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So, welcome everyone to the next lecture, so today and over the next two lectures, we 

will cover a topic called dynamical systems on manifolds. So, what is a dynamical 

system and what is a manifold dynamical system, of course you have seen, it is nothing 

but a differential equation, but today we will see in little more detail what is a manifold 

that arises in non linear dynamical systems and hence it is relevant. I would say this is 

one of the ways that people work in non linear dynamical systems to be more precise. 
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So, when we take x dot equal to f of x may be x dot equal to f of x comma u if there an 

input. So, of course this f and this f are different clearly this f has only one argument x. 

On the other hand, this f has two arguments x and u in which it is implicit that u is an 

input to the system, but then the values of x itself at any time instant R. 

Here is a question, so can x t take any value in r n or is it that x of t is required to be in a 

in a subset of r n is this subset a sub space or is it a more general set, does it have some 

notion of dimension when we speak of R n? When we speak of vector space R n, we 

speak of it being n dimensional, but when x of t takes it values in not necessarily the 



whole of R n, but in the subset. Then, what is the meaning of dimension, for those 

purposes, we will speak today in more detail about something called manifold. Manifold, 

generally speaking are smooth manifolds, what is smooth, that we will see soon. In other 

words, it is also called regular, what is regular about it at every point its dimension is 

fixed as you change the point the dimension of the manifold. 

Once you give the notion of manifold property called dimension, once we give that, we 

can speak about locally is a dimension constant as you change this point. So, that is what 

we will use to define a regular manifold, that is also is a smooth manifold. Then on a 

manifold, we will speak about tangent space, why is tangent space relevant, because it is 

in the tangent space that the vector field lives, sorry for this bad handwriting. So, tangent 

space, we will speak about the notion of tangent space, if time permits we will see some 

examples of manifold some equations today only. 
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So, why is this relevant for dynamical systems? So suppose we say dynamics on circle or 

dynamics on dynamics on sphere. So, it turns out that when we are talking about the rate 

of change of angle for example, we know that angle varies from 0 to 2 pi, but not just 

that the angle equal to 2 pi is same as 0. So, in that sense it is incorrect to view this set 

this angle as a interval like this, why am not making it closed at both sides because the 

angle equal to 2 pi same as 0. So, we let angle equal to be either 0 or 2 pi, we cannot let 

it be equal to both 0 and 2 pi because they are actually the same. Then, it appears if we 



write it as interval like this, it appears some point some angle value here and some angle 

value here, let us say 0.1, this is radians. 

When we say 0 to 2 pi, clearly the angle is being measured in radians, but suppose angle 

equal to 0.1 and angle equal to 2 pi corresponds to 2 into 3.14, which is let us say 6.28. 

Suppose, 6.27 yeah is slightly less than 2 pi, these two values of angles are not actually 

very far. So, one should note that this particular point is actually the same as this given 

that these two angles are same. Hence, it open interval, it is not a not a good way to 

pictorize this particular set of all values, where angle takes the values. 

On the other hand, if we let that particular angle be denoted like this on a circle and we 

say that this is theta equals theta is being measured like this, so we know that as theta 

increases and 0.1 angle and 6.27 angle indeed are close. So, here it is also explicit that 

angle 0 and angle are the same, so when angle for example, when dealing with the angle 

it is resemble to think about the angle as angle theta yeah takes values on a circle. At any 

time instant, we can say that theta of t is some particular point on the circle, so that is one 

example where we will like to think that our theta of t. 

It does not take arbitrary real values even though it is mod 2 pi, we know that the angle is 

the same when if it is referring by a integral multiple of 2 pi in spite of that this is not a 

good set because it does not suggest that 0 and 2 pi angles are the same. For example, all 

the 0.1 and 6.1 angles are actually very close, on the other hand, instead of this, if we let 

that the theta of t takes its values on a circle, then this is a correct representation of this 

set where theta takes its values. Now, we can ask that this particular set the circle is it 

one dimensional or two dimensional. So, the question the next question that arises is that 

what is the notion of dimension for such a set which is not R, if it is a vector space if it is 

R n or R m or R 1 or R 2, the plane clearly the dimension is here. 

It is n m here, it is 1, 2, but then for such more general sets, so this what we were like to 

call a manifold, the circle is an example of a manifold, but for such sets what is the 

notion of dimension. So, very soon we will make this more precise we will like to say 

that if we were sitting at a particular point on the circle. Then, locally this just looks like 

a line, for example when we are on this earth, when we are on this planet earth at that 

time we know that actually the earth is a very big globe. It is a big circle, sphere at the 



particular place, where we are it looks like R 2, we like to think that we are on this 

particular sphere, which is R 2. 
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So, let us draw sphere here, so when we are at a particular point on this sphere, then 

when we draw a tangent to this at that particular point tangent plane. We are not at a very 

particular point, we are not very concerned that far away this particular plane indeed gets 

rotated and becomes a sphere locally. At a particular point, it looks as good as a plane, so 

that that is as far as local view point. So, we then like to say that the dimension of a set is 

what it is when viewed very locally, so how do we make this more precise, so for that 

purpose we will speak about embedding a manifold in R m. 

So, manifold just loosely speaking a set that looks like R n locally meaning where ever 

we are at a particular point view around it. Then, it will looks just like R n, but not 

necessarily globally, not necessarily globally when we view the entire set together. Then, 

we need not view R n its only locally that we think it is R n more generally such a 

manifold m might have to be embedded in a dimension R m vector space and clearly in 

that case m will be greater than n. 

So, as a extreme case it might be in fact equal to m in which case R m was equal to R n 

that time R n was itself equal to R m except for that or it can also be special case R m 

equal to R n is also manifold. That time R m is also manifold open subsets is also a 



manifold, so clearly manifolds can be bounded, it need not be unbounded like R m. So, 

one can have smaller subsets also, now so how does one characterize it too typically. 
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Typically, manifold described by equations for example circle, if we take unit circle as 

far as the angle, it does not matter what the radius of that particular circle is, but let us 

consider the radius is equal to 1. So, x square plus y square equal to 1 is the radius is that 

particular circle that we already drew a circle centered at origin and the radius equal to 1. 

So, we can view this as f of x comma y equal to 0, where f of x comma y is defined as x 

square plus y square minus 1. 

So, it turns out that manifold can be written as solution to a system of equations in this 

case there is only one equation and two variables, one can write f of x comma y equal to 

0, where f of x comma y is defined like this. So, now what is the particular point a 

particular point will be in the manifold? It will be on the circle if it satisfies f of x comma 

y equals to 0. So, let us take a point is 3 comma 4 on manifold, what was the manifold 

defined as this particular manifold. The circle was defined as the set of all x comma y in 

R 2, such that f of x comma y equal to 0. So, the definition of our set, so far this 

definition is concerned 3 comma 4, we can check. 
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Here, 3 square plus 4 square minus 1 is equal to 9 plus 16, 25 minus 1 that is 24 that is 

not equal to 0, hence it is not a its not on the circle. So, let us consider 3 by 5 comma 4 

by 5 is, this an element of that manifold is this in that set of all points which satisfies the 

equation. So, we can check this it turns out that this will indeed be equal to 0, 3 comma 5 

square plus 4, 3 by square plus 4 by 5 square minus 1 is that equal to 0, it is equal to 0, 

this will turn out to be equal to 0. So, we see that this particular point is on the manifold, 

now what we can do is we can take this so called Jacobian del f by del del x del f by del 

y. 

We can consider this particular matrix that particular matrix turns out to be 2 x 2 y and 

this matrix in general will have x and y because f was dependent on x and y f was a 

function of x and y. So, this one, we will evaluate at a particular point, for example 3 by 

5 comma 4 by 5 at this particular point manifold, when we evaluate it, we get 8 by 5, we 

get 6 by 5. And we get 8 by 5, this is what we get as del f by del x del f by del y 

evaluated at a point yeah at a point p in the manifold for the point p equal to for p equal 

to 3 by 5 comma 4 by 5. We get it equal to this, now we are able to speak about the 

dimension of the manifold more concretely using this. 
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So, let us come dimension of the circle manifold at p is equal to 3 by 5 comma 4 by 5 

equal to dimension of null space of which matrix, of that particular matrix that we 

obtained 6 by 5, 8 by 5. So, this is this is a particular matrix that we get by evaluating del 

f by del x del f by del y and we can speak about its null space, why we have to speak 

about its null space we will see in detail soon. So, f depends on two variables x comma y, 

rank of this particular matrix del f by del x del f by del y evaluated at a point p at which 

point p, p equal to 3 by 5, 4 by 5 turn out to be equal to 1. 

Hence, dimension of null space null space of a matrix is set of all vectors that equal to 0, 

where that matrix acts on it, we will give a formal definition in the next slide this is equal 

to 2 minus rank of this matrix, which was equal to 1. This is equal to 1, this is the 

dimension of null space at that particular point, so notice that the matrix del f by del x del 

f by del y depends on x and y. When you substitute different points, you get different 

matrices and in general ranks might change even though the column is the same. 

Hence, the dimension of the null space might change in general, but one can verify that 

at every point p on the manifold the dimension will indeed be one the rank of the matrix 

will be 1. Hence, the dimension of the null space will indeed be equal to 1 and hence the 

circle manifold is what we will like to call a regular manifold. This is what we will see in 

more detail now, so before we see in more detail we will just give a formal definition of 

null space of a matrix. 
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Suppose, we are giving a matrix P, capital P that is different from the point p that we just 

now saw with n rows and M columns then its null space null space p is defined as set of 

all vectors v sitting in R m such that p v equal to 0. So, take a matrix with all real entries 

r for real entries with n rows m columns, and then its null space is defined as set of all 

vectors v such that p times v equal to 0 matrix p times vector v equal to 0. So, some other 

words for this purpose is called kernel of p also means the same thing. So, this is set of 

all vectors that go to 0 null space and kernel, both mean the same they are both in general 

a subset of R m. 

If p is a map from R m to R n, then null space and kernel both mean the same that is 

what is defined here are subsets of R m, why do we say p, which has m columns maps R 

m into R n. It has m columns when it acts on a vector the way it has written here, it will 

require the vector v to have n components and hence the vector v is an element in R n, so 

null space is an element in this to come back to our particular problem. So, del f by del x 

del f by del y that particular matrix when we evaluate at particular point small p equal to 

3 by 5 comma 4 by 5. 

Then, we had got that this one is equal to 6 by 5 and 8 by 5, this particular constant 

matrix we can look at the dimension, the set of all vectors that go to 0 and that turns out 

nothing turns out to be nothing but null space of p. Let us call this particular matrix as 

capital p its null space is nothing but the span of eight minus 6. So, span means you take 



linear combinations of this particular vector and that particular that set which you get by 

linear combinations of this is precisely equal to the null space of this. They are precisely 

the vectors v, which get sent to 0, this you can verify by just plain multiplication. 

So, what is the dimension of the span of this exactly one we have only one independent 

vector and any linear combinations will all generate a one dimensional sub space. So, 

this is dimension one, so that is how we conclude that the circle locally at every point 

gives you a null space of dimension one and hence it is a manifold of local dimension 

one. The next question that arises is at the point p we verified what about the other 

points, at the other points also will it be indeed null space dimension equal to 1. That is 

indeed the case that you verify yourself, but we will define the dimension of manifold a 

little more generally. 
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So, suppose f is a map from R m to R n and we say f x equal to 0 is a system of 

equations, please note this x here is different from the x we wrote in the previous 

example, why because f acts on R m and gives you R n. If f acts on x, x has to have m 

components already and f of x itself has n components in more precisely. We can say f 1 

of x 1 x 2 up to x m equal to 0, f 2, x 1 x up to x m equal to 0 like this up to f n equal to 

0. 

So, there are actually n equations that are why wrote system of equations the system of n 

equations to be precise and each equation involves m variables. So, this system of 



equations may or may not have a solution in general, so suppose you take a particular 

point x 1 up to x n that satisfies all these n equations that particular x point will include 

into the manifold. So, more generally manifold are defined like this a large class of 

manifolds are all defined as solution to a system of equations solution to a system of n 

equations and this already makes that manifold subset of R m. 
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So, what was our manifold was a subset of R m more precisely, it was set of all x in R m 

such that f of x equal to 0, so n equations are satisfying. Now, suppose we define del f by 

del x, this we can evaluate at a particular point small m in M, when we evaluate it at a 

particular point, then this matrix that we get after evaluating becomes a constant matrix 

with how many rows? It has exactly n rows because f 1 up to f n, n functions are getting 

differentiated and how many columns it will have, it gets differentiated with respect to m 

components. Hence, it will have m columns, so this particular matrix this matrix we have 

has n rows and m columns. 

One can speak of rank of this particular matrix del f by del x, after evaluating we speak 

of rank of constant matrices as far as this course is concerned. So, we will find out the 

rank of the matrix only after evaluating it at the particular point m on the manifold. Of 

course, in principle this matrix is defined for any point in R m. We can evaluate it at any 

point R m, but then we are interested in what happens to this matrix at the point on the 

manifold. Hence, we are going to evaluate it at the particular point m inside the manifold 



M, capital M. So, this particular rank yeah that decides what is, that will help in finding 

out the dimension of null space, suppose this rank is equal to R, suppose r is a particular 

number. 
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Then what is the dimension of the null space in that case, now this is equal to this 

dimension of null space of del f by del x after evaluating it at a particular point in the 

manifold will be equal to m minus R. So, I should point out a few things about the 

notations, here this m was because capital m is a subset of r m it is it is a integer. So, this 

m is because of this particular m, it has this particular matrix has m columns while this m 

is a particular point p on the manifold. So, it is better that I change this to a particular 

point p on the manifold where dimension of the null space at point p in the manifold. 

At point p in the manifold, what is the dimension of the null space m minus rank of this 

constant matrix, which constant matrix the rank, the matrix that you get by evaluating the 

matrix at this particular point p on the manifold. So, this is the dimension of local what is 

local about it because we have evaluated this matrix at this particular point local 

dimension of that manifold at point p. So, now we can ask when you quote for different 

points p does the dimension change does the dimension what is the dimension m minus r 

does the rank change m itself does not change, because its entire manifold is a subset of 

R m. 



So, m itself will not change the number of columns of this matrix will not change, but the 

number of the rank itself might change depending on the point that you substitute. So, 

does the R change with the point p, where you evaluated this matrix of functions you can 

find once in for all, but depending on where you will evaluate it its rank might change? If 

the rank does not change depending on the point p of the manifold, then the dimension of 

the null space will also not change because m minus r is the dimension of the null space 

at that particular point p. 

So, we will call this manifold is called regular if dimension is constant what dimension 

dimensionally dimension of null space will be constant if rank of this particular matrix is 

constant. So, such manifolds are called regular manifolds and they are the ones easiest to 

study and we will study only them. So, what are examples of manifolds circle sphere all 

the ones we can think of. 
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So, circle is a one dimensional manifold embedded in R 2 because it is embedded in two 

dimensional plane sphere, this circle, this sphere, sphere is also called s 2, this is called s 

1. So, s 2 is the sphere s 2 is a subset of R 3, while s one is a subset of r 2 yeah, so this is 

also a regular manifold in the sense that at any point you can evaluate the particular 

function how is s 2 sphere defined. 

It is defined using the formula x square plus y square plus z square minus 1 equal to 0 in 

r 3 in three dimension why x, y, z 3 components. If you take one equation, then that 



equation unless that equation is real unless it does not set any constraints, we expect that 

a two dimensional degree of freedom is there and this degree of freedom is exactly the 

dimension of null space we were talking about. So, at any point there are two nook and 

directions, one can move and those two directions are indeed the null space of this 

particular del f by del x y z that we get by using this equation, so hence this sphere is of 

dimension 2. 

So, what is an example of an irregular manifold, so look at this particular set the interior 

of the set. Here, it looks like R 3, here it looks like R 2 that this particular point you can 

go anywhere in these two directions, but as this becomes like this the same set when we 

are here there are only one independent direction. Either we go here or the negative of 

that gives the opposite direction, so there is only one independent direction at this 

particular point. On the other hand in the interior here one can go in two directions, 

similarly if we have a circle and its interior on the interior we have two dimensional. 

Here, we can go in two directions independently, but on the boundary we have a 

problem, we cannot go here; we can go like this and the inside that is in there are some 

constraints where all we can go on the boundary. So, these are the situations where we 

can say the dimension is not constant this is an irregular, these both are irregular 

manifolds. So, with that we will not look into more detail about how manifolds are 

defined. What is the meaning of its dimension at a particular point because our entire 

example will have manifolds with constant dimension at every point and they are the 

regular manifolds? 
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So, what is a vector field defined for a manifold, so take a manifold m of dimension, say 

r, so this r is not to be confused with the rank r we had in the previous pages. Suppose, it 

is dimension is r and this m we will like to embed it in r n embed, what is embed about 

it? So, what is embed about it even though as we said the sphere itself is dimension two 

manifold the sphere is physically being placed in R 3. So, we embed it in a larger 

dimension vector space if required sphere s 2 manifold, it is a manifold of dimension 2 

manifold is embedded in R 3, R 3 meaning x y z our space has dimension 3. 

So, one can think of the sphere s 2 can even though it is a manifold of dimension two, it 

cannot be placed in R 2, one has to embed it in a larger dimension vector space R 3. So, 

it is an important question about manifolds about what dimension vector space you have 

to minimum go larger and embed, so such theories explained in more detail in books by 

Spivak, M Spivak. He has one book on calculus on manifolds one thin book, but he has 

many more volumes, which speak about such questions in much detail and also more 

complex questions about manifolds. 
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So, as far as we are concerned we are dealing with dynamical systems where the variable 

x evolves on a manifold. So, consider x dot equal to f of x, for the time being x this is a 

time invariant system and x of t takes its values in manifold m and we do not want this 

manifold m to have a dimension that is varying. So, we will call it a regular manifold, 

regular manifolds are the ones which are also called smooth manifolds, one can speak of 

infinity functions defined on manifolds tangent spaces defined on such manifolds in a 

more general setting. So, let us take an example we will like to say that while x was on 

the manifold the vector field itself x dot. 

This function x this f is different from the f that we had used for defining the manifold 

there f was such that its solution set of all solution was defining the manifold, but right 

now the manifold is already defined if required. It is also been embedded in a larger 

dimension vector space, now this f is defining the vector field it defining the dynamics. 

So, take a sphere and this x is evolving on the manifold only, now we will like to say that 

x dot is a vector in which in which set we will like to say that it lives in the tangent space 

to the manifold at that point. So, take another circle, let us start with a circle, so x of t 

takes its values from the manifold and suppose the manifold is a circle. 

Suppose, at some time instant it is here, then x of t the fact that x of t has to remain on 

the manifold x dot itself takes its values in a tangent space in a tangent line to this 

manifold either positive or negative, that is where the rate of change can be. Why it is 



important to know the vector x dot itself cannot be out going out why because you see if 

you if one is to required to be on this manifold the circle, then the rate of change cannot 

suggest that we go here. It will clearly come out of the manifold immediately, but if we 

say it has to go in this direction it will go little in that direction and one gets a different 

point on the manifold and one evolves like this. 

At this point, we might say we have to go like this here like this of course, we are not 

going to move here in the next time instant infinitesimally after little amount of time we 

will reach here and there. The tangent is at a different point, so x dot is equal to f of x it 

is a differential equation at a particular x on the manifold f x is a vector in the tangent 

space to the manifold at that point. So, more precisely tangent space to the manifold of 

dimension, we said r of dimension r at point p of suppose the manifold was manifold m 

manifold m. So, it is a tangent space to the manifold it is tangential to the manifold, but 

tangential at which point at the point p of that manifold, hence space is if the manifold 

itself was dimension r locally it looked like R. 
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So, dimension R m of dimension r means locally it looks like r, dimension locally at 

point p it is like r. For example, a sphere as I said let us take a circle, for example, at 

particular point, we said that it looks like a line, so when we draw the tangent line to this 

particular circle at point p. Then, the tangent this tangent space is certainly r is equal to 

tangent space to the manifold at the point p, where p is the manifold. So, what is this 



tangent space to the manifold at point p, point p, of course p has to be also in the 

manifold. We do not consider tangent spaces to the manifold and the tangent space itself 

is also tangential at some point p not on the manifold. 

That is not going to happen because x of t lives in the manifold at any time instant at this 

point suppose this was x of t. Then, it can move either her or here, so it has it is forced to 

be tangential to that particular manifold at every time instant that is the rate of change. 

Hence, that particular set of all vectors where the rate of change can belong to that is 

called as a tangent space to the manifold at that particular point p. 

That tangent space not just looks locally like r manifold was looking like manifold was 

locally like r at every point p because it was a r dimensional manifold this tangent space. 

On the other hand in fact is equal to r, it is equal to r, where what about the origin of this 

particular vector space that origin of this particular vector space that origin of this vector 

space exactly the point p that is the important thing. 
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There are different copies of this tangent space, tangent space to the curve at the point p 

is r with origin of this vector space as point p of manifold, what do I mean by this, let us 

take the circle. Let us take this particular point, so this is one dimensional manifold the 

circle and this is a point p this is a origin of this particular line. So, we speak of line as r 

1, this is a origin we speak this as r 2, and this is a origin, now when this r 1 happens to 

be the tangent space to this particular manifold, this manifold m itself is embedded in r 2. 



The circle itself is embedded in r 2 where this perhaps is origin for r 2 in which circle is 

embedded. 

So, this our coordinates and our particular circle is here, so notice that this particular 

circle does not have its centre is not as origin like the earlier circle this is some other 

circle whose centre is somewhere else, radius is not necessarily 1, this is a manifold. 

Example for manifold this also can be written by such system of equations like we had 

written before, but now on this manifold point p is here and its tangent space is here the 

origin. So, tangent space itself is r 1 to that particular manifold at point p and the origin 

of that particular vector space r 1 its origin is 0, which is exactly the point p. So, if we 

have another tangent space at this particular point this is origin for this for this called p 

one this p 2. 

Similarly, if we have this as another point p 3 and this origin of that in that sense, we 

have plenty of tangent spaces. We do not have one two or three tangent spaces this circle 

has been embedded in r 2 there is a origin of r 2 in which this manifold has been 

embedded that origin is a origin of r 2, but we are speaking of this manifold, which is 

one dimensional manifold. For this manifold this point p 1 at which that tangent space is 

tangential to the manifold this point p 1 at which that tangent space is tangential to the 

manifold at point p 1. 

That p 1 is itself is origin of that tangent space as I said the tangent space is not locally 

like r 1. It is in fact r 1. So, where is the origin to this particular of this vector space its 

origin is exactly p 1, what is the significance of this point p 1 being origin that we will 

see when we actually consider the differential equation. 
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So, let us consider a circle in which theta dot equal to 1, so at every point we will like to 

say that this how theta increases. So, we may say this is why this not anticlockwise, now 

we only take anticlockwise as positive, this is not a manifold and one can have any 

convention as far as this manifold is concerned. So, now at every point rate of increase of 

theta is equal to 1, so the rate of change is equal to a vector one in that direction, what 

about theta dot equal to 0, where would that vector be at every point, it is a vector of 

length 0. So, it would just be there neither left side or right side where would theta dot 

equal to minus would be theta, we had said is increasing like this increasing clockwise 

theta dot equal minus 1 would be that theta is decreasing. 

So, it would be in the opposite direction, at every point this would correspond to this was 

our theta was increasing like this at every point the vector would be pointing like this. It 

is decreasing like this at a particular rate what about the length of the vector length of the 

vector indeed denotes the rate of change and length of the vector has actually unit theta 

by time rate of change of angle with respect to time. Hence, the length of vector itself 

cannot be directly related to the coordinates r 2 in which the circle has been embedded. 

So, except for the length of the vector the direction itself has lot of significance, but it 

also has some relative significance in the sense that we know that if this theta dot equal 

to minus 1. Then, this is this vector corresponds to theta dot equal to minus 1.5, because 

it is longer than this vector. So, the vectors within the tangent space can be compared 



with respect each other, but a length of a vector in the tangent space is not directly 

comparable to the length in the manifold. Elements in the tangent space have dimension 

value divided by time in that sense units are different. 

So, notice that we can see that theta dot equal to 0 means that at that particular point 

arrow has length 0. It neither increases nor decreases and that corresponds to the origin 

the 0 is in that tangent space to that particular curve at that particular point, hence it is 

exactly the origin. So, it is at point p increasing or decreasing, so important conclusion is 

origin of tangent space origin of the tangent space t m at point p is exactly at point p 

point p of manifold. 
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So, as an example x dot is equal to f of x f of x is equal to 0 at every at every x in the 

manifold this is like constant solutions, all solutions are constant x of t is identically 

equal to x naught for x at time t yeah at any time. 

We have at t equal to 0, it is equal to x naught it will identically be equal to x naught for 

all time t for all t greater than or less than equal to 0. Also, why because rate of change is 

0, so tangent space at every point which vector has been picked, so this differential 

equation from all the vectors that are possible in the tangent space at that particular point. 

At an initial condition, f of x picks a particular value in that tangent space, it tells us 

which direction it will evolve. If you say a constant vector field, it means it will pick the 



0 vector, so it will remain there that there is no arrow there is no arrow because arrow 

has length 0. 

So, that is an example where the origin is in fact the vector field has been has picked, 

hence x dot is equal to f of x on a manifold tells which vector in t m at a point p is picked 

for x dot, this picking is what f of x is doing f of x decides. So, this a way of 

understanding a vector field that a vector field of particular differential equation tells that 

at a particular point x on the manifold f of x tells you which particular vector in the 

tangent space. The manifolds at that point p has been picked and has been defined as x 

dot when you integrate you go to particular future time. 

There, f is evaluated at a different of the manifold, but the fact that at each time instant 

the vector belongs to the tangent space ensures that the vector does not the rate of change 

does not make the x go out of the manifold. The fact that the dynamics are constrained to 

be on the manifold that is guaranteed by the fact that f of x is an element of the tangent 

space f of x is not suggesting a vector outside the tangent space. That ensures that the 

dynamics remain on the manifold to the manifold dynamics remain on the manifold. So, 

this set of three lectures this and the next two are not intended to be into lot of depth 

about this way of seeing non linear dynamical systems it just suffices that we take the 

union. 
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We just introduce some words so if it is a union over all points m in the manifold of the 

tangent space to the manifold of the point p the union all this is called tangent bundle. 

What is a tangent bundle, it is a bundle it is a collection of tangent spaces. How is the 

collection being defined we said T M P is the tangent space to the manifold at the point 

p, but you can vary this point p for all p in the manifold that union that collection 

together is what defines the tangent bundle. One can speak what is the structure of the 

tangent bundle itself this questions that is asked from a research view point since many 

years. 

What about control of dynamical systems, so how is control viewed here till now we had 

been viewing x dot equal to f of x at every point p. We pick only one vector from the 

tangent space, but if you have x dot is equal to f of x comma u, so as I said as I warned in 

the beginning of today’s lecture, these are different there is only one argument this is a 

different system of equations. Only one argument to f, while here we have two, so when 

you see ways papers one should note that this f has two arguments. 

We would like to say that u is an input u is an input to the system, now here different us 

different u values helps pick different vectors in vector in the tangent space different 

vectors in tangent space more precisely. It helps you pick a whole family of vectors in 

the vector field what family, let us take an example and see. 
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Suppose, we are on a sphere and at this particular point this Particular point p, this is a 

tangent space to the vector field tangent space to the manifold at the point p. Suppose, 

this is how f of x yeah x dot is equal to f of x comma 0, when 0 input is given, this is 

how it is, but when some particular value u 1 is given it helps to say here. So, it is 

possible that this is a whole class of inputs that you get u 1, so different u 1 values 

different u values fetches all this vectors in this. Whatever has been shown fetches a 

subset of t m p, one can speak whether this it fetches this subset defined in different 

values this f of x comma u will be different values you see. So, it will help in picking not 

just one vector in t m p, but a whole collection of vectors. In that sense, this whole family 

of vectors from the tangent space can be picked by taking the different values of u. Now, 

we can ask what about controllability, so control itself means that you pick a whole 

collection of vectors that whole collection is defined. 

Now, inside that collection which vector you pick is about choosing particular value u 

controllability is about whether that collection is enough. You can go anywhere in the 

manifold, so global manifold global controllability is that you can find some trajectory to 

go to every point. Perhaps, you need lot of time to go there on the other hand you can ask 

that by just very small quick manipulations, can we go to every point nearby. So, this is 

what we will say small time local controllability, so given the fact that the different u 

values might give you more than just one vector in the tangent space to the vector to the 

manifold at point p. 

By different choices of u, can you go around the open interval neighborhood of the 

manifold at that point p, can you go if that open interval neighborhood is made smaller 

and smaller, that is what is called small time local controllability. On the other hand, 

global controllability ask the easier question can you go from any point to any point by 

some choice. When you go to different point you get different family of vector fields 

which is the collection of the tangent space at that point. So, by such careful choice can 

we go from any point to any point that is what global controllability about? So, this is as 

far as the different questions that are asked using this language using this notion of 

tangent spaces. So, we will see some more properties of tangent spaces in a few minutes 

in the next lecture.  

Thank you. 


