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Lecture - 6 

Existence / Uniqueness of Solutions to Differential Equations 

 

Welcome everyone to the sixth lecture on non-linear dynamical systems. So, we will 

continue with existence and uniqueness of solutions to differential equations. 
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In the last lecture, we already saw that under locally Lipchitz condition on f, we are 

assured of a solution only for an interval 0 to delta. This interval 0 to delta may be Very 

large or may be small, but it is only finite that is all, that is assured by a locally Lipchitz 

property of the function f. We also saw an example x dot is equal to x square, what is 

important about this? The function f of x is equal to x square is locally Lipchitz. In fact it 

is differentiable at every point, at any point x is equal to 100, x is equal to minus 2000 

and the function is differentiable. 

Hence it is locally Lipchitz at that point. Hence, at every point it is locally Lipchitz, but 

we also saw that for every initial condition x naught greater than 0, the solution exists 

only for a finite interval, for a finite duration from 0 to some delta max. So, the interval 

is a open, is semi-open is what is called semi-open? It is closed on one side, it is closed 



on this side and open on this side. So, for whatever x naught we chose as long as it is 

positive and non-zero, it turns out that the solution exists only for a finite duration. 

So, this delta max could be very large, this is possible when x naught is very small, but 

delta max cannot be assured to be equal to infinity. It is possible to have only a finite 

duration unfortunately because, this function is locally Lipchitz. We have a finite 

duration of time for which the solution exists and is unique, but we cannot have a global 

existence. So, the question arises, can solutions exist for all time greater than or equal to 

0. In other words, can we have condition on f such that the solution exists for all t from 0 

to infinity. 

After all for linear systems this is true, given that it is true for linear systems x dot is 

equal to A x, where A is an n by n matrix. We would like to ask the question under what 

conditions on f little more general than linearity, can we have solutions that exist 

globally on the interval 0 to infinity. 
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So, here we have a theorem, global existence and uniqueness. So, suppose f from R n to 

R n is globally Lipchitz, that is what is globally Lipchitz? This particular inequality f x 

minus f y is less than or equal to some L times x minus y, norm of x minus y, for all x y 

in R n, that is one constant L that works for all Vectors x y in R n. This inequality is 

satisfied for no matter which x y and R n we put, the same constant L will work. So, this 

is what we saw was globally Lipchitz property of the function f. 



If this is satisfied, then the theorem states that for every initial condition x naught in R n, 

the state equation x dot is equal to f of x with x naught as the initial condition has a 

unique solution defined over the interval 0 to infinity. So, here we have as soon as you 

assume that there is one constant L that works for this Lipchitz inequality, for all the x 

and y in R n, that is enough to assure us that there is a solution on the interval 0 to 

infinity. And moreover that solution is unique. 

So, because we have this 0 to infinity interval, we have called this theorem the global 

existence and uniqueness theorem. So, consider the linear system x dot is equal to f of x 

is equal to A x, where A is a n by n constant matrix. Since, all the elements of A are 

bounded, in fact they are all constants, there exist a number L such that A x is less than 

or equal L times norm of A x is at most L times norm of x. There is some constant l, that 

will ensure that this inequality is satisfied for all x. 

So, what are candidates L for this particular inequality, we could take for example, the 

maximum singular value of the matrix A when we are dealing with the two norm, the 

Euclidean norm as the norm here. We have this norm and in general L depends on the 

particular norm whichever norm u take there will be a constant L, such that this 

inequalities satisfied for all x in R n. 

So, linear systems x dot is equal to A x, in that A x is a globally Lipchitz function and 

hence we have existence and uniqueness of solution over the interval 0 to infinity. More 

generally, even if we do not have a linear system, if we have a globally Lipchitz 

property, that is sufficient to assure us existence and uniqueness of the solution on the 

interval 0 to infinity. 
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So, we will have a quick summary of the various things we have seen so far. So, x 

naught, let x naught be an equilibrium point for the system x dot is equal to f of x. Then 

we have seen various properties of the solutions locally, local existence, we have yes for 

linear. For locally Lipchitz f also we have local existence of solutions. For globally 

Lipchitz f, we have locally, local existence of solution to the differential equation. For 

non-Lipchitz, we are not able to say anything, what about locally unique it is again yes, 

yes, yes. 

For global existence of solutions of course, yes for linear. For locally Lipchitz, we are no 

able to assure. For globally Lipchitz, yes we just now saw that. What about finite escape 

time, is it possible that solutions exist only for a finite duration of time beyond which it 

goes to infinity, this is what we call escape time. For linear systems this cannot happen. 

For locally Lipchitz, we are not able to say. For globally Lipchitz, it cannot happen, 

because we already showed that the solution exists over the interval 0 to infinity.  

So, it cannot escape to, it cannot become unbounded infinite time. For non Lipchitz, 

again we are not able to say anything. The next inbound question is, is it possible to 

come out of an equilibrium point, x naught is the equilibrium point. So, if a solution 

starts at an equilibrium point, is it possible that at some time instant it comes out of the 

equilibrium point, this is not possible for linear, this is not possible for locally Lipchitz, it 



is not possible for globally Lipchitz, why because globally Lipchitz is also locally 

Lipchitz and the solution is unique for some interval. 

Hence, it cannot come out, but for non-Lipchitz, this is possible, this we have already 

seen. Is it also possible to come into an equilibrium point. There is a solution that is 

initially out of the equilibrium point, is it possible that at some time instant it comes and 

merges with the solution that is always sitting at the equilibrium point. So, this is not 

possible for a linear, this is not possible under locally Lipchitz property. For globally 

Lipchitz also it says a question mark here, but it is not possible. For non-Lipchitz, this is 

possible. 

So, what is the significance about this, we might require to reach an equilibrium point in 

finite time. For example, the steady state, the set point, we might require to reach there in 

finite time. This is not possible under for linear systems for locally Lipchitz property of f. 

It is not possible for globally Lipchitz also. You might require a non-Lipchitz dynamical 

system, if you want to reach the equilibrium point at any finite time. So, come out of and 

come into an equilibrium point, we mean here is at finite time. 
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We have also seen some examples, examples of linear system, non-Lipchitz, unstable 

non-Lipchitz stable, globally locally Lipchitz, but not globally Lipchitz, unstable locally 

Lipchitz, but not globally Lipchitz stable. 
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So, we will proceed with one other theorem about global existence and uniqueness, that 

does not assume globally Lipchitz condition on the function f. So, before we see that 

theorem, we will just analyze that theorem about global existence and uniqueness of 

solutions under the globally Lipchitz property of the function f, what were the drawbacks 

of that theorem, f in linear systems happens to be globally Lipchitz and hence the 

solution exists for all time, t greater than or equal to 0. 

For non-linear Lipchitz systems, globally Lipchitz conditions rules out several common 

examples, and it is too much to ask for a function to be globally Lipchitz. Locally 

Lipchitz of course, is satisfies by several examples, and this is something we would like 

to retain. So, it is perhaps possible to have existence and uniqueness of solutions over the 

interval 0 to infinity, but without requiring f to be globally Lipchitz. The condition we 

saw was, only sufficient condition for existence of solution from 0 to infinity was that, f 

is globally Lipchitz may be there are some other weaker conditions on f under which we 

will have existence of solutions and uniqueness over the interval 0 to infinity. 
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So, this require us to review compact sets open closed and bounded sets, this is 

something we will quickly review. |A subset S of the set X is called compact, if S is both 

bounded and a closed subset of X. When do we call a subset S open in X, a subset S is 

called open in X, if for every point X in S. One can find some epsilon neighborhood of X 

of that point X, such that whole neighborhood is contained in the set S. 

So, this neighborhood is defined like we have seen so far, set of all points which are less 

than epsilon distance away from the point X, this is an epsilon neighborhood of the point 

X. The set of all points in X, such that the distance is less than epsilon, and this epsilon 

greater than 0. So, if a set S is called open, if no matter which point X you take, after you 

have chosen the point X, you are able to find some epsilon greater than 0. Such that the 

epsilon neighborhood of the point X is contained not just in X, but in S, when do we call 

a subset S of X closed subset of X, we call it closed in X if the complement of S in X is 

open. 

This has another way, we can define this in another way by saying that all the boundary 

points are contained inside the subset S, but that we have seen before, we will not review 

that part now. Finally, when do we call a set S bounded if all the elements are bounded 

from some number R in the norm. So, a set S is bounded if there is some number R 

greater than 0, such that norm of every element X is at most R. So, all elements in S are 

not more than distance R away from the origin in this case. 
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We also need the notion of an invariant set. So, a set S is said to be invariant, this 

invariant here is with respect to some operation. In this case, it is with respect to the 

dynamics of x dot is equal to f of x. So, a set S is said to be an invariant set with respect 

to x dot is equal to f of x, if whenever the initial condition is inside, sorry there is a small 

mistake here, this S should be replaced by M. 

So, a set M is said to be an invariant set, if whenever the initial condition starts inside M, 

the trajectory is inside M, for all t greater than or equal to 0. In other words, if the 

solution is in M at some time instant, then it remains in M for all future, that is the 

definition of a set M to be invariant. So, please replace this S with M. 



(Refer Slide Time: 13:40) 

 

So, finally we have another condition for existence and uniqueness of solutions over the 

interval 0 to infinity. So, let f of x be locally Lipchitz on a domain D, so we are assuming 

only locally Lipchitz, please note. Let W be a compact subset of D, and this initial 

condition, some initial condition x naught is in W. Suppose it is known that for every 

initial condition inside this compact subset w, we have that the whole solution lies inside 

the compact subset W. 

Suppose it is known that every solution of x dot is equal to f of x with the initial 

condition in x naught lies entirely in W and this is required to be true for every initial 

condition x naught in W. If it is known, then there is a unique solution defined over the 

interval 0 to infinity, the solution exists and is also unique over the interval 0 to infinity. 

Notice that we have only locally Lipchitz condition in f, but we have this additional 

property, that there is some compact subset W, such that whenever it starts inside W, the 

whole trajectory for whatever interval it is defined that trajectory remains inside W, 

inside this compact subset. 

In other words this W is an invariant set. For whatever time interval the solution exists, 

the solution does not leave the set W. In other words, the set W is invariant under the 

dynamics of f. If somebody gives us this compact subset W which is invariant under the 

dynamics of f and f is just locally Lipchitz, then we have a solution defined not just over 



a interval 0 to delta, but in fact 0 to infinity. So, for whatever duration that solution 

exists, that is an important thing here. 

So, this completes existence and uniqueness of solutions, our study about that. We saw 

locally Lipchitz property, globally Lipchitz property and finally, we have seen that if 

there is a compact set that is invariant, then also the solutions can be assured to be, 

assured to exist and it is unique over the interval 0 to infinity. We will now move on to 

stability, to the notion of stability. What do we want to say about stability of an 

equilibrium point. 

(Refer Slide Time: 16:11) 

 

We would like to say, that a solution starting at equilibrium point. Of course we know 

that solutions starting at an equilibrium point remains there, but what about nearby initial 

conditions. Can we say that solutions starting nearby also remain nearby. So, stability is 

what solutions starting nearby, near an equilibrium point remain nearby. So we are going 

to try to quantify this nearby and this nearby. 

So, one should also note that the definition of stability itself has evolved like solutions 

evolve for a dynamical system, even the notion of definition of stability, even that notion 

of stability has evolved over the last few decades. And finally, it has converged to what 

we will see in the next slide.  
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So, this best understood as this particular definition is best understood as a challenge. So, 

it is like somebody proposes a challenge and somebody whose facing the challenge tries 

to answer, tries to meet that challenge. So, what is this challenge proposer facer 

definition of stability. So, consider the non-linear system given by x dot is equal to f of x, 

in which at any time t, x of t is an element of R n, x has n components. Let 0 be an 

equilibrium point. 

So, for convenience we are assuming that the origin itself is the equilibrium point, if it is 

not origin that is the equilibrium point, but some other equilibrium point we are studying. 

We can just shift the coordinates there and be studying with new coordinates in the new 

coordinates origin is again the new equilibrium point. So, let 0 be an equilibrium point, 

that is f 0 is equal to 0, then the equilibrium point 0 is called stable, if for every epsilon 

greater than 0 there exists some delta greater than 0, such that for every initial condition 

x naught inside this ball, inside this ball centered at 0 and of radius delta. 

For every initial condition inside this we have the property that, x of t belongs to this 

other ball. Again centered at 0 and of radius epsilon for all t greater than or equal to 0. 

So, when do we call the equilibrium point stable, somebody proposes that for this epsilon 

can you find a delta. The equilibrium point will be called stable, if no matter what 

epsilon somebody proposes we are able to find the delta greater than 0. Such that, as long 



as you start inside this initial, as long as your initial condition is inside this delta ball, 

your whole trajectory lies inside this epsilon ball. 

So, this star condition here it is a very important condition, where the delta, where the 

epsilon comes here is a very important part of the definition. This star can also be 

replaced by. Whenever x 0 is inside the ball, the ball of radius delta centered at the 

origin, an open ball. The whole trajectory is guaranteed to be inside this other epsilon 

ball, epsilon is what somebody else proposes to us and delta is what we are able to 

calculate and find. We can also replace this star by for every initial condition x naught 

inside the ball b 0, delta we have x of t inside this other ball b 0, epsilon for all time 0 to 

infinity. 
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So, what I have said in a previous slide, this challenger is a person who gives a epsilon 

and tells, can you ensure that the whole trajectory remains inside b 0, epsilon. After some 

calculation, the face of that challenge, the person who meets the challenge says yes take 

this delta, just start inside this ball b 0 comma delta. And if you start inside this ball b 0, 

comma delta, they are guaranteed to be inside this other ball b 0 comma epsilon. 

So, the fact that we are allowed to do some calculation means, that delta is allowed to 

depend on epsilon. So, if you are able to meet this challenge for every epsilon no matter 

how small, that is when you will call the equilibrium point as stable. Smaller epsilon 



might mean a smaller delta, hence delta is shown to be dependent on epsilon in the 

previous slide in the definition. 
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So, this is we should be seeing a figure here, this is the time axis. For the purpose of this 

figure, x has only 1 component and 0 is the equilibrium point. So, of course starting at 0, 

we have the constant solution. The solution always remains at 0, but somebody proposes 

us an epsilon ball. So, this minus epsilon plus epsilon band is here and by our convention 

our epsilon ball is an open ball. 

In other words, it is boundary epsilon we should not touch. So, somebody proposes this 

epsilon ball and tells, can you ensure that the trajectory remains inside this epsilon ball. 

So, after some calculation we come up with this delta. So, that as long as the initial 

condition starts inside this, it might leave the delta ball of course, but it will remain 

inside this epsilon ball. So, for the trajectory to remain inside this epsilon ball, this is a 0, 

this is the another figure with x. 
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So, this epsilon which is being shown large, could also be very small. This is what the 

challenger decides, how small epsilon should be. This is the 0. So, once this epsilon is 

given, we might, we might know that the trajectory is might have to start within this very 

small interval. The interval within which it should start, so that it is guaranteed to remain 

inside this big a ball. 

This is the ball what I am showing is the diameter, that radius is this. This is the radius 

and this is the diameter for it to remain inside this bigger ball, it is possible that we 

should ensure that the initial condition lies inside this smaller ball. As long as it begins 

from here, from the solutions to the differential equations we know that it remains inside 

this epsilon ball. 

Another solution here also remains inside this epsilon ball. Of course, this solution might 

also remain inside this epsilon ball, but it is possible that every solution inside with this 

much distance does not remain inside this epsilon ball. To ensure that it remains inside 

this epsilon ball, we are forced to make this delta very small may be. But, the fact that 

this delta is greater than 0 is what defines this particular equilibrium point as stable, that 

no matter what epsilon somebody gives us, we are able to do some calculation and 

propose this delta. So, that if the initial condition starts inside this delta ball, the whole 

trajectory remains inside this epsilon ball.  



So, one is this once this epsilon is specified, is this delta unique. If suppose after lot of 

calculation, we have found this delta and somebody else does a similar calculation, but 

obtains a different delta. Can we say that one of the deltas is wrong because the delta 

should be unique or is it possible that for the same epsilon there are many deltas. So, this 

is the question that we can answer without too much effort. So, this is only a guarantee. 
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Suppose, this is our epsilon ball and after lot of calculation one person finds this delta 

ball. If we start inside this interval, then the trajectory suppose to remain will is 

guaranteed to remain inside this epsilon ball, but the same guarantee will automatically 

be satisfied for this smaller band also. If the initial condition start inside this smaller ball, 

then also it is guaranteed to remain inside this epsilon ball, why because once we are sure 

that starting anywhere inside this initial condition band, assures that the solution lies 

inside this epsilon ball. Then we know that inside a smaller band also if we had begun 

we are guaranteed to remain inside this epsilon ball. 

Of course, this smaller one, the smaller initial condition ball is a more conservative one, 

but this only tells that the delta is not unique. Once we have found a delta greater than 0, 

we can take another delta that is strictly smaller and positive and still that delta which 

comes in the definition of stability, that delta, that condition is satisfied for this smaller 

and positive delta also. This is only to note that delta is not unique, one could ask the 



question can we make this delta larger and larger and for each epsilon there might be a 

unique largest possible delta, in that sense it might be unique. 

So, it is also clear that when epsilon is made smaller, then we might have to make the 

delta smaller. One could ask the question in general is delta what is the relation between 

delta and epsilon. Our figure appears to show that the delta is smaller than epsilon, but in 

general should such a relation be satisfied the delta is smaller than epsilon or delta 

greater than epsilon or should such a relation need not, does such a relation need not 

exist. So, this please note that this is called the definition of stability in the sense of 

Lyapunov. 

This is just a definition, this is not Lyapunov’s theorem on stability. So, the reason that 

we have emphasized, we have spent lot of discussion on stability and the definition of 

stability is because it is a difficult concept and to understand the definition properly is 

very important to understand the theorems on stability. So, before we proceed to the 

Lyapunov’s theorem on stability, we note that what we have seen so far is the definition 

of stability in the sense of Lyapunov. After having seen stability, what do we mean by 

asymptotic stability. 
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So, in the definition on stability, once we had given an epsilon we were required to find a 

delta that meets a certain condition. In addition to that condition required in the 

definition of stability, if delta can also be chosen to satisfy this additional condition, that 



x of t goes to 0 as t goes to infinity. So, what was 0, the equilibrium point x of t 

converges to the equilibrium point as t goes to infinity then the equilibrium point 0 is 

said to be. Not just stable, but in fact asymptotically stable. 

So, we will call the equilibrium point asymptotically stable, if it is stable. For it to be 

stable, we already know that for every epsilon we have to be able to find a delta, such 

that all initial condition starting inside the delta ball are guaranteed to have the entire 

solution inside the epsilon ball. This delta which was chosen to satisfy this condition in 

addition to that if it can also be chosen to satisfy this additional condition, that the 

solution converges to 0, the equilibrium point as t tends to infinity. 

Then that equilibrium point is not just stable, but also asymptotically stable. It was 

already stable because delta satisfied the condition that the definition of stability 

required. In addition to that condition, it has delta satisfies this additional condition and 

hence that equilibrium point is asymptotically stable. But, every initial condition inside 

that delta ball, we also have x of t goes to 0 as t tends to infinity. Solution starting close 

by not just remain close by, remain close by is what x of t is contained inside the epsilon 

ball meant. So, they not just remain close by, but in fact converge to the equilibrium 

point. We had assumed that 0 is the equilibrium point, so solution should also converge 

to the equilibrium point. 

For every initial condition starting inside the delta ball. If this is satisfied then we will 

say that the equilibrium point is asymptotically stable. So, asymptotically stable naturally 

means that the equilibrium point is also stable but not vice-versa. For just stability do not 

require that the solutions converge to 0, we only require the solutions to remain inside an 

epsilon neighborhood. 
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So, we now come to Lyapunov’s theorem on stability, after having seen that definitions 

of stability and asymptotic stability in the sense of Lyapunov, we are now going to see 

Lyapunov’s theorem on stability. Let, x of zero be an equilibrium point and let D be a 

domain that contains this equilibrium point. Let V be a function from D to R, so the 

domain D is a subset of R n. 

V takes these values from this D and is scalar valued. V does not take vectors, as its 

values it takes only scalar. Hence, R at any point x V of x has only one component. Let 

V be a continuously differentiable function. So, it is V itself is continuous and it is 

derivative is also continuous, that is the meaning of continuously differentiable function. 

Such that V satisfies some conditions V of 0, the 0, the equilibrium point at 0 V is equal 

to 0 and inside that domain at every other point V is positive, V is allowed to be 0 only at 

the equilibrium point at other points it is positive. 

Secondly V dot is less than or equal to 0, we have missed a 0 here, V dot is less than or 

equal to 0 in the domain D. So, V was a function of x, but this dot here means it is a 

derivative with respect to time, this I will clarify very soon. So, the rate of change of V 

with respect to time at every point is less than or equal to 0. If we are able to find such a 

V which is continuously differentiable, which is positive everywhere except at 0, where 

it is allowed to be equal to 0 and V dot is non-positive, it is less than or equal to 0 in D. If 



there is some V which satisfies these three conditions, then the equilibrium point 0 is 

stable, is a stable equilibrium point. 

So, what is the important to clarify is, this V was not a function of time, it was a function 

of x and x took its values in R n, but how do we go ahead and differentiate V with 

respect to time This is one important point that requires a clarification 
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So, V was a map from R n to r, why because x at any time instant was in R n. Our 

domain D was a subset of R n. For the time being we assume that D is equal to R n. 

Hence, our function V was a map from R n to R. If a function V was not a function of 

time, how do we go ahead and differentiate V with respect to time. This is something we 

will quickly see. So, this V we are going to evaluate at different points x, but through 

each point we have a trajectory that evolves with respect to time. So, V actually depends 

on x which itself depends on time. 

So, because x is changing with respect to time as x moves to another point value of V 

will also change. In this sense, V depends on time also. Suppose this is our free space 

this x 1 this is x 2, and this is some point and this is a trajectory that is evolving with 

respect to time and at this particular time, at some time t 1 it was here at another time t 2, 

it has moved to this point, because x itself is changing. Along this trajectory we can see 

how the function V is changing V has some Value at this point, some Value at this point, 

some Value at this point similarly, V has some Value at this point. 



Immediately after this, immediately further along this trajectory V has a different value. 

Similarly, as the x evolves along this trajectory the value of V or the function V is also 

changing. In that sense V is a function of time also because we are evaluating V along a 

trajectory x.  
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So, we will see what it means to differentiate V with respect to time now, V of x and x 

itself dependent on time t. So, d by dt, this is what we call a composite , V depends on x 

while x itself is a function of time. So, d by dt of V of x of t is equal to partial derivative 

of V with respect to x, partial derivative of V with respect to x, because V itself depends 

on many Variables x 1 up to x n and hence this derivative is not an ordinary derivative, 

but a partial derivative. And then x dx by dt, x itself depends on only one variable time 

one independent variable time and hence is dx by dt. 

So, if V depends on x 1 x 2 x 3, then this is nothing but del V by del x 1 del V by del x 2 

del V by del x 3 times, x 1 dot x 2 dot x 3 dot. So, throughout this course, the dot we will 

reserve for derivative with respect to time. If it is derivative with respect to x or some 

other variable, then we will just write d by dx del del by del x of V. So, V dot which we 

saw in our slide is suppose to be, is to be understood like this. V was a function of x, V 

in fact dependent on x 1 x 2 and x 3, x 1 itself was a function of time x 2 was a function 

of time and x 3 was a function of time. 



Hence, differentiating V with respect to time is nothing but del V by del x 1 times x 1 

dot, plus del V by del x 2 times x 2 dot, plus del V by del 3 del V by del x 3 times x 3 

dot, this is the meaning of V dot. Thus at each point in the ((Refer Time: 36:41)) for this, 

for this figure we are our x has only two components. 
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At each point V has some value, this is like V is, V is a scalar function, at each point x, x 

is a vector, but the value of V at each point is a scalar and this is like temperature of a 

room at each point, the temperature itself has only one component and as the trajectory 

moves. Through each point there is some trajectory, this is the direction in which the x 

trajectory moves at given that these trajectories are all well defined. At each point we can 

associate the rate of change of V at each point. At each, at each point there is also not 

just V defined, but also a rate of change of V with respect to time defined for each point, 

that rate of change is it is possible to define that because we have all these trajectories 

defined at each point. And the trajectories themselves have some rate of change defined 

for them.  

So, this for those who are more interested in this topic this brings in use of the derivative 

techniques into dynamical systems, it is not required for this course. As far as we are 

concerned, we want to understand the meaning of V dot even though V was a function of 

x and not time. So, here at each point x not just V but V dot is also defined because we 

have a differential equation x dot is equal to f of x. So, that one also remains to be 



written in this slide, x is equal to 0 is an equilibrium point of the dynamical system x dot 

is equal to f of x. So, with respect to that dynamical system, V dot x is defined. 
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What is V dot of x, in general it is del V by del x times f of x, why because this is 

nothing but del V by del x times x dot and this is what d by dt of V of x is, which we had 

denoted by V dot, this dot here we will reserve only for rate of change with respect to 

time. 
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So, at every point x, there is a V dot defined and if that is less than or equal to 0, the 0 is 

also missing here, if that is less than or equal to 0, then the equilibrium point 0 is stable. 

Further, in addition, in addition to less than or equal to 0, if this V dot, if this V, function 

V is such that it is continuously differentiable, it is 0, it is equal to 0 only at the 

equilibrium point 0 and it is positive at every other point. And if it is strictly less than 0 

over the domain D except 0, in the domain, at all the points except the point 0, if it is 

strictly negative then the equilibrium point is not just stable, but it is asymptotically 

stable. So, this is Lyapunov’s theorem on stability.  

So, please note that this is only a sufficient condition for stability, when do we call the 

equilibrium point zero of the dynamical system x dot is equal to f of x stable, we have a 

definition of stability. One of the ways to prove that it is stable is if you can find some 

function V, that is continuously differentiable whose rate of change is less than or equal 

to 0 and which is equal to 0 at the point and it is positive at every other point. If it 

satisfies these three conditions then that V we will call a Lyapunov function and that 

Lyapunov function helps us to prove that this equilibrium point is stable. If such a 

function V, we pick, if we pick a function V and it does not satisfy these three conditions 

then we are not able to conclude that the equilibrium point is not stable, it just means that 

perhaps this function V should have been chosen more properly, more judiciously.  

There might exist another function V that satisfies these three conditions and helps 

prove, and helps to prove that the equilibrium point is stable. This is only one sufficient 

condition to prove that the equilibrium point is stable. We will see these things in more 

detail in the following lectures, we also saw a sufficient condition for proving asymptotic 

stability, this particular function V is called the Lyapunov function and we will see these 

functions in more detail and some examples in the following lecture.  

Thank you. 


