiff system at all. So, often what we do is, neglect that d I by d t corresponding 

to this and the d v by d t that is, the current through this and get a non stiff system. 
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Again, just in case you are worried about why am I imposing the point, remember that if 

I am going to use implicit, explicit methods; it is important that the system should not be 

stiff otherwise you have to, you will be constrained to use a very, very very small time 

step and it will take a very long time to complete the stimulation. Moreover some of, 

some explicit methods like Euler method are not even very accurate. 

So, the important thing is, if given a choice a programmer will use explicit methods 

because it involves less of programming and less computations per time step. But 

implicit are more stable. They do not give, they do not show unstable system to be a 

rather a stable system to be an unstable one. And ofcourse, I have mentioned that 

unfortunately implicit methods require more computations per time step. 

So, it does make sense sometimes to use explicit methods. But, you should basically 

make modeling simplification so that, the fast or non stiff or the stiff components of the 

system or the fast component of the system are effectively removed. So, that is the basic 

you know, thing which modeling you know simplification which one should use if 

possible, wherever possible. 



So that, you it permits you to use methods, some sometimes it permits you to use explicit 

methods. But, if you have no idea about the system, you know you cannot make 

modeling simplification. So you know, if you start off with this system which you have 

no knowledge; if you give, for example, a synchronous machine to a mechanical 

engineer or a civil engineer; he may not know all the you know, he may not have that 

engineering judgment of the various transients involved or what transients to expect. 

So, in that case he may find it very difficult to make modeling simplifications. So in that 

case, then there’s always an issue about which method to use and so on. But, an 

interesting feature about modeling and you know, what will we doing next is that, often 

we would be kind of making assumptions about the system from a general knowledge, a 

general engineering sense about this system. For example, when you are modeling or 

synchronous machine and main aim of the modeling is to study, for example, loss of 

synchronism or electro mechanical transients associated with the system; we will not be 

modeling the currents, for example, through the interwinding compared capacitance of 

the stator windings. 

So, because we have a kind of engineering feel that the stray components like the 

interwinding distributed capacitance is and so on, may not the transients associated with 

them are fast very, very very fast to analyze unless you are really doing analysis of ultra 

fast transients in a synchronous machine. You may not need to model them at all. So, to 

some extent there is this engineering judgment. Now, before we end this particular 

lecture, we just have a few 10 to fifteen more minutes to go. 
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Let us quickly summarize the first part of our, you know of our lecture. You know the 

first part of this course was in fact analysis of dynamical system. It was a more general 

analysis. We considered linear time invariant systems and we could really characterize 

the response in terms of modes. We could even understand the stability of such systems 

simply by looking at the properties of the A matrix. 

In particular, looking at modes could be characterized by the Eigen values and the Eigen 

vectors associated with the A matrix of this system. Non-linear and linear time variant 

system, this should read as variant. Non-linear and linear time the variant systems are 

difficult to analyze. Unfortunately, the only tool which is left with us when we are trying 

to analyze non-linear systems in general is numerical integration. There are ofcourse 

some specialized techniques which approximate the behavior of non-linear systems. But, 

most of the times we will be using in fact numerical integration to analyze non-linear 

system. 

And an exception to that of course is when you are having a non-linear system. And we 

are analyzing its behavior for small disturbances around an equilibrium point, we can 

create or rather derive a linearized model from the non-linear system for the analysis of 

small disturbances from the equilibrium. Of course, once we will linearize the system, 

we can use the tools of Eigen value and Eigen vector analysis. 
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One of the key systems which we have not really considered right now is the linear time 

variant system. And please note that, there is small error here in this slide it should read 

as linear time variant systems. An example of a linear time variant system as we shall see 

in the coming lectures is the synchronous machine itself. The flux the flux as seen by the 

stator bindings of a synchronous machines that is, the rotor winding flux, the flux is by 

the three phase windings of a synchronous machine are in fact time variant. The 

differential equations which come out when analyzing a synchronous machine are in fact 

linear time variant and we shall be using a very powerful method or we shall be using a 

kind of a transformation of variables in order to derive a time invariant system from the 

time variant system. 

So this is something of course we are yet to come to. This is just a kind of a curtain raiser 

to what is to come. So, the modeling of a synchronous machine we shall start off soon 

and we will be entering in some sense into the domain of power systems, slightly away 

from the kind of general analysis which we have done so far. 


