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Welcome to lecture number 12 on non-linear dynamical systems. So, we have seen a 

detailed analysis of the Lotka Volterra predator prey model and about the Van Der Pol 

oscillator.  

(Refer Slide Time: 00:32) 

 

Today we will see how we can visualize the dynamics of these two important non-linear 

systems using a simulation done in a package called scilab. So, scilab is free and open 

source and it is helpful to use scilab for understanding, how the dynamics of various 

systems governed by differential equations can be simulated. So, let us just briefly see 

the Lotka Volterra predator prey model. 
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So, even though the word predator is commonly used, we will use hunter to denote the 

predator specie. So, we have two species here: one is the prey, and one is the predator, 

one is the hunter. So, the equations we have already seen look like this at any time 

instant x of h is the amount of hunter specimen and x of p is the amount of prey 

specimen. So, we will see how for a certain initial condition the solution looks like. So, 

this we are right now in scilab and we are going to execute a file very soon, I will show 

the code of the file also.  
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We will begin with executing file called Lotka main this calls another function called 

Lotka Volterra. So, when we execute this the first important thing we require is the 

vector field. So, the vector field as we can see consists of arrows at different points. We 

see that at this particular point at 1, 1, the point 1, 1 is the equilibrium point is an 

equilibrium point, while all around it. We have arrows suggesting that it is a center this 

particular plot can be obtained by using the champ command in scilab. Very soon we 

will open and see the scilab code that generates this, while this only indicates the vector 

field at different points, we will also like to see a trajectory, what is the trajectory? What 

is the solution to the differential equation? It is a curve which has these arrows precisely 

as the tangents at each point on the trajectory. 

So, in order to see the trajectory, we have a trajectory here. Suppose, we start at some 

particular points, then we have this curve the arrows are not drawn on that particular 

curve, but the arrows we can see from the vector field y. 
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So, we can also change the initial condition and see, how the solution looks for a 

different initial condition. So, for that purpose we will modify the code and change the 

initial condition. 
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So, let us have a look the code for this purpose, this is a code that was developed as a 

part of the talk to a teacher project at IIT Bombay, it is also being used, now for the 

NPTEL course. So, there are some initializations like clearing the figure the initial 

condition is being specified. Here, let us make the initial condition two. For example at 

1, 1. 
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This is where the initial condition is specified, and this is the time for which we are 

going to perform the simulation. The differential equation itself is being specified inside 



this other file called Lotka Volterra dot sci, we will open and see that. Also the same 

differential equation is has also been specified here, for the purpose of the champ 

command. So, champ and champ one will together will draw the vector fields at different 

points.  

We can specify how finely we want the vectors plotted, do we want very few vectors 

plotted at far points or we want a final grid of points at each point, we want the vector 

field the vector drawn. So, the main part up to drawing the vector field is up to here. 

Then, the plot also has some additional information like that it is, which axis corresponds 

to the prey population, which axis corresponding to the hunter population, those 

information are put here. 
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And finally, the Lotka Volterra function file itself is being called from inside this 

particular function called ode. The function Odein scilab solves the ordinary differential 

equation with this initial condition and with this initial time, for up to this time duration. 

And finally, we are going to plot these both on the same graph on which we have drawn 

the vector field. So, let us go back we have given the initial condition now as this. 



(Refer Slide Time: 05:23) 

 

So, let us now run this code for that purpose, let us close this figure. So, we have again 

he vector field, now we see that there is no point, there is no trajectory why because the 

entire trajectory has collapsed to just one point, because we have given 1, 1 the 

equilibrium point itself as the initial condition. 
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So, as expected we do not expect to see any trajectory. The trajectory is a one point 

single point. So, let us now give some particular initial condition, which is very close to 

the axis, this is very close to the y axis, because the x component has been made to be 



very small. So, it turned out that the arrows that we had drawn was for a very small 

region the trajectory itself goes through a very large area. 
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This is how the trajectory looks in fact, if we give a point on one of this axis. Then, we 

have already seen that it just blows up, if you have the hunter population equal to 0 due 

to some reason. Then, the prey population just goes on increasing exponentially and 

eventually becomes unbounded. So, here we see that by starting very close to the y axis 

also eventually we reach a similar situation. 
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We could now give an initial condition that is fairly close to the equilibrium point. So, 

here we have got this as the initial condition and it is, we see that there is a small circle. 

Here, it is a little too small compared to the rest of the region and hence it is not very 

visible. 
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We could consider zooming in and see this particular region. So, this is as far as the 

Lotka Volterra simulation is concerned.  
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We were to also see this particular other this other file. So, this is just the function it 

defines given x, what is x dot is nothing but f of x. So, f is getting defined inside this 

function. 
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So, it takes at any time t a value of x it gives us, what is f of x at that point. So, these 

equations are nothing but Lotka Volterra predator prey model, and we see that time does 

not play a role explicitly. Now, we will see the Van Der Pol oscillator for different initial 



conditions, let recall that the Van Der Pol oscillator equations look like this, we had a 

second order differential equation.  
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Which we had converted to a first order differential equation, we also saw an R L C 

circuit in which we could interpret x 1 as the voltage across the 3 components. The 

resistor inductor and the capacitor are all in parallel the resistor was not the simple 

resistor. 
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We had seen, it was a special one, which could either absorb or give energy in which 

sense it was a special, it was a active device. So, x 1 was the voltage across these 3 

devices, which were connected in parallel and x 2 could be given the interpretation that it 

is the current through the inductor. Then, this second order differential equation can be 

considered as this in which h is a little special, because it denotes the characteristics of 

the resistance. 
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So, let us see a simulation of this particular model, so like before we have this particular 

scilab code already written this. Also, was written as a part of the talk to a teacher project 

at IIT Bombay and it is being also used for the NPTEL course. 
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So, we have the initial condition being specified here the function itself for the 

differential equation is being specified inside another file called Van Der Pol dot sci, 

which we will open and see in a minute. 
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So, first we are interested in seeing the vector field, so for that purpose let us run this. So, 

this are this is how the arrows look, we have the origin 0, 0 as the equilibrium point. 
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The only equilibrium point, and we have these arrows going all round suggesting that it 

is the center whether it is a center or not. We can come to know only by linearizing and 

seeing the equilibrium by seeing the Eigen values at this, which we had already seen at 

the origin is unstable equilibrium point, but these arrows are not telling us much 

information. We will also see depending on whether, we start from outside or certain 

limit cycle or inside these arrows are going to tell whether, we will be converging to the 

limit cycle either from the inside or the outside. 

So, let us we have already specified an initial condition first, we have seen only the 

arrows and it is waiting for our a button to be pressed. So, for this particular initial 

condition the trajectories are coming closer and closer and encircling round and round, 

and eventually converging to this limit cycle. So, that is for the case that, we start from 

this particular point, we can take another two points also from outside this particular 

limit cycle. 
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So, the limit cycle is seems to be going between minus 1 and 1 on the horizontal axis. 

And between 1 and 1 on the vertical axis also, let us take another initial condition. Let us 

take, minus 2 and minus 2 and run this program again. So, we have just the vector field 

now. 

(Refer Slide Time: 12:00) 

  

So, we have right now the initial condition starting from here and it is encircling like this 

and converging to the limit cycle, we can take a point. Let us say, here corresponding to 

3, minus 4, and see whether this also encircles, this also expected it would not take long. 
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To check 3, minus 4 the vector field after having started here, we see this particular 

trajectory. So, we see that the arrows are all tangent to this particular trajectory, we will 

now take a point from inside the limit cycle first, we could take just the origin. 
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We know that the origin being equilibrium points, we do not expect to see any trajectory 

and indeed, we do not see any trajectory. So, there is actually just one very thin point, 

which is the entire trajectory because that is the equilibrium point. 
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So, let us take a point also inside this limit cycle, but not the origin. Let us say, we can 

take point two here is a vector field. So, here let us again blow this up. 
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So, here when we start from here it seems to encircle and g outside and outside and 

eventually converge to this limit cycle. 
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So, let us open and see the file Van Der Pol dot sci, because that is being called by the 

ode function in scilab. 
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So, Van Der Pol dot sci is just defining the first component in x dot as x minus 2 epsilon 

times h x 1 H. 
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x 1 itself was a function, which we had seen in the slide. It is equal to, this is h of v and it 

is integral with h of 0 equal to 0. That is how capital h is defined that defines capital H 

uniquely and that evaluated x 1 is, what capital H of x 1 is that is being defined. 

(Refer Slide Time: 14:29) 

 

Here, that is being put in here and that defines the first component of x dot, second 

component of x dot is nothing but x 1. So, the output of this particular function file is f 1 

and f 2, which denote nothing but x 1 dot and x 2 dot this is going to be utilized by the 

ode command in scilab. So, this explains, how we can use scilab to visualize the 



dynamics of a differential equation while a second order differential equation can be 

visualized using the vector field. Also by using the champ and champ 1 command more 

generally. We can use ode command to see to obtain the solution to a differential 

equation and initial value problem in particular. 
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So, let us like we did for the Lotka Volterra scilab code, we will also see the scilab code 

completely. Of course, both the codes all the 4 scilab programs will be made available on 

the website, it is not required to copy this from this screen. It will be made available 

completely, this part of the code is to set parameters of the plot all these commands can 

be obtained, can be seen in detail, can be used more effectively by using the help 

command in scilab as far as we are concerned these codes will be made available, these 

completes this topic.  
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We will continue on another topic now, we now continue to the next topic. So, we are 

also going to see something about linearization about a trajectory, we have already seen 

linearization about a point. Now, we will also see linearization about a operating 

trajectory the significance of that why it is important to study that is, what we will begin 

seeing. 
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So, we will quickly review linearization after that, we will see what the meaning of 

operating point and operating trajectory is? We will also see a definition of stability the 

notion of stability of close by trajectories. 
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So, we when we speak of linearization till we spoke about linearization about an 

operating now, when we say linearization, we will distinguish in future between 

linearization about an operating point, and linearization about an operating trajectory. So, 

let us quickly see, what is the need for linearization. 
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So, while we are studying non-linear systems, it is acknowledged that non-linear systems 

are harder both for analysis and for controller-synthesis, but it is also true that the interest 

of the analysis of the controller design is to a limited region of the state. And also to a 

small set of initial conditions that are close by close to a certain important point. Also, 

the import functions may not be of very large amplitude. 

So, given these situations it is often helpful to linearize. So, the linearized system could 

serve the required purposes, which purposes the analysis of the non-linear system, and 

controller synthesis for the non-linear systems these both purposes is perhaps met by the 

linearized system. So, to what extent it is met we have only partially seen, we already 

saw that under certain conditions. 
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We will quickly review these conditions linearization helps for concluding about stability 

of an equilibrium point more precisely, if the linearized system, when we are speaking 

about an equilibrium point. We take the non-linear system and linearize, it about the 

equilibrium point the linearized system matrix A. We take if it satisfies this condition, 

what is this condition the set of Eigen values of a intersection of that set with this 

imaginary axis is empty, is empty I have missed writing. Here, I will just write this 

condition. 
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Here, suppose this condition is satisfied, what is the meaning of this set of Eigen values 

of A? And i R is the imaginary axis is the intersection of these two sets is the empty set 

meaning, in this context it means that there are no Eigen values of a on the imaginary 

axis, if this particular condition is satisfied. 
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So, this equal to phi is, what has been missed on the slide here, it has been missed here. 

So, if the intersection of the imaginary, if the intersection of the Eigen values of A, and 

the imaginary axis is empty. Then, the conclusion, which conclusion whether the system 



is asymptotically stable or unstable that conclusion for the linear system also implies the 

same conclusion for non-linear system.  

This is one of the most important results in the context of linearization of non-linear 

systems about that operating point, because non-linear system could have many 

equilibrium points. And we could consider the linearization about different operating 

points as far as the particular equilibrium point is concerned, we can obtain this matrix a, 

and if there are no Eigen values of a on the imaginary axis. Then, the linear system, the 

linearized system may be unstable or may be asymptotically stable. For example, it is 

asymptotically stable, if all the Eigen values of A are in the left half open, left half 

complex plane. It is unstable, if there is one or more Eigen values of A in the right half 

complex plane. 

So, this particular conclusion on the linearized system, we are able to do using the 

linearized system matrix a that conclusion is the same for the non-linear system. Also 

about the equilibrium point under this condition under, which condition under the 

condition that there are no Eigen values of a on the imaginary axis. So, what is the 

significance of this is an example of how non-linear system does not have to be analyzed 

much as far as this particular conclusion goes as far as the conclusion, whether the non-

linear system about an equilibrium point is unstable or asymptotically stable as far as that 

conclusion goes, it is enough to study the linearized system. 

This conclusion is indeed the same only under certain conditions only, when certain 

conditions are satisfied, if those conditions are not satisfied. Then, it is not possible to 

say that the same conclusion holds; now we can ask is this is this something that is just 

for analysis or is this going to help for controller synthesis also. Is it that such a result 

can also be utilized for controller synthesis? This is something that we will see in the 

detail in the next few lectures. Another important thing is, what about converse, if you 

know that the non-linear system is unstable, is it true that you should the linearized. 

System is also unstable that is the other question, when what we refer to here as 

conversely. So, these are important questions that we will address in the next few 

lectures; we will address the notion of controller synthesis for the linearized system, and 

whether that controller will work for the non-linear system also. 
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So, let us come back to this question controller synthesis for stabilizing a non-linear 

system at an operating point as I said, when we say, operating point. We need to know, 

distinguish that operating trajectory, and operating point in the context of linearization. 

So, let us first ask this question controller synthesis for stabilizing a non-linear system 

about an operating point. So, that to be controlled non-linear system gives A to be 

controlled. 

Linearized system upon linearization the non-linear system, which had some inputs will 

give us a linearized system also with some inputs. So, suppose A and B are matrices for 

the linear system, we will do this in a little more precise way in the next few lectures. I 

am just motivating how a controller for the linearized system may work for the non-

linear system also. Suppose, A and B are matrices for the linearized system.  

Let us call system L in and these matrices A and B are coming from the non-linear 

system x dot is equal to f of x, u till now we had been studying only autonomous 

systems; there was no input u nor v. Now, we are speaking of a system which allows you 

to put a control input. 

So, the linearized system is this in which the state has been called z x dot is equal to a z 

plus b v and the original non-linear system was x dot is equal to f of x, u. We will see, 

how A and B matrices are to be obtained from this particular function f under what 



conditions? So, what is the controller synthesis question under what conditions controller 

designed for system L in also works for system non-L in the controller? 

We have designed for this system under, what condition it will work for this system. 

Also given that A and B where obtained from these from this non-linear system may be, 

it is possible linear control theory for this system might automatically hold for this 

system also, in order to answer this question. 
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We have to understand in little more detail about linearization about an operating 

trajectory in the context of linearization. We will also speak about stability of the 

operating trajectory. So, we have already seen for a autonomous system, what it means 

for stability of an equilibrium point, we also Lyapunov stability of the equilibrium point. 

Now, the next question is what is the meaning of stability of a operating trajectory of a 

trajectory. So, let us first consider the case when that trajectory is a periodic orbit. 
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So, suppose this is a periodic orbit and now, we know that if we start on this periodic 

orbit. Then, we will keep going along this orbit, we could ask the question is this 

periodic orbit stable in the sense that trajectories that start close to this periodic orbit do 

they converge to this periodic orbit this is the question. We ask in the context of Van Der 

Pol oscillator. For example, we ask whether this periodic orbit is a stable limit cycle, 

what does it mean to be a limit cycle.  

We have these other trajectories that are converging to this and stable limit cycle means 

that we take such a cut and we look at all initial conditions close to this periodic orbit. 

We could ask are all these trajectories, which trajectories all the trajectories that are 

starting close to this periodic orbit are all of them going to converge to this periodic 

orbit. That is ideally the case that is how we want for robust sustained oscillations of an 

oscillator that we build in a in a laboratory.  

We want that no matter what initial conditions it should converge to that periodic orbit, 

because that periodic orbit perhaps is carefully designed to have the right period and 

right amplitude. So, this is what we will say a limit cycle a stable limit cycle a stable 

limit cycle is one in which we have a periodic orbit the cycle itself and trajectories that 

are close by come closer and closer to this periodic orbit. Of course, we know that it 

cannot come and intersect at any particular point, why is it that the two trajectories 

cannot Lipchitz at this point, if the function is Lipchitz. 



Then, we know that the two trajectories cannot intersect. So, we have all trajectories that 

are coming close and closer to the stable limit cycle also from the inside when they start. 

So, we have already seen results in this context. So, we already know what it means for a 

trajectory to be stable? We informally know it for the purpose of this limit cycle for the 

case of periodic orbit. 
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We already speak about stability of periodic orbits what about non-periodic orbits is that 

relevant for periodic orbits in the case of autonomous systems? We have already seen for 

oscillators it is very important, but for non-periodic orbits also should we study this? So, 

we have an example here. For example, suppose for a non-linear system the optimal 

trajectory was computed by optimal control. 

So, we have a whole nice theory about optimal control and using that theory, suppose we 

compute the optimal trajectory for a particular system, this optimal might be. For 

example, it is the trajectory when the fuel consumed is minimum it might be a minimum 

fuel consumption trajectory for a rocket going up into the space, this is a very non-linear 

system many inputs many outputs. This rocket could be taken from the ground to the 

space and by using lot of computation may be we compute a trajectory by which least 

amount fuel is consumed in taking the rocket from the ground up to the space. 

So, this particular trajectory computation can be done offline, we assume this or for 

example, this trajectory might have been. So, called a minimum time trajectory it might 



be the trajectory that is going to assure us that this rocket going from ground to space 

into the particular periodic orbit takes least amount of time it might be a minimum time 

trajectory. So, we assume that this particular trajectory computation is done offline. It is 

done on a computer with lots of time allowed before that the rocket goes up in the air, we 

already have a trajectory that will take it into the space in least amount of time or may be 

in least fuel consuming way. 

So, this is what is optimal control, and once we have found this optimal trajectory this 

optimal input. That is required for staying on the optimal trajectory is pre-decided. For 

example, by intensive computation now, we can ask given that this particular system is 

not going to exactly go along this optimal trajectory, before we go into that suppose the 

open loop control input is pre-decided the meaning of that the input that you should give. 

So, that that performance objective is met in optimal way that input is pre-decided and 

you just give this input to the system. This is same as saying that the control input is 

open loop. It is open loop control input, and it is pre-decided, but it is also true that there 

are various uncertainties in the system. The fuel may not be of the correct quality that 

was assumed when you were deciding, when you were computing the control input. 

There may be other uncertainties in the space, when the rocket is going up, it is 

encountering a situation that is not exactly accounted in the model. 

So, because of these uncertainties it is difficult to implement exactly that particular 

optimal trajectory using this pre-decided control input that time. We could ask the 

question, what if the trajectories start close by. If, the trajectories that are close to this 

optimal trajectory do they stay close by. This is a natural question that arises in this 

context. If, the close by trajectories do not stay close by, if the optimal trajectory is good, 

but the trajectories that are close to the optimal trajectory perhaps are moving away from 

the system away from the optimal trajectory. 
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If, that is the case then we will very soon define that to be unstable optimal trajectory. 

Then, perhaps we can use feedback to stay close to this optimal trajectory, what is 

feedback here? Our control input was pre-decided? That pre-decided control input is 

indeed optimal, if all the modeling system modeling has been done to account for all 

uncertainties, but in the presence of uncertainties this actual input that we are giving is 

no longer optimal, because there are some model uncertainties, which we have not 

accounted for. 

So, perhaps we could use feedback we could measure the actual sensor values now, and 

add the required value to the control input to the pre-decided control input. So, what is 

this linear controller supposed to do? It is supposed to design a linear controller to bring 

close by trajectories back to the optimal trajectory, if the trajectories that are close by are 

not coming back to the optimal trajectory. Then, we would like to design a controller that 

achieves this. 

So, as far as this particular problem is concerned even, if the optimal input was pre-

decided if the trajectory was not the optimal trajectory, then a linear controller suffices 

for stabilizing the system back to this optimal trajectory. 
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So, a linearization approach not only restricted to reference state not only restricted to the 

operating point, but it can also be applied to a reference trajectory to a operating 

trajectory. In the previous example, it was the optimal trajectory. This is the thing that 

we will study in detail. So, the procedure that we will see very soon is based on a Taylor 

series expansion and knowledge of the nominal system trajectories.  

So, this reference state reference trajectory, we will call as nominal state value or 

nominal system trajectory the system trajectory itself has a corresponding nominal input. 

Also, what is the procedure now this is the next thing, we will see consider a first order 

non-linear dynamical system initial conditions are known x dot is equal to f of x, u often. 

We suppress the t, we write x dot is equal to f of x, u it is implicit that x and u are 

functions of time u is the input to the system. Suppose, for the input u bar the system 

operates at along the trajectory x bar. 
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So, this is our reference input and reference trajectory this is precisely the one that we 

were saying. This is perhaps the optimal trajectory, thus is the trajectory, x which turn 

out to be optimal in the sense that least fuel is consumed or the time taken is least. This is 

an example and for achieving this optimal trajectory. This is the input that we give, so 

when we say that this input is optimal, it is going to achieve this. Of course, this 

differential equation is satisfied this differential equation x bar dot is equal to f of x bar 

comma u bar. 

So, we will call u bar the nominal system input and x bar the nominal system trajectory. 

So, this nominal input turns out to exactly reproduce the nominal system trajectory, this 

is assumed why because u bar is pre-calculated it is like open loop control input. Now, 

we will consider a perturbation in the neighborhood of the trajectory. That is x t is equal 

to x bar plus some small perturbation delta x. So, delta x is a small quantity it is a small 

state value, we will also add a small quantity to the nominal system input. 
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So, u is equal to u bar plus delta u, so please note this is the actual state, this is the 

nominal state, and this we consider as the deviation. Similarly, this is the nominal input 

this is the deviation and this gives the actual input. So, we are assuming that the 

deviations in the state and input are small. So, we can take derivative of this, so 

derivative of x t is nothing but the derivative of this plus derivative of this. That is, what 

has been written on the left hand side here and on the right hand side.  

We have to keep x bar plus delta x and u bar plus delta u because f is not a linear system, 

it is not a linear map. So, the right hand side right hand side of which equation right hand 

side of this equation. This is what we will call RHS right hand side. For the next slide the 

right hand side can be expanded into a Taylor series expansion about, what about the 

system trajectory. 
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So, right hand side is equal to f of x bar comma u bar this is the 0 th order term in the 

Taylor series expansion plus derivative of f with respect to x times the deviation. This 

derivative of f with respect to x again depends on both x and u, we are going to evaluate 

it at x bar comma u bar why because our nominal system trajectory, and nominal system 

input are x bar comma u bar. We are seeking a Taylor series expansion about this 

nominal system trajectory and this nominal input. So, this is the 0 th order term and this 

is the first order term as far as delta x is concerned a far as x is concerned. We will also 

differentiate f with respect to u and again evaluate it at x bar comma u bar.  

We will call this is the term corresponding to deviation in the input u plus. There are 

some higher order terms also these higher order terms involve second partial derivatives 

of f with respect to x and u. And they can be neglected under the assumptions that these 

deviations are small since we are asking the question whether the operating trajectory 

close whether trajectories close to the operating trajectory come back in that context. We 

are seeking a analysis of only about small deviations, and hence these higher order terms 

can be neglected.  

So, after neglecting this we get this particular differential equation how is it that, we have 

got this differential equation directly from here. We have substituted in this differential 

equation the right hand side. We have substituted as what we will see in the next slide 



and we have also used that x bar dot equal to it is better that I write this on a slide the 

reference. 

(Refer Slide Time: 38:54) 
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Trajectory in the reference input satisfy the differential equation this is, what we also call 

the nominal trajectory and input. Then, we are going to analyze not at x bar and u bar, 

but x is equal to x bar plus delta x. And u is equal to u bar plus delta u. It is about this 

particular x and u that, we are going to analyze, and for that purpose, we wrote f of x 



comma u is equal to f of x bar comma u bar plus del f by del x evaluated at x bar comma 

u bar times delta x plus del f by del u times delta u times delta u. This again evaluated at 

x bar comma u bar. 

(Refer Slide Time: 40:54) 

 

So, this we have expanded f of x comma u as 0 th order term, and together as first order 

term plus higher order terms, which we have decided to neglect because the deviations x 

and u are small. Now, we are going to substitute this back into this differential equation 

into which differential equation at least the derivative operator is a linear operator 

because of which we get this. That is equal to after the neglecting of higher order terms 

in which this and this both have been evaluated at x bar comma u bar, strictly speaking 

this is only approximately equal to why because we have decided to ignore the higher 

order terms. 



(Refer Slide Time: 42:06) 

 

So, we will now define this particular term this particular constant matrix as a, and this 

particular matrix as b. This is the most important thing that we do, when we linearize the 

system. This is what, we will continue in the next lecture. So, we just see the definitions 

here before we stop for today’s lecture. So, we are going to now define a as this 

particular matrix and b as this matrix this is, what we will see in the following lecture 

with that we end lecture number 12. In the next lecture, we will see more about the 

matrices a and b and why they are time varying.  

Thank you. 


