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Existence / Uniqueness Theorems 

 

Welcome everyone to the fifth lecture on non linear dynamical systems. In the previous 

lecture we had seen existence and uniqueness theorems for solution to a ordinary 

differential equation with a given initial condition. So, let us just quickly see that 

theorem again. 
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So, consider the differential equation x dot is equal to f of x and f is a map from R n to R 

n and x naught is a vector in R n which is specified as the initial condition. So, suppose f 

is locally Lipchitz at the point x naught then the statement of the theorem is then there is 

a delta greater than 0 such that there is a unique solution x of t to the differential equation 

x 0 is equal to x naught for the interval t 0 to delta.  

So, there are two important statements in this theorem. First is there is a solution x of t to 

the differential equation this is the existence part. Second, there is a unique solution that 

solution which is guaranteed to exist is also guaranteed to be unique for an interval 0 to 



delta. So, beyond time delta there is no guarantee either of existence or uniqueness that 

requires preyed condition on f. 
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So, we had just begun seeing the proof, so what is the outline e the proof we define an 

operator P that takes one estimate of solution trajectory to give better estimate of the 

solution. So, this is what we call the Picard’s iteration, so P x n is estimate of the solution 

trajectory at the n-th iteration and desired solution. We, will consider the operator P such 

that the desired solution is satisfied P of x equal to x, so this particular trajectory x which 

satisfies P of x equal to x. So, we call this trajectory the fixed point why? Why do we call 

it the fixed point? Because P takes x and gives the same x the operator P will be 

constructed.  

So, that the fixed point is precisely the solution to the differential equation the Lipchitz’s 

condition on f will help to prove convergence of this operator P that takes one estimate 

and gives a better estimate upon each iteration. So, the Lipchitz’s condition will help to 

prove convergence to a unique fixed point also in a suitably complete space. So, for that 

purpose we just saw the statement of the Banach fixed point theorem which is also called 

the contraction mapping theorem. So, a fixed point in our situation is a trajectory x of t 

for the interval 0 to delta for some delta greater than 0.  
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So, what are the Picard’s iterates so the operator takes a continuous function x of t and 

gives another continuous function y is equal to P of x. So, we define this operator P as 

like this P of x is a function of time a value of P of x at time t is equal to x naught plus 

the integral from 0 to t of f of x tau d tau. This is the definition of P of x at time t where t 

varies over the interval 0 to delta, so we already saw that x of t is a solution to the 

differential equation x dot is equal to f of x. With this initial condition, x 0 is equal to x 

naught if and only if x is a solution to the integral equation x of t equal to x naught plus 

integral 0 to t f of x tau d tau.  

Notice that x occurs on both sides of this equation this is an integral equation, similarly 

the differential equation also x occurs here and here. So, this solution to the differential 

equations and solutions to the integral equations are the same, moreover this integral 

equation we have seen the equation also allows us to say that x is a function such that it 

is a fixed point of the operator P. 
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So, in this condition we began seeing the Banach fixed theorem, so we for that purpose 

we saw the definition for normed vector space and the notion of complete. So, a notion 

of a complete normed vector space we called the Banach space, a subset as of a set x is 

said to be a closed subset of what we called the boundary of the set S is also, sorry there 

is mistake here.  

The boundary of S is within S, so it is required to have S in place of x here, but a more 

precise and correct definition is a subset S is said to be closed in x if the complement of 

the set S in the set x is open in x. So, this brings us to the definition of S, so when do we 

call a set open q which is the subset of x is called an open set. If for every x naught for 

every point x naught in q, there exist some neighborhood of x naught which is also 

contained in q. So, let x be a norm vector space a map P from x to x is said to be 

contractive if there exists some real number row strictly less than 1.  

So, some positive number row which is strictly less than one such that this particular 

inequality satisfied for all x 1 x 2 and x we required the notion of contractive in the 

definition of the, in the statement of the Banach fixed point theorem. So, for that 

purpose, we are reviewing this definition even though an operator P may be defined from 

x to x it may turn out to be contractive over only a subset S. Now, that is the situation 

where Banach fixed point theorem is able to conclude about a fixed point. 



(Refer Slide Time: 06:20) 

 

So, what is the contraction mapping theorem what is the Banach fixed point theorem, let 

x be a Banach space and let t be a mapping from x to x. Suppose x suppose S is a closed 

subset of x and suppose t is a map which also takes x into S, S is a subset of x this t 

which takes x into x need not take subset S into subset S. But, suppose that also satisfies 

this property that it takes S into S and further on S, T is contractive which means that 

there exists a number row such that inequality.  

We saw on the previous slide holds for all x 1 x 2 in S if these three properties are 

satisfied then the contraction mapping theorem says there exists a unique fixed point x 

star in S. So, this statement has two important claims first is it claims that there exists a 

fixed point, second it also claims that this fixed point is unique in S. The next important 

statement of the theorem is this x star can be found by successively operating t on any 

initial x 1 in S we take any initial point x 1 in S and make t act on x 1. Then we make t 

act on t of x 1 and when we do this successively then it will converge to x star the unique 

fixed point in S. 
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So, how do we use the contraction mapping theorem for the proof of existence and 

uniqueness we already defined the operator P. We will now define a suitable x and S and 

the subset S, and we will show that this operator P we already defined is a contraction on 

S. Then we will use the contraction mapping theorem, so what is this x, so x we will 

define is a set of all continuous functions from this interval 0 to delta to R n.  

So the notation for x is C 0 from this domain to this co domain R n this 0 means that it is 

required to be just continuous it could be differentiable twice differentiable that is an 

extra property. But, we are asking for all functions that are at least continuous and, hence 

this 0 appears here, so for what interval it is defined from 0 to delta the time duration that 

delta is to be carefully chosen yet. Now, we can ask the question is x complete with 

respect to some norm after all for the contraction mapping theorem we require a Banach 

space x which norm is x complete.  

So, we already saw that for a point x in X, we saw the sup norm for this space of 

functions for this space of continuous function. We define the sup norm as the maximum 

as t varies in the interval 0 to delta of the Euclidean norm of x of T at any time T x of t is 

a vector in R n.  

We can take the conventional two norm the Euclidean norm and this Euclidean norm 

itself is a function of time and we will see what is the maximum of that norm function as 

t varies from 0 to delta. That is called the sup norm, it is also called the max norm, so we 



already saw that with respect to this sup norm this space of continuous functions on this 

Interval to R n is a complete normed space. 
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The next important property was the next important requirement was to define the closed 

subset S. So, we take some r greater than 0 and we define the set S of all this contingency 

functions in this particular set which satisfy the property that x minus x naught. So, x 

naught here is actually just a vector, but we also think of it as a function we will this in 

more detail. But, the distance from this x naught is the supremum of the distance from 

this as t varies from 0 to delta is at most R.  

So, we take all those continuous functions which satisfy this sup norm condition and we 

pick these functions and put them into the set S how do we chose the value of R for this 

definition of S. So, we have differential equation f in the differential equation d by d t x 

equal to f of x we already are given that f if locally Lipchitz at the point x naught.  

So, what is the significance of x naught x at time t equal to 0 is equal to x naught, so 

because it is locally Lipchitz, we know there exists a neighborhood B the ball B centered 

at x naught and of distance and of radius equal to R. So, this closed ball we will very 

soon define it to be a closed ball, we know that because x is locally Lipchitz at point x 

naught. There exists such a ball such that the Lipchitz condition holds inside this ball to 

say that it that the Lipchitz condition holds means that for all x one and x two inside this 

ball this inequality satisfied.  



So, we pick this R from the locally Lipchitz property of the function f also this way we 

have defined is a closed subset of S. It is a closed subset because of this inequality being 

a non strict inequality, hence notice that less than or equal to R about. Now, for the same 

reason we will conveniently choose the ball b x naught, R as the closed ball, so b x 

naught comma R is defined to be a set of all x such that the distance from x naught is at 

most equal to r. 
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So, before we go further in the proof let us quickly note that b x naught comma R is the 

closed subset of R n with Euclidean norm and the point x naught is a element of the 

closed ball it is inside this center of this ball.  On other hand, S the subset S is the closed 

subset of x the space of continuous functions over the interval 0 to delta and this space x 

has the sup norm because we are dealing with two types of norms. Here, one the norm 

over R n the Euclidean norm and the other a norm over x the sup norm because we are 

dealing with these two norms. It is very important to be careful about which norm at each 

place we user the norm function, so for this subset S we have this particular function x of 

t which is always equal to x naught.  

So, always equal meaning as time t varies from 0 to delta x of t is the constant function it 

is equal to x naught, so this constant function is also an element of the set S. So, what is 

the meaning of that the trajectory x of t is always is equal to x naught, it remains at x 

naught for all time t. So, what is the set S is, S the set of trajectories that remain within 



distance R from the point x naught for the time duration 0 to delta. So, what does the 

operator do operator P do x and X and gives another function again on the interval 0 to 

delta.  

So, as we see a map of P from x to X, we now show that in fact t maps S into S for some 

delta. So, take this small notice that we had delta as some number that was to be chosen 

yet so for delta suitably small it will show that P maps not just x into x. But, in fact S into 

S then we will use the local Lipchitz property of the function f to show that P is in fact a 

contraction on S. Again, for a sufficiently small delta this we will call delta 2 greater 

than 0 and once we have these two conditions delta 1 and delta 2, one which ensures that 

P maps S into S.  

But, another which ensures that P is a contraction on S we have to define the delta Equal 

to minimum of the 2 minimum of delta 1 and delta 2 and since delta 1 and delta 2 are 

both positive the minimum of the two will be a delta. So, that meets the conditions in the 

theorem for this delta we will use the contraction mapping theorem. 
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So, the first part of the statement wad to show that for delta quite small P x minus x 

naught sup norm is less than or equal to R where S is in when x is in S. Now, to show 

this particular inequality we will imply that P takes an element x in S and gives you a 

function which is also in S. So, why does it give a function again in capital S because the 

distance of P of x from x naught from the constant function x naught in the sup norm is 



at most R. Now, if we show this will ensure that P is a map from s to S, so in order to 

show this what is that P of x of t minus x naught the 2 norm is equal to this.  

So, once we take the norm function inside the integral sign it turns out that this right 

hand side will become larger. So, this inequality this norm of integral 0 t, t of x of tau d 

tau is less than or equal to integral 0 to t of this whole thing inside the brackets notice 

that f of x naught. While doing this particular quantity can increase because of the 

triangular inequality, now what we will do we will integrate not just from 0 to t. But, 

from 0 to delta 1 after all t is some number at most delta 1, so if we integrate this positive 

quantity up to delta 1 it is only going to become larger.  

Once we do this, we will also use the Lipchitz property of the function f and replace the 

first term in the norm with x tau minus x naught times l and because f is locally Lipchitz 

at the point x naught. This is satisfied for all x and x naught inside the ball this other 

quantity we just leave as it is. So, we have used the Lipchitz the locally Lipchitz property 

of f, since x of tau minus x naught is at most equal to R why because the function f is 

inside S.  

Hence, this particular quantity is at most R, so we have replaced x of tau minus x naught 

in the two norm by R that is the maximum distance. It can be away from x naught and 

the second quantity because it is integral of a constant we have removed f of x naught 

and replaced integral of d tau by delta 1. Finally, we see that this particular quantity 

which we are integrating this is also constant it is not varying as a function of tau. Hence, 

we called we equated that to delta 1R and after taking delta 1 common we obtained this 

expression. 
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So, what have we shown we have shown that the two norms of this particular function at 

any time t is bounded from above by this quantity and what is that on the right hand side 

there is no t. So, for all time t the left hand side which depends on time t is bounded from 

above by this particular number which does not depend on time t.  

So, in fact if we take the supremum on the left hand side even the supremum will be 

bounded from above by the same quantity. So, what does this show that this particular P 

of x minus x naught in the sup norm is at most equal to this, now we will choose delta 1 

such that P of x belongs to S. So, if P of x should belong to S then choose delta 1 to 

satisfy delta 1 times l R plus f of x naught to norm is at most equal to R.  

If we choose this delta 1 such that this is satisfied then we see that P of x minus x naught 

in the sup norm is bounded from above by R and hence P of x goes into S. So, we can 

take any positive delta 1 that is less than or equal to R times R divided by this quantity 

and we will then get that P max S into S we can take delta 1 equal to this. 
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The next important step was to show that P is a contraction on S, so for some delta 2 

greater than 0 which we will carefully choose. Now, we will show that P is contractive 

for this purpose what is P of x t minus P of y t into norm is equal to the norm of this. 

From the definition of the operator P, we see that we obtain this and when we take the 

norm inside the integral sign. Then we get that this is at most equal to this by using the 

locally Lipchitz property of the function f inside the ball b of x naught, R. We see that 

this quantity is bounded from above by this after taking the l outside this integral sign.  

Moreover, this particular quantity we have written here is at most equal to this why 

because x and y both at any time t we can take the difference between them in the two 

norm and integrate them. But, instead of taking at any time tau we could also look at the 

maximum difference between them and this maximum difference is only going to be 

larger. Hence, we have obtained at this particular inequality is less than or equal to this 

particular quantity by replacing a sup norm.  

Here, by replacing the two norms there with the sup norm, here this quantity can only 

become larger and hence this inequality not equal. Finally, this quantity which we are 

integrating it is over the interval 0 to t, but we could go ahead and integrate up to delta 2, 

this quantity because it is a norm it cannot be negative. But, when we integrate further 

instead of time t only up to delta 2 then we see that we get l times delta 2 times sup norm 



of x minus y. So, here the supremum is being taken as t varies from 0 to delta 2 and, here 

also the sup norm was being taken as t varies from 0 to delta 2.  

So, what have we obtained they have obtained that P of x of t minus P of y at time t the 

difference norm of that the two norm of that is bounded from above by some number, by 

some quantity that is independent of time t. So, this is true for each time t I n the interval 

0 to delta 2 and hence we take the supremum of this quantity, even the supremum will be 

bounded from above by the same number L times delta 2 times sup norm of x minus y. 

So, finally we have obtained this inequality sup norm of P x minus P y is at most equal to 

L times delta 2 times sup norm if x minus y.  

So, this should give us a hint as to how to choose delta 2, so that P is a contraction on S 

that was the objective of doing this inequality. So, that would just be a contraction it 

would be a contraction if this particular quantity l times delta two is strictly less than 1. 

So, if you set delta 2 times L equal to some number rho and that number rho is strictly 

less than 1 then we will obtain this contraction on S. 
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So, finally we do as follows choose any role strictly less than 1 and define delta to be the 

minimum of these two quantities. So, notice that this we had called as delta 1, the second 

one we had called as delta 2 and the minimum of these quantities when we take that as 

delta it will ensure both, it will ensure that P is a map from S to S. It will ensure that P is 

a contraction and once these two are guaranteed by the contraction mapping theorem. 



We know that there exists a fixed point in S for the operator P and, moreover there exists 

a unique fixed point at P unique fixed point inside the subset S. 
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So, this proof has 2 parts, so this completed the proof just a small discussion about the 

proof it has two parts, one about the existence and one about uniqueness. So, notice that 

both come together with the contraction mapping theorem the contraction mapping 

principle assures us both existence and uniqueness.  

But, of course in general the conditions on f for existence of a solution to the differential 

equations are different from conditions on f. So, for uniqueness of the solution to the 

differential equation these conditions are usually different and suppose the existence is 

given. Suppose due to some particular property on f it turns out that we have a particular 

solution to the differential equation. 
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For example, for this particular differential equation solution exists for the claim that a 

solution exists we are not able to use the theorem of existence and uniqueness. But, why 

we are not able to use because the theorem for existence and uniqueness requires this 

particular function f of x to be locally Lipchitz at the point of initial condition. Suppose 

the initial condition is equal to 0 then we already saw that this particular function is not 

nor locally Lipchitz at x equal to 0.  

Hence, we are not able to utilize the theorem however we know that the solution exists 

why we are able to conclude that the solution exists because of certain other properties of 

the function f. Now, for example there is a Cauchy Peano theorem that says that if f is 

continuous then solution exists for certain situations it is possible that we are not 

interested in uniqueness. But, we are interested in just existence of a solution because of 

which locally Lipchitz property on of the function f might be too severe might be too 

harsh. So, function f may not be locally Lipchitz because of that hat particular theorem 

we are not able to utilize to claim existence and uniqueness.  

But, just existence might also come under milder conditions on f, so Cauchy Peano 

theorem is one of the various statements that relaxes the conditions on the function f and 

at least gives us existence. So, it says that if a function is continuous at the point x naught 

then a solution exist over a small interval 0 to delta there is also another result.  



There is a result by Caratheodory which says that which is also under milder conditions 

on the function f not even continuity it turns out that f is not even continuous it is still 

possible that a solution exist. But, then we do not go into that that is also said to be a 

solution in the sense of Caratheodory. So, in general it is important to keep in mind that 

the conditions for existence and the condition for uniqueness are not usually the same. 
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Hence, if existence is given by some other particular by some other property then it 

might be easier to show that locally Lipchitz ensures uniqueness of the solution. So, one 

of the ways to prove uniqueness of the solution under assumptions of existence of 

solution to the differential equation is by using the Bellman Gronwall inequality, this is 

the result we will see now. 
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So, what is the Bellman Gronwall inequality we will see only the simplified version 

suppose a non negative continuous function r that takes R to R that takes real values, and 

gives real values. Suppose this non negative continuous function R satisfies that r of t is 

at most R naught plus L times the integral 0 to t r of tau d tau. So, what is on the left 

hand side this is like an integral inequality, R appears on both sides R appears here and 

also here.  

So, R at any time t is at most some constant plus another constant L times the integral 

from 0 to t of the same function r if r is continuous non negative function that satisfies 

this property. Then R of t is at most equal to R naught times e to the power L t, so notice 

that if we have a function R that satisfies this integral inequality in which R appears in 

both sides.  

Then we want to make a claim about R being bounded from above by this other function 

that is now not depending on the right hand side. So, r now appears on the left and side, 

so what is this Bellman Gronwall inequality say it says that if a function R is bounded 

from above by some constant times the area covered so far this. But, so far it has been 

included to indicate that the integral from 0 to t of that same function r of tau that is the 

area covered so far.  

Now, if r is bounded from above by such a constant time S the area covered so far then r 

can have at most exponential growth this is the simplified version of the Bellman 



Gronwall inequality. The general version is much more powerful and harder to both 

understand and prove, so we will use the Bellman Gronwall inequality to prove that if we 

assume the existence of a solution to the differential equation. Then locally Lipchitz 

property of the function f in fact proves uniqueness of the solution to the differential 

equation. So, this also helps us to look into sensitivity of the solution to the differential 

equation to initial condition. 
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So, consider this solution the first solution to the differential equation is guaranteed to 

exist then we know that this equation, this is the integral equation. Suppose another 

solution y of t is solution to the integral equation with this initial condition. Now, we can 

ask of x naught and y naught are close by does it mean that x t and y t are also close by, 

so let us just take the difference.  

Now, let us see what happens to the distance x of t minus y of t is less than or equal to by 

the triangular equality x naught minus y naught to norm plus integral from 0 to t of f of x 

tau minus f of y tau d tau. Now, using the locally Lipchitz property of the function f we 

can simplify this particular term in this integral.  

So, this is less than or equal to x naught minus y naught plus l times integral from 0 to t x 

tau minus y tau all the norms appearing in this page are the two norms. So, we see that x 

t minus y t the norm of that satisfies this particular inequality that kind of appears in the 

Bellman Gronwall inequality.  



So, this non negative function norm is a non negative function it is also continuous both 

x and y are continuous because their integral of some function which is also continuous. 

So, f is locally Lipchitz it is also continuous and integral of this continuous function j is 

in fact differentiable and of course x and y are continuous. So, their difference is also 

continuous, so this non negative continuous function satisfy is bounded from above by a 

constant plus l times its own integral so far. 
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Now, we use the Bellman Gronwall inequality Bellman Gronwall result to say that 

because of the statement in the inequality in the Bellman Gronwall principal, these two 

norms is bounded from above by 2 times e to the power L times t, so let us just compare 

these two inequalities. 
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So, after having a look at statement of the Bellman Gronwall inequality we see that on 

the left hand side r of t non negative continuous function is bounded from above by this 

particular integral on the right hand side. So, R naught plus L time integral from 0 to t r 

of tau, if this is what r satisfies the non negative continuous function then r of t is 

bounded from above by this r naught, this constant times e to the power L times t. 
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So, when we apply to this particular difference of two solution to the differential 

equation we see that x of t e to the power r of t is bounded from above by some constant 



x naught minus y naught 2 norm plus L times the integral of r of tau d tau. Now, this 

quantity which we are integrating here is same as the situation here of that is the case. 

Then by using the Bellman Gronwall inequality we are able to conclude that the x of t 

minus y of t two norm cannot be larger than x naught minus y naught 2 norm times e to 

the power L time t.  

So, this helps us to conclude uniqueness how do we show uniqueness if x naught is equal 

to y naught then x of t minus y of t 2 norm equal to 0 for t in for t in what interval for t in 

interval guaranteeing existence. Now, t also should be restricted to an interval, so that the 

solution remains inside the domain of x where it is locally Lipchitz. But, locally Lipchitz 

neighborhood of f t should be restricted to a small enough interval where both these are 

satisfied. So, if t is sufficiently small then we see that this 2 norm is equal to 0 if the 

initial condition is same if the initial condition if the initial condition is same.  

Then the difference in the trajectories is forced to be equal to be 0 why because this 

difference in trajectories is less than or equal to 0 times this number at the same time this 

inequality also tell us tells us to what extent the solutions are sensitive to the initial 

conditions. So, suppose we know that these two initial conditions are not same, but they 

were close by in other words the distance between them was equal to 0.01. 
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Suppose, x naught minus y naught 2 norm is equal to 0 point 0 one does that imply this is 

the question we ask in the context of sensitivity x t minus y of is similarly small. So, 



what is similarly small as small as this particular amount or at least of the order of this, 

so we know now that if the initial conditions are this much away. Then x of t minus y of t 

2 norm is less than or equal to 0.01 times e to the power L times t, so for that duration we 

can compute e to the power L t.  

Now, this is something some number that of course grows as t increase because L is a 

positive number it is a locally Lipchitz condition L that appears in a locally Lipchitz 

condition f. So, it is a positive number, so it is indeed a function that is growing, but we 

are now asking about sensitivity to initial conditions. So, if the initial conditions are 

close then the solutions at any time t are apart from each other, but at most this distance 

from the initial condition times this number.  

So, the fact that this number becomes large is not the topic of discussion, now the topic 

of discussion, now is how sensitive is the solution to the initial condition. So, if the initial 

condition is order 0.01 apart then at any time t, x t minus y t is also order 0.01 apart, so 

this explains sensitivity to initial condition if L is small, in fact these both are not 

growing too fast are apart.  

So, using this particular Bellman Gronwall inequality, if under some particular theorem 

we already have existence then we can see that locally Lipchitz property of f guarantees 

uniqueness also. So, why it guarantees uniqueness because if the initial conditions are 

close to each other then the solutions are also close in fact if the initial conditions are 

equal to each other then the solutions are equal. 



(Refer Slide Time: 40:36) 

 

So, this completes the proof of existence and uniqueness to the solutions of a differential 

equation, and also completes sensitivity of the solution to the differential equation 

sensitivity with respect to the initial condition after having finished the proof, this is a 

good moment to see a closely related topic. 
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So, we saw the existence and uniqueness of solutions, so let us have a quick relook, so 

consider the differential equation x dot is equal to f of x where f is a map from R n to R n 

and at the initial condition x naught. Suppose x if locally Lipchitz then there is a delta 



greater than 0 such that there is a solution and there is a unique solution in fact x of t to 

the differential equation x 0 is equal to x naught for the interval 0 to delta. So, please 

note that we are starting from t equal to 0 to some delta greater than 0 see this is an 

interval in positive time for the future there is a solution.  

So, a unique solution for some time in the future an important question is there a unique 

trajectory in the past, so what about existence and uniqueness of a solution in the past. 

So, for this particular issue we can easily modify our theorem to replace t with tau by 

defining tau equal to minus t, so as t evolves into the future tau evolves into the past. 

 So, the differential equation x d t is equal to f of x becomes d tau x d by d tau of x equal 

to minus f of x, in other words d by d tau of x of tau where x is a function of tau. Now, is 

equal to minus f at x of tau, so how does one obtain a vector field for this dynamical 

system we just reverse the direction of all the arrows. So, in the vector field of the 

differential equation x dot is equal to f of x why because each arrow is not f of x, but 

minus f of x. 
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Now, see f is Lipchitz, notice that minus f is also Lipchitz, hence the Lipchitz condition 

on f guarantees existence and uniqueness of a solution in the past also. So, what are the 

implications of these particular observations with two solutions x of t and y of t cannot 

meet at x final, if at a point x final if f is Lipchitz at that point x final. If f is locally 

Lipchitz at x final then it is not possible that there are two past trajectories x of t and y of 



t which have the same final condition x final. Similarly, autonomous system everything 

that we have been doing so far is for autonomous system.  

So, one of the properties that we can claim about autonomous systems is that the 

autonomous systems cannot reach the equilibrium point. But, the equilibrium stage in 

finite time why because whenever it reaches an equilibrium state that equilibrium state 

already had one past which was same point for all time. But, there cannot be another 

trajectory that comes and meets this equilibrium state is locally Lipchitz at this 

equilibrium state. So, if you want to have a particular system if you want to design a 

controller in steady state in finite time and remain there.  

Then it would require non Lipchitz controller or plant transfer function to reach the 

equilibrium in this case we interpret the equilibrium as the steady state. If you reach the 

steady state in finite time then one would need either non Lipchitz controllers or non 

Lipchitz plant transfer function. But, why is that because with Lipchitz we can reach the 

steady state only asymptotically it is not possible to reach in finite time. 
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So, another important topic is we have been seeing only local existence and uniqueness 

conditions what is local about it we saw that there exists a solution. But, it is unique only 

for an interval 0 to delta even existence could not be guaranteed for large enough time, 

but it could be guaranteed only for a time interval 0 to delta. Now, all that was 



guaranteed was that delta was greater than 0, but it is possible that this delta is a very 

small value and we are unhappy with this result about the existence.  

So, uniqueness for so small an interval possibly, so it is possible that can solutions exist 

over the interval 0 to infinity is it that the solutions indeed exist and they are unique. But, 

our theorem is not able to guarantee it is the theorem too harsh is it that it is assuming 

coming locally Lipchitz property on f, because of which we are able to guarantee 

existence. So, uniqueness only for a small interval 0 to delta, but there might be some 

other result some other way of proving that the solutions exist from 0 to infinity.  

So, the conditions assumed in our theorem too harsh because of which they are able to 

prove only local existence and uniqueness for this we will see one small example. So, it 

is indeed true that sometimes solutions indeed exist for only a finite time, so our theorem 

can also accordingly claim existence and uniqueness only for a short interval. But, why 

would they exist only for a finite time, because it is possible that the solution becomes 

unbounded in finite time.  

So, consider the differential equation x dot is equal to x square, so x dot is equal to x 

square means that f of x is equal to x square. So, notice that this is Lipchitz in fact it is 

locally Lipchitz at every x naught in r. So, please note that this dot here does not mean 

that is multiplication of x dot and f of x it is the end of a sentence x dot is equal to x 

square is a differential equation. Now, for this differential equation f of x equal to x 

square and this particular function f is locally Lipchitz at every point x naught.  

But, notice that one Lipchitz constant does not work for the full r solve, so we can 

explicitly solve this differential equation x dot is equal to x square to get d x by x square 

equal to d t. Now, on integrating both sides we get x to the power minus 1 r divide by 

minus 1 equal to t plus some constant c 1 and upon rearranging this minus 1 and x of t. 

We will call minus c 1 equal to c 2 and we get x of t equal to 1 over c 2 minus t, so when 

we put the initial condition at t equal to 0. Suppose it was at x naught x 0 then when we 

substitute we get x of t equal to one over one over x naught minus t, so let us just make 

this a. So, our differential equation this is not how to the solution to our differential 

equation looks, so let us see what this means. 
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If x of 0 is equal to some number, let us say 4 then we see that x of t equal to 1 over 

quarter minus t. So, we see that for t equal to 0 of course it is equal to 4 and as t tends to 

1 by 4 this quantity becomes unbounded, so a graph of x versus t x starts from 4 and it 

becomes unbounded. So, within a small interval up to 1 by 4 it is already so large that it 

is unbounded, so we have solutions defined only over for this particular initial condition. 

So, we are able to define existence of a solution only from 0 to 1 by 4, while it is a closed 

interval on this side it is an open interval for t equal to 1 by 4, we do not have a solution 

this solution does not exist. 
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So, what we have seen is when the initial condition is equal to 4 we had solution only up 

to 1 by 4, suppose the initial condition was equal to 1 then we have a unique solution for 

some delta. But, when we try to increase this delta we see that x of t is exists and is 

unique how long can we extend this. So, we see this that by explicitly solving the 

differential equation we get x of t equal to 1 over 1 minus t x t is defined exists only for t 

in the interval 0 to 1, 0 to 1 for this particular initial condition. So, for each initial 

condition it become unbounded in a finite time in how much time it becomes unbounded 

that time depends on the initial condition. 
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So, a solution, so a set of solutions to this differential equation this starts below the 

solution for some more time if it is at 0 of course it remains at 0 for all future time 

because it is locally Lipchitz at 0. So, the solution cannot emanate out of the equilibrium 

point there is a unique trajectory and hence it remains always at 0. But, if x of 0 is 

negative then what happens then x of t is equal to some number, some number 1 over x 

naught which is negative minus t. So, the solution always exists when it is negative then 

we see that the solutions are coming close by, so we see that if x of 0 is negative then the 

solutions exist for all future times.  

But, they are not becoming unbounded in finite time and they are all approaching 0, but 

if x of 0 is positive then the solution grows and becomes unbounded in a very short 

amount of time in finite time. Hence, we cannot have global existence of solution when 



initial condition is positive but, it is it appears that we can have global existence of a 

solution and x of 0 is negative. So, it appears like for certain situations there exist 

solution from t equal to 0 to infinity while there are other situations for the same 

differential equation.  

But, there are certain other initial conditions for which the solutions exist only for a finite 

amount of time in which case we cannot have global existence of the solution let alone 

global uniqueness. So, for this particular differential equation we might have some 

additional assumptions under which we might have unique solution from 0 to plus 

infinity. But, it is possible that for certain initial condition those conditions of the 

theorem do not hold in which case we do not have global existence. So, those additional 

conditions, how to formulate this? The topic we will see in the following lecture.  

Thank you. 


