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Welcome everyone to lecture number 9 on non-linear dynamical systems. So, we had 

started with LaSalle’s invariance principle the last lecture. So, let us just quickly review 

this, suppose omega is a compact set that is positively invariant. Suppose we have found 

a function V that is C 1, C 1 means differentiable and the derivative’s continuous, such 

that this V satisfies V dot is less than or equal to 0 on the set omega. For this V we will 

now find a set e such that V dot equal to 0 on set e. Let M be the largest invariant setting 

e, largest invariant setting e means, it is invariant under the dynamics of this dynamical 

system. It is containing e and it is the largest such set. In other words any other subset of 

e that satisfies these properties is also contained in M. If these conditions are satisfied 

then every solution starting in omega approaches this set M as t tends to infinity. 
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So, approach a set we had seen this as a definition. So, what the LaSalle’s invariance 

principle says that every starting in the set approaches min other words for every initial 

condition the trajectory converges to M, what is the meaning of converging to a set. It is 

the distance of a. P from a set, is defined as the distance of P to different points in M and 

the shortest such distance. So, this is definition of distance of. P from the set M. Now, as 

x evolves as a function of time x of t is a point. We look at the distance of x of t from the 

set M and this distance decreases as t tends to infinity that is the statement of the 

LaSalle’s invariance principle. 
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So, we had already encountered the situation of the pendulum example, in which the 

natural energy function to take did not satisfy strictly less than zero. So, let us do this 

example again. So, this is what we call as friction, this is the situation of a pendulum the 

original differential equation was of second order which was equal to like this. 

This differential equation of second order we converted to a first order differential 

equation, 2 first order differential equations by introducing x 2. So, x 1 is same as x and 

x 2 is a derivative of x 1 and these 2 first order differential equations we will. Now, study 

the equilibrium point and the stability properties of the equilibrium point. So, for this 

dynamical system, we will now see x 2 and minus sin x 1 minus b x 2 this equal to 0 

zero. This gives us x 1 equal to 0 and x 2 equal to 0 as 1 of the equilibrium point points. 

We can have x 1 equal to pie also that corresponds to the pendulum standing upwards 

which we know as unstable. We can also obtain that as a conclusion by linearizing about 

that point. Checking that the Eigen values are at least 1 of them is in the open right of 

plane that we will keep as an exercise what we will. Now, check is whether this 

equilibrium. Whether 0, 0 is stable asymptotically stable, this is what we will check.  
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Now, for this purpose we will take the function coming as the energy of the system. So, 

take V of x equal to 1 minus cos of x 1, why because this is the potential energy, what 

was our x 1 variable. This is our pendulum when it undergoes a deviation of angle x 1 

this is an angle. The time how much does it get raised the amount by which it gets raised 



is the potential energy accumulated into the system and that turns out to be 1 minus cos x 

1 of course, multiply it by the mass and the gravitational acceleration g, but we have 

considered a model where those parameters are not arising. 

This can be considered as normalization of the equations or as normalization of mass to 

1. This is only the potential energy the other energy term is actually x 2 square by 2. Let 

us check what happens if we take just x 2 square. This is not really energy because this is 

not kinetic energy, second term is not kinetic energy, but twice the kinetic energy. So, let 

us check what happens to V dot of x. So, this turns out to be del V by del x, times f of x. 

When we evaluate this del V by del x is a row vector in which the first component here is 

a derivative of this with respect to x 1, which is exactly sin of x 1. The derivative for this 

with respect to x 2, that is 2 x 2 times f of x what was f of x the first component was x 2 

second component was minus sin x 1 minus b x 2. When we multiply this product, this is 

an inner product we get x 2 sin x 1 minus 2 times x 2 sin x 1 minus 2 b x 2 square. 
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So, this is what we get V dot of x. So, is this quantity positive or negative that is the next 

thing we will investigate. We got V dot of x was equal to this term is well behaved and 

the other term is, this is our x 1 this is our x 2. So, one term of course does not change 

sign it is always negative or equal to zero, but the other term x 1 and x 2 sin of x 1 has a 

same sin as x 1 close to x 1 equal to 0, but x 2 times this can change it sign depending on 

which quadrant it is for small values of x 1 x 2. 



In other words close to the origin we are not able to say that V dot of x is less than or 

equal to 0. It is not satisfied close to 0, 0. This one can check oneself, in order to check 

oneself 1 could first ignore this particular term, why we can ignore this term because this 

is to put D equal to 0. Just means that we have a pendulum without friction and for the 

pendulum without friction we know that the system is stable by intuition. 

We want to obtain that as a conclusion for the lyapunov theorem of stability. For that 

purpose this particular quantity certainly changes sign, it will have different signs 

depending on x 1 x 2 one, one each of these 4 quadrants. Hence this does not satisfy less 

than or equal to zero. So, this is not a valid lyapunov function why because it is a 

lyapunov C it is positive definite, but it is not decreasing it is non-increasing around the 

origin. So, let us got back to our lyapunov function and make a small change here. Now, 

divide this by 2 this perhaps we have already verified once. 
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So, this now is indeed the kinetic energy. So, by doing this we do not get this 2 term 

here. We remove this also here because of it this term. Now, cancels out and we have V 

dot of x. Now, it is indeed less than or equal to 0 why because V dot of x was equal to 

minus b x 2 square. So, this at least proves that 0, 0 is stable however this has not helped 

us to prove that the origin is asymptoting the stable. 

Even though by intuition we know that equilibrium point is in fact asymptoting, this 

table because we have friction which continuously dissipates off the energy. So, how do 



we obtain that this particular function lyapunov Candace will not help us. However we 

can use LaSalle’s invariance principle for the same lyapunov function. So, construct the 

set e set of all x such that V dot of x was equal to 0 in other words minus b x 2 square 

equal to 0 it gives us set of all points that x 2 is equal to 0. 
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So, this x 2 equal to 0 is nothing but the x 1 axis is a set of all points where the rate of 

change of lyapunov function is equal to 0. So, this is our set e, now we want to look at 

the set M which is subset of e invariant, invariant under the dynamics of the system and 

largest set largest such set largest, such set which satisfies, that it is a subset of e and it is 

invariant under the dynamics of the system. So, how will we find the largest such, set we 

will look for what values of x 1 and x 2 are subset of e and are also invariant. 

When we try to do this we will automatically get the set of all x 1 x 2 points that are 

invariant and containing d. Hence it will be the largest such set. So, x 2 equal to 0 is a 

requirement that the set M is contained in e. Now, we will put this in x 1 dot equal to x 2 

and x 2 dot equal to minus sin x 1 minus b x 2 and we put x 2 equal to 0. 
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We get x 1 dot equal to 0 we also put x 2 sox of t is contained in set e which means x 2 

of t is equal to 0 always is uniformly equal to 0 equivalently equal to 0, identically equal 

to 0. These are the different ways we interpret this symbol this equation. So, if some 

particular value of x as a function of time always equal to 0, it is like a constant function 

which automatically means that x 2 dot is also equal to 0 identically. So, when we put 

that x 2 dot equal to 0, then we also get sin of x 1 equal to 0. This implies that sin of x 1 

equal to 0 which of course, we know happens at either the vertically down position 

which is x 1 equal to 0 or the vertically up position, which is x 1 equal to pie. Since you 

are interested about the stability properties of the 0, 0 we get this is of interest. 

Since the interest at this we get that M is just the 0,0 when we ask the question inside the 

set e which are all those points, which are invariant under the dynamics of, f the time to 

the set e, which means we put the equation x 2 equal to 0. We studied invariance by 

invariance for invariance, we put the fact that x 2 is always equal to 0. which means that 

x 2 dot equal to 0. We substituted that back here, we got sin of x 1 also equal to 0. This 

term was already 0 this term, we now got equal to 0 because of which we obtained sin of 

x 1 equal to 0, which means that we this can happen at pie, 0 also the first component is 

equal to 0. That is one of the interest which is vertically down position. 

So, we have obtained the set of all invariance points that satisfies the property that it is 

invariant and subset of e gives us only this point. This is the largest set any other set 



would not satisfy the equations. We looked at looked for all the points that satisfy the 

equation and got this point. 
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In other words we have obtained that M is just the set just the point 0, 0 what is the 

meaning, by LaSalle’s invariance principle x of t converges to the set M which is just 0, 

0. So, this in other words proves that origin is not just stable, which we already 

concluded for the lyapunov stability, but we in fact got that the origin is asymptotically 

stable. So, this concludes proof of the statement that the origin is asymptotically stable, 

by using what principle not by using lyapunov theorem of asymptoting stability, but by 

using LaSalle’s invariance principle, which we use to conclude that the set M has just 1 

point the origin and by LaSalle’s invariance principle the trajectory x of t converts to M. 

Hence, the origin is asymptotically stable. 
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Now, we will investigate whether the linearized system at this point is also 

asymptotically stable. So, consider again x 1 dot equal to x 2 and x 2 dot equal to minus 

sin x 1 minus b x 2. So, x dot is equal to this can be written as f 1 of x and f 2 of x as a 

vector. So, what is a linearization, we have already checked that the equilibrium point of 

interest is 0, 0. Let us check that this is an equilibrium point. Now, what is this linearized 

system, it is this particular matrix evaluated t x equal to 0 comma 0.  

So, let us find what this matrix is the term that comes here is the derivative of f 1 with 

respect to x 1. So, in f 1 which is this equation x 1 does not come at all in other words the 

derivative of f 1 with respect to x 1 is 0. What is the derivative of f 1 with respect to x 2 

that is the term that comes here that is precisely equal to 1 why because f 1 of x is equal 

to x 2. So, derivative of, f 1 of x with respect to x 2 is equal to 1, what is the derivative of 

f 2 with respect to x 1. So, where all does x 1 appear in this equation it appears only here. 

In other words derivative of minus sign x 1 with respect to x 1 that is minus cos x 1. 

What is the derivative of this term with respect to x 2 x 2, does not come here it appears 

only here. 

So, we put minus b here this as excepted is a matrix, but it depends on x 1 and x 2 it 

depends only on x 2 in this case. So, we are now required to evaluate this at x equal to 0 

at the origin. So, which means that in these in the first 2 entries x 1 x 2 do not appear it 

appears only here, when you put x 1 equal to 0, we get minus 1 and of course, b is 



greater than 0. Let us check how the Eigen values of this matrix look. So, upon checking 

one can do the calculations and check that Eigen value. 
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Eigen values of a are in the open left half complex plane, one can check that by using the 

fact that this greater than 0, Eigen values of that particular matrix we wrote are both in 

the open left half plane, which means that the origin is asymptotically stable. For a 

linearized system if a, is if the origin of the linearized system has all Eigen values in the 

open left half plane. Then we know that the non-linear systems equilibrium point is also 

asymptotically stable. However that lyapunov function could not help us with that. 

So, can we find another lyapunov function, after all the lyapunov theorem was only a 

sufficient condition for stability and asymptotic stability. Since, we already know that the 

equilibrium point is asymptotically stable, can we find another lyapunov function to 

prove to show asymptotic stability the energy function, already helped us to prove 

stability, but we want to prove asymptotic stability. So, we will consider lyapunov 

function for the linearized system. 

In other words find P greater than 0, such that a transpose P plus P a, is equal to Q for Q 

a negative definite matrix, this is the problem that we will solve. Now, why because this 

particular lyapunov function for the linearized system will also help as a lyapunov 

function for the non-linear system. So, we can in fact choose for linear systems because 

a, is for any Q we will be able to find such a p. So, take Q equal to minus 1 0 0 minus 1. 
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In other words, this will Q will correspond to our V dot of x. So, the corresponding V dot 

of x will turn out to be equal to minus x 1 square minus x 2 square, why because V dot of 

x is nothing but x transpose Q x on linear systems. So, when we put this particular Q we 

will get precisely this. This we know is negative definite, it is strictly less than 0 for all x 

1 x 2 except, of course x 1 equal to 0 and x 2 equal to 0. So, for this particular Q we will 

now look for a p, such that find P such that a transpose P plus P a, is equal to this Q 

because that particular a is harvitz the P, that we will obtain from this equation, will turn 

out to be positive definite matrix this is equation that we will solve. Now, notice that, A 

was equal to 0 1 minus 1 minus b. For the purpose of solving we could take b equal to 1, 

this is the rate at which energy decreases due to friction and this is required to be 

positive. So, we have taken b equal to 1. 
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What do we get by solving for solving for P. We will assume P as these entries P 1 P 2 P 

is a symmetric matrix, hence this entry is also equal to P 2 and P 3. So, when we do A 

transpose P plus P A, that time we get this to be equal to this is A transpose, what is 

written here is a transpose hence P 1 P 2 P 2 P 3 plus same matrix P 1 P 2 P 2 P 3 times 

a, which was equal to 0 1 minus 1 1. So, we will now evaluate this, this is equal to minus 

P 2 minus P 3 this is P 1 plus P 2. Here we have P 2 plus P 3, this is minus P 2 minus P 3 

and P 1 plus P 2 P 2 plus P 3. Now, we will this to Q and while doing that, so we can add 

this 2 matrices to get finally, a transpose P plus P a, is equal to minus 2 P 2 P 1 plus P 2 

minus P 3. 
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So, we get the same thing P 1 plus P 2 minus P 3. Here we get 2 P 2 plus 2 P 3. So, since 

P was symmetric, we have got this particular matrix to be symmetric. That is a reason 

that we should be choosing Q also to be symmetric. We have chosen Q to be equal to let 

us find values P 1 P 2 P 3 a particular theorem. We already saw claims that this system 

of equations is solvable. So, there are only 3 entries to 3 equations 1 2 and 3, why 

because this entry equal to this is a same equation as this entry equal to 0. So, let us put 

minus 2 P 2 equal to minus 1 P 1 plus P 2 minus P 3 is equal to 0. Finally, 2 P 2 plus 2 P 

3 equal to minus 1. 

So, the first equation just tells that P 2 is equal to 1 by 2, which when we substitute in the 

last equation we get P 3 was equal to minus 1 minus 2 P 2 minus 2 times P 2 is nothing 

but minus 1, again which gives us P 3 equal to. So, we have taken A equal to 0 1. Let us 

go back to this equation, we have got A equal to 0 1 minus b and we have put b equal to 

1. Let us now take P equal to P 1 P 2 P 2 P 3 we have taken P to be symmetric. 
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That is why we have taken a same entry here. So, let us solve for A transpose P plus P A 

This gives us for A transpose. We will write 0 minus 1 1 minus 1 times P 1 P 2 P 3 plus 

the same matrix P 1 P 2 P 2 P 3 times A which is equal to 0 1 minus 1 minus 1. Then we 

solve this. So, this when we do we get minus P 2 minus P 3 P 1 minus P 2 and P 2 minus 

P 3 plus this particular matrix product. When we evaluate we get minus P 2 minus P 3 P 

1 minus P 2 P 2 minus P 3. When we add these 2 matrices we get minus 2 P 2 P 1 minus 

P 2 minus P 3 P 1 minus P 2 minus P 3 and finally, 2 P 2 minus 2 P 3. 

So, this matrix we have finally, got is nothing but a transpose P plus P times A. Now, we 

will equate this to Q. So, we had already taken notice that, this matrix is symmetric 

because we have taken P to be symmetric. This matrix has been obtained to be 

symmetric. Hence it is important that this matrix b equal to A Q, which also should be 

assumed to be symmetric. So, we have taken Q to be equal to minus 1 0 0 minus 1. So, 

when we equate this matrix to Q, then we have it appears like 4 equations. 
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This entry equal to minus 1, this entry equal to 0, this entry equal to 0 is again the same 

equation. So, it is not really 4 equations, but 3 what is the last equation, this entry equal 

to minus 1. So, these 4 equations now we will write here. So, we have minus 2 P 2 equal 

to minus 1 P 1 minus P 2 minus P 3 equal to 0 and 2 P 2 minus 2 P 3 equal to minus 1. 

So, the first equation gives us 1 by 2, which when we substitute into the last equation we 

get 2 P 3 is equal to 2 P 2 plus 1 which was equal to 2, when we put P 2 equal to half 

here we get 2 and these P 1 P 2 and P 3. When we substitute to the second equation we 

get P 1 equal to P 2 plus P 3 which was equal to 2.5. So, what is our matrix P as a result 

of this the matrix P was equal to P 1 P 2 P 3.  
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So, P 1 has been obtained to be equal to 2.5, P 2 was equal to 0.5 which is a same entry 

here. Finally, P 3, which was equal to 2. So, the claim is that this matrix P can be 

obtained is positive definite because A was Horvitz and Q was negative definite. So, we 

can check this P greater than 0. How will we check this, one way to check that a matrix 

is positive definite is that, all the principle minors all the leading principle minors. So, 

for a square symmetric matrix this is a 1 by 1 minor. 

It is a principle minor because it has symmetric rows and columns take to construct that 

matrix and only the leading ones. So, we take only this now and every such matrix we 

take and look at the determinant and each of these determinants should be a positive 

number that is a necessary and sufficient function for this matrix P to be a positive 

definite matrix. So, let us do the check for this here we have to take only 2 determinants 

the first 1 by 1 determinant is nothing but 2.5 P 1, 1 the first sub matrix is equal to 2.5 

that is greater than 0. 

What about the determinant of the while matrix the next leading principle minor is 

nothing but the whole matrix P the determinant of the whole matrix is 2 into 2.5 minus 

0.5 square which is equal to 5 minus 0.25 which is equal to 4.75 that is positive. So, 

because both the first leading 1 by 1 minor and the second leading 2 by 2 minor are both 

positive determinant. This means that the matrix P is positive definite. So, if we had 

taken the lyapunov function coming from this P for the linearized system. 
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So, what is the lyapunov function it is x transpose P x in which P was in which matrix P 

was the 1 we just now obtained, if we take this a lyapunov function the origin turns out 

to be asymptotically stable by lyapunov theorem of asymptotic stability. The same 

lyapunov function will also help us in proving asymptotic stability of the non-linear 

systems equilibrium. which happens to be the origin again, but if we had started with this 

lyapunov function, then we would not have required LaSalle’s invariance principle 

because the lyapunov function theorem would have claimed stated, that the equilibrium. 

is asymptotically stable. Unlike the energy function, unlike the physical energy that we 

have taken which helped us to prove only stability lyapunov theorem of stability. 

So, this completes lyapunov analysis we have seen some solved examples also. We can 

have another set of problems, which we will use as exercises. We will now move on to 

the next topic, which is about periodic orbits, why because periodic orbits are an 

important part in the context of building oscillators. So, before we move to that topic 

there is one other slide that we had skipped.  
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So, the LaSalle’s invariance principle which we saw in detail also saw an example, is 

different form lyapunov theorem in two ways. The first way is, unlike the lyapunov 

theorem the LaSalle’s invariance principle does not require the function V to be positive 

definite. Notice that we did not assume that V was positive definite, second the positive 

invariance at that we have constructed in the proof of the lyapunov theorem, that set 

omega was constructed using the lyapunov function V. Here we are assuming that we 

already have a positive invariant set. In fact it is that is the reason, that we are not 

assuming we as positive definite because on a compact set omega, we are V always 

achieves its minimum. We can subtract that minimum form the function V. 
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Here by which, we can always obtain another function V that indeed is positive definite. 

We will also see an application of LaSalle’s invariance principle. So, that are well known 

results that turn out to be a special case of the LaSalle’s invariance principle. So, one of 

them is Barbashin Krasovskii’s theorems, what is the statement of the theorem. 

So, suppose x not is equal to f of x id a system in which x can have many components x 

is an element of R n. Suppose the origin is in equilibrium, suppose there exists a function 

V from a domain D to R, which is continuously differentiable and suppose V is positive 

definite function in other words V of x is greater than 0. For all except origin x equal to 0 

and also V satisfies that it is less than or equal to 0, on the domain D construct the set M 

that is made up of all the points where V dot is equal to 0. 

Suppose, this particular M has a property that the only solution that can remain inside is 

x t identical equal to 0. Then the origin is asymptotically stable notice that, this is 

precisely the situation that happened for the pendulum example with friction. So, the 

Barbashin Krasovskii’s theorem is a more general statement to this effect. What can we 

speak say about global asymptotic stability of that equilibrium. We just now claimed to 

be asymptotically stable if V is radially unbounded. Further in addition to the above 

assumptions, if V is also radially unbounded, then the origin is in fact globally 

asymptotically stable. 



So, this particular theorem we already saw for the case of a pendulum as far the 

asymptotic stability is concerned of course, the pendulum example it is not globally 

asymptotically stable simple because there are other equilibrium point points. However 

the Barbashin Krasovskii’s theorem says that, if V where radially unbounded, then the 

origin is in fact globally asymptotically stable. One can check that the lyapunov function 

V we had used for the case of the pendulum example with friction, that is not going to be 

radially unbounded, otherwise the origin there would have been globally asymptotically 

stable according to this theorem. 
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Now we come to the other topic about periodic orbits for this purpose. We will study 

periodic orbits in more detail for a plane where the trajectory evolves in a plane. In other 

words at each time instant at each time instant x of t is an element of R 2, it has 2 

components only. So, what is the objective the objective is to design robust and stable 

oscillators. So, what is robust about this and what is stable about this, we want that the 

amplitude and the frequency of the oscillations are not too sensitive to the initial 

conditions and are not too sensitive to the system parameters. 

So, as we had noted at the beginning of this of this lectures only non-linear systems can 

help why is that because linear system first of all are very sensitive to are sensitive to 

initial conditions. In other words if we start with a different initial condition, then the 

amplitude is different of course, for linear systems of frequency remains the same, but 



the amplitude is different more over the fact that there are periodic orbits is extremely 

sensitive to system parameters. 

In other words Eigen values are on the imaginary accesses for small changes in the 

system parameters, Eigen values could be in the right half plane or in the left half plane, 

which means that we might have either no periodic orbits and all trajectories go to 0 or 

the trajectories could become unbounded. There is again absence of periodic orbits in 

other words linear systems are at the brink of instability and hence periodic orbits are 

extremely sensitive to the system parameters. So, for non-linear system the question 

arises how to even claim that there are periodic orbits for this system of equation. So, 

one extremely important result in this context is the Poincare Bendixon Criterion. 
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So, what does the criteria tell. So, consider the system x dot is equal to f of x in which 

note that x has only 2 x here has only 2 components. Suppose, the set M suppose there is 

a set M which is compact set it is a close end bounded set of the plane. Suppose M has a 

property that M contains no equilibrium point points or M could contain an equilibrium 

point such that that equilibrium point is either unstable focus or an unstable or an 

unstable node. So, there are 2 situations for the second bullet. The first case is M 

contains no equilibrium point points the second situation is that when we linearized at 

that equilibrium. If there is equilibrium, then at most 1 equilibrium point is allowed and 



at when we linearize at that equilibrium, then the linearized system has an unstable focus 

or an unstable node. 

In other words both the Eigen values of the matrix a, which we get by linearizing at this 

equilibrium point are instable. Both Eigen values are in the open right half complex 

plane. So, suppose M has this property further suppose M is also positively invariant. If 

M satisfies these 3 conditions that it is a compact set its positively invariant and either M 

has no equilibrium point points or at most which is unstable. These 3 conditions are 

sufficient to ensure that M contains a periodic orbit. 

Under these assumptions the Poincare Bendixon criterion claims that, there is M is 

guaranteed to contain a periodic orbit. So, what is intuition behind this. So, M is 

positively invariant and compact, in other words trajectories that start inside M remain 

inside M for all future time.  
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Since M is compact these trajectories are all bounded they cannot become unbounded 

because they do not even leave M and M is bounded. Further these bounded trajectories 

will have to approach periodic orbits or they can approach equilibrium points as t tends 

to infinity what happens to all these bounded trajectories they either approach 

equilibrium point or they approach periodic orbit. These are the only 2 possibilities why 

because the trajectories are all bounded. 



 They exist for all future times, now if we rule out existence of any equilibrium point in 

side M then we are forced to have a periodic orbit this is what Poincare Bendixon criteria 

say, secondly even if M had a periodic even. If M had an equilibrium point, but if that 

where unstable the trajectories could not be converging into them or trajectories could 

not be converging to the equilibrium point. So, we would have a periodic orbits even if 

M had an equilibrium point which was unstable in that case. So, these 3 conditions on M 

ensure that there is a periodic orbit. So, please note that this is only a sufficient condition 

for existence of a periodic orbit. 

Of course there can also be a continuum there can be non-unique periodic orbits there 

can also be a continuum of periodic orbits, which we will see very soon another 

important criteria in this situation is the, so called Bendixon criteria. So, what does this 

criteria say it is a sufficient condition please note which conditions are necessary which 

conditions are sufficient the Bendixon criteria is a sufficient condition for non-existence 

of periodic order. 
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It is a sufficient condition for non-existence of periodic orbits that are fully contained 

inside the region. So, what is the criterion if one is simply connected region D of the 

plane. So, we will quickly see what simply connected region is. So, on a simply 

connected region of the plane if this particular expression here satisfies the condition, 

that it is not identically 0 and it does not change it is time, if this conditions are satisfied 



then the system of equation x dot equal to f of x has no periodic orbits lying entirely in 

D. So, inside the region D we check that this quantity is not always equal to 0 and it also 

does not change sign inside D if those 2 properties are satisfied by this particular 

function. Then they cannot be any periodic orbits lying completely in d. 
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So, please note that it is only non-existence fully contained inside D of periodic orbits 

that is being guaranteed by the criteria. So, x dot is equal to x 1 dot x 2 dot which is 

equal to f 1 of x f 2 of x. So, this is our dynamical system, as I said we are considering 

evolution of trajectories in a plane. So, x has only 2 components x 1 and x 2 and hence 

its differential equation has only 2 equations inside this. Now, we differentiate the first 1 

we differentiate f 1 with respect to x 1 and to that we add the partial derivative of f 2 

with respect to x 2. Note that f 1 depends on x, which is x 1 and x 2. So, f 1 can depend 

on x 1 also and x 2 also and similarly, x 2 can depend on x 1 and x 2. 

Hence we have partial derivatives of, f 1 and f 2 here partial derivative of f 1 with respect 

to x 1 partial derivative of f 2 with respect to x 2. This particular quantity is some 

function you know suppose that function is called g it depends on both x 1 and x 2. So, 

what does the Bendixon criteria say that this particular quantity, you check that g of x 1 

comma x 2 is not identically 0 in d. So, D is a region inside this region this quantity is 

not identically 0. In other words there is at least 1, x 1 x 2 where this is not equal to 0 as 



soon as this is not equal to 0 at least at single. It means it is not identically 0 in D it is 

allowed to be 0 at a few points at several points. 

However it should not be equal to 0 in at all the points in d, that is a statement that this is 

not identically 0 also check that the sign of g can be equal to be either 1 or minus 1 or 0. 

This is in general possible, but we require that the sign of this should not change in other 

words it should not go from minus 1 to 1 from minus 1 to 1 or 1 to minus 1. As long as it 

is always 1 or always minus 1 may be at some it becomes equal to 0, if the sign of this 

does not change. When you check for different x 1 and x 2 points in this region d, if 

these 2 conditions are satisfied then the Bendixon criteria says, then D cannot fully 

contain a periodic orbit there is no periodic orbit that lies entirely in D. 
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So, another assumption that we had made was, the D is simply connected region what is 

a simply connected region. So, in the plane x 1 x 2 suppose this is region D we will call 

this region D simply connected of course, means that D should not be made up of 2 such 

parts this is in D and this is in d. So, this is not connected right because to say that it is 

connected we take any 2 points. 

 There should be a curve there should be a path between these 2 points, and the path the 

points on the path also should lie in d. This should be possible for every 2 points in d, if 

D had 2 components while certain points are connected by a path lying in D every 2 

points are not connected and look at a. There and a here a path from there to here is 



forced to go outside d. So, this such a set would not be connected even. So, for a region 

that is connected what do we mean by simply connected. Now, we take this region D.  
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So, we take a closed curve inside this and this is just a close curve and this close curve 

can be shrunk to a. We can take a smaller curve slightly smaller curve. So, and this 

shrinking eventually lead to a. In the process of shrinking to a, inside at no situation does 

the curve have to leave the set d. In other words every closed curve can be shrunk to a. 

While being inside d, if that is the situation that is the property that D has, then we will 

say D is simply connected. So, all these regions that we usually think off are indeed 

simply connected. So, an example of set D that is connected, but not simply connected is 

a set which has holes. 

So, take this and we rule out this particular case. So, what is our D our D is this shaded 

region and this shaded region without this particular place without this hole. So, this D 

with a hole this is our D this is an example for a region that is connected why it is 

connected because we can take any 2 points on d. There is a path that connects these 2 

and all points in the path are also d, but what about a closed curve notice that this closed 

curve cannot be shrunk cannot be made smaller than smaller such, that all the whole 

curve is in in D why because it cannot be shrunk to a. 

So, in the process of shrinking this curve to this to any, it turns out that this hole because 

it is inside the curve, but it is not inside D inside the region D we are n to able to shrink 



this closed curve to a. We might be able to shrink other closed curves to a point, but for it 

for the region to be simply connected every closed curve we should be able to shrink to a 

point. So, there are curves here which we cannot shrink to a. Hence this D is not simply 

connected, but this D is simply connected so. The Bendixon criteria requires that the 

region D for which we are checking is simply is a simply connected region. So, on the 

simply connected region we check whether the two functions, whether this function g 

whether the function g here which is obtained from f 1 f 2 by doing this partial derivative 

operation. 
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This g should not be identical to 0 on this region. It should also not change signs from 1 

to minus 1 it is allowed to be 0 at a few points in which case the sign is equal to 0 that is 

not of concern, but it should not become from 1 to minus 1 or minus 1 to 1. If D satisfies 

these 2 properties at all points in D g satisfies this properties, then the Bendixon criteria 

says that there is no periodic orbit lying entirely in D what the Bendixon criteria does not 

say is that.  
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Suppose this is a region g, it is simply connected simply connected region d. Suppose g 

of the previous slide changes sign means what when we take different points x 1 and x 2, 

then it is equal to 1 at certain x 1 x 2 points. It is equal to minus 1 at some x 1, x 2 it is 

equal to minus 1 at certain other points at some at some other points. If g is changing it is 

sign from 1 and minus then the Bendixon criteria only says is what it says is that, there is 

no such periodic orbit. 

There cannot be such a periodic orbit, but there could be a periodic orbit that is not lying 

entirely in d, such a periodic orbit could be there which partly is inside D and partly 

outside d. Such a periodic orbit could still exist the Bendixon criteria does not rule out 

such periodic orbits existence. It only rules out any periodic orbit that lies entirely in D 

this is ruled out. So, please note that there is a certain difference in lying entirely in D 

and passing through D and the criteria only says that even g does not change, it sign 

while being checked in D, then there is no periodic orbit that is contained in d. 
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So, let us take an example of a linear system. So, the corresponding matrix a, this can be 

also written as x dot is equal to A x where A is equal to 0 1 minus 1 0. So, let us check 

the Eigen values for this matrix a. So, determinant of s i minus a, is equal to s square plus 

1. So, please check that the determinant of this the characteristic polynomial turns out to 

be this. So, the Eigen values of A plus and minus j 1, Eigen value of a is equal to plus j. 

The other one is minus j in other words there are 2 Eigen values both on the imaginary 

axis which suggests that there are periodic orbits. The equilibrium point 0, 0 is a center 

for this particular A. So, let us see what happens to the Bendixon criteria. 

(Refer Slide Time: 51:59) 

 



So, what is our g which we have defined as del f 1 by del x 1 plus del f 2 by del x 2. So, 

for this particular case this is our f 1 and this is f 2. So, derivative of f 1 with respect to x 

1 is equal to 0 derivative of f 2 x does not even appear in f 2 only x 1 appears. So, 

derivative of f 2 with respect to x 2 is also again 0, this is 0. So, no matter which region 

you take no matter which simply connected region you take g of x 1 x 2 is identically 

equal to 0. It is equal to 0 without even having to specify at which x 1 x 2 we are 

checking this. So, this is a situation where Bendixon criteria is not applicable you know.  

So, Bendixon criteria assumptions not satisfied the assumptions are not satisfied. Does 

that mean that there are no periodic orbits lying entirely inside, that simply connected 

region D no, it does not mean that it only means that, because the assumptions of the 

Bendixon criteria are not satisfied we cannot go ahead and conclude anything because 

Bendixon criteria is not valid the statement is not valid. However we know in this 

particular case that it is identically 0 and there are periodic orbits indeed. In fact these are 

all the periodic orbits. 

So, from any initial condition on this plane, there is a periodic orbit passing through that 

in other words for every simply connected region that contains the origin as long as this 

region is some region like this. There are plenty of periodic orbits, however Bendixon 

criteria does not tell us that why because Bendixon criteria assumes that, this g is not 

identically 0. That situation is not satisfied here for the case of linear system periodic 

orbits and hence we are able to use Bendixon criteria. Here we will see some more 

examples of where Bendixon criteria is applicable in the next lecture.  

Thank you. 


