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Bendixson Criterion and Poincare-Bendixson Criterion  

Example: Lotka-Volterra Predator Prey Model 

 

Welcome everyone to lecture number 10 on non-linear dynamical systems. We will 

continue with the Bendixson criteria and the Poincare Bendixson criteria. In particular 

we will see important examples. One is Lotka Volterra predator prey models and also the 

van der pol oscillator. Let us start with the Lotka Volterra predator prey model. 

 (Refer Slide Time: 00:46)  

 

This is studying how the population of two species vary as a function of time. These two 

species are classified into prey and hunter. So, there one specie that is a prey and other 

species that is the hunter and we will study the model of this prey and hunter species. Of 

course, we are studying a simplified model. Let x h be the hunter specimen in the model 

and let x p be the prey specimen in the model. So, what does this equation say, x dot is 

equal to x dot h equal to minus x of h plus some quantity that depends on both x h and x 

p and x dot p equal to x p minus x h x p. 



So, the first term in each equation is how the particular specie would evolve, if there 

were no other species. So, the first term first equation says that, if there were no prey that 

is if x p were equal to 0 then x h would just decrease a as function of time, it would 

decrease exponentially because there is no food. So, left to itself the hunter specie would 

just decrease, but for each interaction between x h and x p, the hunter eats the prey. 

Hence this extra, the next term the second term in this right hand side is causing an 

increase in the hunter population. 

So, the hunter population decreases because of its own population and it increases 

because of its interaction with x p. So, the rate of increase is proportional to both x p and 

x h population. It is bi linear to it is equal to the product that is the increase causing term. 

On the other hand the prey itself is just going to multiply, it is going to increase 

exponentially when left to itself. If there had been no hunter specie and interaction with 

the hunter specie causes x p to decrease. 

So, quantities x h and x p are all positive and whether the increase or decrease depends 

on its own population and also population of the other species. This is the reasonable 

model for how dynamics of 2 species that interact with each other evolves as the function 

of time. Of course, we have simplified most importantly in the sense that, more generally 

there will be some constants x dot h would be equal to minus a times x h plus b times x h 

x p and x dot p is equal to c times x p the rate of increases proportional to some c times x 

p in general. Decrease the interaction causes a decrease with this multiplication with d. 

So, this is how one could study a general model, but 1 can consider that, we are choosing 

a different unit for x h and x p. So, that this constant will become will equal to one and 

also, there is some normalization that has been done, so that we are studying this model. 

Of course this itself a simplification, this model is also a simplification because there 

might be some higher order derivatives. We have seen already how the population of just 

one species can vary with resource availability with ability to reproduce depending on 

the interaction between species. All that have been ignored, assume this with first order 

dynamics with respect to itself and just the product the interaction is just the product of 

the two species population. 



So, the questions that we can ask for this particular model is, what are the equilibrium 

points what is the nature of equilibrium points of the linearized system are they periodic 

orbits. 

(Refer Slide Time: 04:44) 

 

These are the questions we will ask. So, let us go back to this particular model and we 

will find the equilibrium points for this system. 
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d by d t of x h and x p is equal to minus x h plus x p times x h and this is x p minus x p 

times x h. So, this is our f, so equilibrium points. Points are those values of x h and x p 



where f 1 of x h, x p equal to 0 and also f 2 of x h, x p equal to 0. So, what do we get by 

equating x h minus x h plus x p x h equal to 0 and x p minus x p x h equal to 0 for a 

particular value of x h and x p to be an equilibrium point. These two equations have to be 

satisfied. Let us see what are values for which these equations are satisfied first equation 

says h equal to 0 or x p equal to 1. Second equation says x p equal to 0 or x h equal to 1. 

So, this gives us, how many pairs of equilibrium point. The equilibrium point has an x p 

and x h coordinate. So, let us see what all possibilities are there for equilibrium point. 
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See both equations have to be satisfied then one can have 0, 0. This is nothing but x p 

equal to 0 and x h equal to 0. The first component in this is x h specie value, second is 

the x p population value. So, both equal to 0 is 1 equilibrium point, that is what we get 

from here and both equal to 1, 1. So, which means x h equal to 1 and x p equal to 1. This 

is another value for the equilibrium point. You see notice that other this if x h is equal to 

0, you cannot have x p equal to 1 equal to 1 right because for the other for both equations 

this is equation 1 and this is equation 2. This is 1 this is 2, equation 1 says that, any 1 of 

these 2 possibilities, equation 2 says any 1 of these 2 possibilities.  

When we combine them we get that these 2 equilibrium points. These 2 points these 2 

values of x p and x h are situations where the population species does not change as a 

function of time. So, this is where x h this x p 1 equilibrium point is here and other 

equilibrium point is here. This is the equilibrium point 1, 1 this is equilibrium point 0, 0 



as I said the first component denotes the x h value. Let us see what happens if x p is 

always equal to 0 x p equal to 0 means this is the hunter population.  

So, our dynamical equation system says that if x p is equal to 0 which means that the 

second term is always equal to 0. If you put x p equal to 0 here and x h is just decreasing 

that is why we have drawn these arrows and if x h were equal to 0. So, this is sitting on 

the x p axis, then x p just goes on increasing, this is how the arrows look, but more 

generally it is the combination of the 2. For example, let us take what happens at 0.5, 0.5 

that is draw the arrow at this particular point which corresponds to point 0.5 and 0.5. So, 

at x h equal to half and x p equal to half we get x dot h equal to. 

So, this is just substituting 0.5 in place of these 2. So, we get minus 0.5 plus 0.25 which 

is equal to minus 0.25 and x p dot is just 0.5 minus 0.25, which is equal to 0.25. So, this 

is the vector whose x h component is negative, but x p component is positive. So, this is 

an arrow that looks like this. So, that its x h component the horizontal component is x h, 

it is decreasing, but x p component is increasing. So, like this we can draw arrows for all 

the points. One can check that this is how we get. 
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Let me draw a bigger figure. Only the first quadrant is visible because the population do 

not become negative. So, this is the point 1, 1 this is 0, 0. As I said x h population is 

going to decrease if x p is equal to 0 x p equal to 0 corresponds to this x h axis and x p 

axis corresponds to x h equal to 0. So, I am sorry.  
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So, x h x p when left to itself the prey population is going to increase. That is why the 

arrows should all be in the direction of increasing x p. So, the correct figure should be 

and this is the point 1, 1 and you already checked that intermediate points at this point, it 

is like this the one. If it is a little higher let us verify this that this is how it looks. So, this 

itself an equilibrium point if it happens to be at point 1, 1. 

If the hunter population is equal to one unit and the prey population also equal to one 

unit then it remains constant, but for small participations above that point the arrows I 

have drawn like this, but this requires verification. So, let us take a sample point, this 

particular point has x p coordinate equal to 1, but x h coordinate slightly more than 1. So, 

for example, let us think of consider the point x h, x p equal to 1.1, 1 
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Let us see what happens for this particular point. For this particular point we have drawn 

the arrow like this, but let us check whether it indeed is like this. So, x h dot x p dot 

equal to we are evaluating at point x h, x p equal to equal to 1.1 and 1. So, this is minus 

1.1 plus 1 times 1.1. So, this is equal to 1.1 and x p population rate of change of the prey 

population is equal to 1 minus 1 into 1.1. So, this turns on to be is equal to x h dot x p dot 

is equal to the top component is 0 and lower value is minus 0.1. 

This is what happens when x h is slightly more than 1, slightly more than equilibrium 

point, but x p is equal to the equilibrium point value that is equal to 1. So, when we do 

this then we are speaking on this point here. For this point we are getting that x h rate of 

change is equal to 0. So, the horizontal component is equal to 0 and the vertical 

component is equal to minus 0.1 that is why it is vertically downwards. So, similarly, one 

can check for each of these 4 points what is the property of this point its x p population 

the prey population is slightly more than 1, but x h population the hunter population is 

equal to 1. For each of these 4 points one can verify and see that the arrows are indeed 

like this, suggesting that there is a periodic orbit around this point. So, there are periodic 

orbits close to this, but this point on the other hand looks like a saddle point.  
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So, let us verify this by linearizing the system at each of these 2 equilibrium points. Let 

us go back to the dynamical system x h dot x p dot minus x h plus x p x h x p minus x p 

x h. So, del f by del x this is equal to f 1 of x f 2 of x equals this. So, the first row the first 

function here is called f 1 of x, second function here is f 2 of x del f by del x is equal to a 

2 by 2 matrix. The entry here is derivative of this with respect to x h that is equal to 

minus 1 plus x p. The entry here is derivative of this with respect to second component 

of x, that is x p, this is equal to x h. 

The entry that comes here is derivative of f 2 with respect to x h here we get minus x p 

and the entry that comes here is the derivative of this with respect to x p. The second 

component of the state for that we get 1 minus x h. So, as expected this is a matrix, this is 

a 2 by 2 matrix which depends on x p and x h. So, we are going to evaluate this matrix at 

the equilibrium point. So, del f and del x evaluated at the equilibrium point 0, 0 is one of 

the equilibrium point. For this particular equilibrium point we get minus 1 0 0 1 and del f 

by del x evaluated at the other equilibrium point 1,1 we get equal to by putting x p and x 

h both equal to 1, we get 0 1 minus 1 0. 

So, we have these 2 a matrices 1 a matrix for the equilibrium point 0, 0 and the other a 

matrix for the equilibrium point 1, 1. It is not difficult to see the Eigen values of these 2 

matrices. So, equilibrium point 0, 0 has Eigen values for a diagonal matrix. The Eigen 

values are nothing, but diagonal entries. 
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The equilibrium point 0, 0 has Eigen values 1 and minus 1. So, we already saw that, this 

is an example of a saddle point. The equilibrium point 1, 1 has Eigen values, what are the 

Eigen values of the matrix, which matrix of this matrix. Eigen values of this matrix are 

plus minus j. 
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As we noted in one of the first few lectures that, the Eigen value of such a matrix, if beta 

is not equal to 0, then the Eigen value of this matrix are equal to alpha plus minus j beta. 

The Eigen values of such a matrix are complex precisely what complex values are the 



Eigen values. Alpha plus minus j beta the diagonal entries are the real elements real part 

and the off diagonal entries with opposite signs correspond to the imaginary part of 

Eigen value. 

These are the Eigen values even then beta is equal to 0. So, for this particular equilibrium 

point we have this special case. So, the Eigen values are plus minus j, which we know 

corresponds to a center. 
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The equilibrium point is what we call a center. So, our center is one that has periodic 

orbits. We always saw that, for this particular plot indeed this particular equilibrium 

point has periodic orbits and this is a saddle point. So, the linearized system is a center, 

which is nothing, but a continuum of periodic orbits. Very close by different initial 

conditions correspond to different periodic orbits. They all correspond to periodic orbits 

and different periodic orbits is that the same for the non-linear system also this is the 

topic that we will see in detail today. So, please note that we have investigated the Lotka 

Volterra predator prey model. For convenience the predator we have called as hunter. So, 

that we can use a subscript h. 
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The prey we continued to call p x p. The simplified model shows 2 equilibrium points 1 

equilibrium point the linearized system is a saddle point. The other equilibrium of the 

Lotka Volterra predator prey model corresponding to 1, 1 corresponds to a center, after 

linearizing. So, what is important is, that this particular equilibrium point is a center. We 

already saw that these arrows are suggesting like this.  
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If it were a linear system, then when we go close this is the periodic orbit, when we go 

close to this and another initial condition it may or may not be different periodic orbit the 



linearized system says so, but it need not mean for the original non-linear system also. 

For example, these are two different initial conditions they correspond to the same 

periodic orbit, but different initial conditions like this may correspond to different 

periodic orbits or might converge to the same periodic orbit. 

This is the subject that we will see in detail today. So, if all these initial conditions 

correspond to different periodic orbits then we will like to say that there is a continuum, 

continuum of periodic orbits. These periodic orbits are not isolated, but very close to 

each periodic orbit there is another periodic orbit, in a very close vicinity. Suppose this is 

a periodic orbit, the initial conditions starting form here correspond to periodic orbits 

also. In that sense there is continuum of periodic orbit. 
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So, it is a very well known important fact that for the particular Lotka Volterra model 

that we have taken for, let us go back here. For this particular Lotka Volterra predator 

prey model for constants a b c d we have 2 equilibrium points 0, 0 and 1, 1. When you 

assume a b c d equal to 1, but for a different point when a b c d are some positive 

constants possibly not equal to 1, there are 2 equilibrium points while the 0, 0 is a saddle 

point, the other equilibrium point is a center and more over for the non-linear system for 

this Lotka Volterra predator prey model, there is a continuum of periodic orbits. This 

particular fact for this particular model I knew these 2 models is a very important fact. 



One can modify this model suitably. So, that we have isolated periodic orbits. So, today 

we are going to see a different example where there are indeed isolate periodic orbits. So, 

let us use Poincare Bendixson criteria and the Bendixson criteria. 
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To check if there are periodic orbits, let us see the Bendixson criteria. What does this 

Bendixson criteria say, we will evaluate this particular quantity and check whether this is 

identically equal to 0 or not. If it is not identically equal to 0 only then we can go ahead 

and apply the Bendixson criteria. So, let us evaluate this particular quantity for our 

example. For our example f 1 of x was equal to minus x h plus x p times x h and f 2 of x 

is equal to x p minus x p times x h. 

So, this f 2 we could also call as f p and this is equal to f h f h denotes the rate of change 

of x h and f p denotes the rate of change of x p. So, let us evaluate del f h by del x h plus 

del f p by del x p, when we evaluate this we get derivative of this with respect to x h is 

equal to minus 1 plus x p plus derivative of this with respect to x p. We get this equal to 

1 minus x h. So, this is equal to x p minus x h. So, is this identically equal to 0, no it is 

not identically equal to 0. So, it is that is why we can go ahead and apply the Bendixson 

criteria. Let us now apply it and see x p minus x h sin of this quantity. 
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If the sign does not change over a region then Bendixson criteria says that if the sign of 

this particular quantity does not change on a region, then there are no periodic orbits 

contained inside that region. So, when is x p minus x h equal to 0 it is along this line. So, 

everywhere to the right of this line. This is x h this is x p to the right of this line this 

quantity is negative and above this line or to the left of this line this quantity is positive. 

So, the Bendixson criteria says that there cannot be a periodic orbit contained to the right 

of this line nor there can be a periodic orbit to the top of this line. It does not, this is the 

equilibrium point 1, 1. The Bendixson criteria does not rule out such a periodic orbit, that 

does not lie entirely in this region nor does it lie in this region. So, this is an important 

property to note, that the Bendixson criteria only says that can such a periodic orbit 

exists inside this region, no this is not possible. Can a periodic orbit lie entirely in this 

region where the sign of this is all positive, that is also not possible. However this 

particular periodic orbit could exist. So, Bendixson criteria is only a sufficient condition 

for non-existence of a periodic orbit lying entirely inside a region. Let us now check 

what the Bendixson criteria says for a linear system x dot is equal to A x forms the 

equilibrium point is 0, 0. 
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So, Bendixson criteria is applicable when for the planar case, that is when x has 2 

components at each time instant x of t has 2 components x 1 and x 2. So, suppose A was 

equal to made be we see a slide about this. So, for the Lotka Volterra predator prey 

model, we have already seen this before. We see another example let us see this 

particular case periodic orbit for A, that looks that is of this form. So, our A we have 

already assumed it is of this form. 

Now, we will do del f 1 by del x 1 plus del f 2 by del x 2. Notice that these 2 terms are 

nothing, but the diagonal entries of this matrix A. So, for this particular A, the diagonal 

entry is are both zeros. So, they add up to 0 also, they are identically equal to 0, no 

matter which x 1 x 2 you check this is going to be equal to 0. This particular quantity is 

expected to be independent of x 1 x 2 for linear systems. Why for linear systems, for 

linear time invariant systems these 4 entries are all independent of x.  

Hence you differentiate f 1 and f 2 f 1 with respect to x 1 f 2 with respect to x 2 which is 

nothing but just picking up these entries, picking the values at these 2 positions and they 

are going to be independent of x. So, for this particular A, we get this identically equal to 

0. So, do we say that Bendixson criteria is not applicable or do we say that there are no 

periodic orbits. Of course, we know that for this particular A, the Eigen values of A are 

equal to plus minus square root of 2 times A. So, if A is positive then the Eigen values 

are plus minus 2 minus of 2 times A. We will just verify this.  
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So, what is S I minus A S I minus A is equal to. So, determinant of S I minus A is equal 

to S square plus 2 A. So, Eigen values of the A matrix are nothing but the roots of the 

determinant. The roots are square root of minus 2 A plus minus. So, if A is positive, A 

greater than 0, then complex purely imaginary in fact. If the Eigen values are purely 

imaginary, then we know for a linear system there are periodic orbits. If A is less than 0 

then Eigen values are plus are real. One of them is greater than 0 other is less than 0, why 

because this if A is negative this quantity itself under the square root sign is positive. 

So, we can take the square root and one is positive and one is negative. So, for this case 

the Eigen values are here and for this case the Eigen values are here. Here how far from 

the origin depends on the value of A of course, but whether they are depending whether 

A is positive or negative affects whether the roots are purely imaginary or real. So, we 

know that for this case the equilibrium point is a center and there are periodic orbits. 

While for this case the equilibrium point is a saddle and there are no periodic orbits. So, 

the important case, when this is identically equal to 0 that particular case could 

correspond to either there are periodic orbits or there are no periodic orbits. This is just to 

see that the Bendixson criteria is unable to say anything when this is identically equal to 

0. That is precisely the reason that Bendixson criteria assume that this is not identically 

equal to 0 and then we start looking at whether the sign changes or not.  



(Refer Slide Time: 30:48) 

 

Let us take a case where for x dot is equal to A x. Let us check what is del f 1 by del x 1 

plus del f 2 and del x 2, what is the value of this. We will check that this is equal to 4 by 

calculation explicitly. So, x dot is equal to A x means 2 x 1 plus 3 x 2, that is a meaning 

of A acting on x and the second row of A will be used to multiply with x to get minus 3 x 

1 plus 2 x 2. When we do this, then we differentiate the first component of x dot with 

respect to x 1 and we get this equal to 2. We are picking at just this entry and the second 

component of x dot it is f 2 of x with respect to x 2 that doing this. 

If you notice that derivative of this with respect to x is just this component this first one 

by one entry and the derivative of this with respect to x 2 is just this entry. That is the 

reason that I said that doing this particular to evaluate this quantity is nothing but to add 

the diagonal entries for a linear time invariant system. So, to get this equal to 4, this is 

greater than 0 and it is independent of x 1 x 2. For linear systems we expect that this will 

not depend on x 1 x 2 and it is indeed independent of x 1 x 2. Since, it is greater than 0 

for all x 1 x 2 we get that no periodic orbits, no periodic orbits in R 2 in the entire state 

space in the entire plane there are no periodic conflicts. 

So, for linear systems we can check that, as long as the diagonal entries do not add up to 

0 this quantity will not be identically 0. Then we can see that periodic orbits are ruled 

out. When would periodic orbits be possible, if the diagonal entries add up to 0. If the 

diagonal entries add up to 0 we cannot say that the periodic orbits exists because of 



Bendixson criteria is silent for that case. It does not say anything when the diagonal 

entries add up to 0 identically. We only saw that it is possible that there are periodic 

orbits, it is also possible that periodic orbits do not exists when the diagonal entries add 

up to 0. 

So, this is already the complication for linear system. So, for the Lotka Volterra predator 

prey model to show that there are periodic orbits is a difficult thing and it is an important 

research topic after which it has been concluded that, there is a continuum of periodic 

orbits for the particular model that we studied. Now, let us take some other examples of 

dynamical systems and check whether there are periodic orbits or not. 
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So, consider this example. So, in which x 1 dot equal to x 2 plus x 1 times x 2 square x 2 

dot is equal to minus x 2 plus x 2 times x 1 square. So, we differentiate the first in order 

to use Bendixson criteria, this particular quantity that we were to evaluate is nothing but 

divergence of f, divergence of f is also denoted as dot product of this operator with f. So, 

when we evaluate this we get x 2 square here. So, there is something wrong here, this x 2 

should have been x 1. So, please note then there is a small mistake here. 

If we have x 1 here then, we get this. Now, we have that this is always positive after you 

substitute x 1 here you get that this is always positive. So, if the Lotka this is very similar 

to the Lotka Volterra predator prey model after we have x 1 here this is very similar to 

the Lotka Volterra predator prey model. 



If it had depended on not just the product of x 1 and x 2, but some higher order power of 

1 of the species then it is possible to show that the Bendixson criteria says that there are 

no periodic orbits. 
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Why because divergence of f is always positive except at the equilibrium point. So, 

hence by Bendixson criteria there are no periodic orbits. Now, consider this example also 

has we should have a modification here we should have x 1 here in place of in second 

equation x dot equal to minus x 2 minus x 2 times x 1 square. 
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So, here we see that this changes sign. This only means that inside the region where it 

has the same sign, there the rest of the periodic orbit contain inside the region. This is an 

example that we have already seen.  
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Now, we will study an important case where we have an epsilon here along the diagonal 

entries. So, for this particular A in which we have epsilon along the diagonal, what can 

we say about the equilibrium point. So, when epsilon is greater than 0, then the 

equilibrium point 0, 0 is unstable focus. This is something we have already seen, what 

happens when epsilon is less than 0. 
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When epsilon is less than 0 Eigen values of this matrix are epsilon plus minus 2 j. So, 

epsilon greater than 0 implies unstable. Unstable mode or focus it is unstable focus 

because the measuring part is non 0 and for epsilon less than 0 we have a stable focus. 

So, this is what we will say that as A, if this epsilon this is our epsilon value. This is let 

us say radius distance of the point from the origin. So, if epsilon is some positive 

quantity epsilon it is not dependent on x 1 x 2. 

So, it is just the same positive number, positive means unstable focus. If it is some same 

fixed negative number then it is stable. So, this is unstable and this is a stable focus. So, 

how about modifying this epsilon as a function of radius. So, that we have trajectories 

that converge to a periodic orbit. So, this is what we will see in detail. So, what if epsilon 

changes it sign depends on the distance from the origin and changes it sign. 
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So, consider this differential equation in which along the diagonal we have put 25 minus 

x 1 square minus x 2 square along the diagonal and off diagonal term we keep constant 

does not depend with change with radius. This is nothing but writing it in this form in 

which along the diagonal we have some function that depends on the radius. It depends 

on the distance of the origin. Now, we consider the case when r is equal to 5. For that 

case we have epsilon of r is equal to 0. 

We can consider the case when r is less than 5. For r less than 5 the diagonal entries are 

positive and when r is greater than 5 the diagonal entry is r negative or both negative. We 

cannot speak of Eigen values of this the Eigen of this matrix itself depends on x 1 and x 

2. We speak of Eigen values of only constant matrices. So, it appears like if we make this 

radius, if we make this diagonal entry depend on radius. Then we will have trajectory 

either coming towards origin or going away from the origin depending on whether we 

are inside a particular circle. Whether we are inside the circle of radius 5 or outside or on 

the circle itself we are going to be remaining on the circle. 
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So, let us check this is a circle of radius 5. So, when x 1 is equal to 0. So, this is radius 5 

circles when x 1 is equal to 0 and x 2 is equal to 5 the time x 1 dot x 1 equal to 0. 
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The orientations, we start again. How do we get this orientation we expect that for radius 

equal to 5 we have periodic orbit, why is it that we have a periodic orbit. You put r equal 

to 5 and you see that the matrix A then it looks just as if so, check that x 1 of t x 2 of t 

equal to 5 times along the circle x 1 x 2 are like cos and sin or function of what 

frequency t of the cos t and sin t why because omega is equal to 1. 



 For this particular A the solutions are x 1 x 2 are equal to cos and sin, to the sin of the 

quantities and of radius 5 and why cos t sin t. In general it would have been cos omega t 

sin omega t and the omega is equal to 1 because of diagonal entries are equal to 1. Now, 

we are going to decide why this clock wise and not anti-clock wise that we can check by 

taking some sample points. So, consider this point, this is x 1 component is equal to 0 

and x 2 equal to 5. So, consider the point 0, 5 and 0, 5 when this acts on 0, 5 when the A 

acts on this matrix then we get that this is equal to 5, 0. 

 So, the x 1 component is increasing at this particular point. That is why it is in this 

direction. So, by using the same argument we can decide where cos of t should come 

where sin of t should come and whether there should be a negative sin to one of these. 

Now, the focus of this particular topic is, to see what happens to the radius larger than 5, 

for radius larger than 5 and for radius smaller than 5. So, for radius larger than 5 there is 

the off diagonal term indeed cause some rotation, but the diagonal entries cause a 

decrease in the radius that is why it is coming inwards. 

So, we have these arrows coming inwards. For the circles inside the circle of radius 5 

that is for circles of radius less than 5 there is some rotation caused because of the off 

diagonal terms, but the diagonal entries themselves are positive which is causing this 

radius to grow as a function of time. 

This is an important property that we will exploit to see that, all initial conditions except 

the equilibrium point 0, 0 are all converging to this special periodic orbit, which periodic 

orbit the periodic orbit of radius equal to 5. So, let us check, let us use Poincare 

Bendixson criteria and check that there indeed exists a periodic orbit. 
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We are not able to say that this is a center kind of arguments because we can use that 

only for the linear system by linearizing at an equilibrium point. 
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So, take M to be equal to the set of all x 1, x 2, such that x 1 square plus x 2 square lies 

in the interval 4 to 6, closed interval. What is our set M, let me write again set M is a set 

of all x 1, x 2 points such that x 1 square plus x 2 square is less than or equal to 6 and x 1 

square plus x 2 square equal to 4. In other words this is a circle, supposed to be circle. 

This is another circle this is a circle of radius 4, this is a circle of radius 6. All the points 



in this ring these are all the points whose distance from the origin is greater than or equal 

to 4 and less than or equal to 6 also, this and this. 

So, we will now check that this particular set M is positively invariant and has no 

equilibrium points inside it and it is compact. The compactness is satisfied because this is 

the compact set and it is the close set because these inequalities are not strict inequalities 

they are not strict in equalities, but non strict inequalities because of that fact this is the 

close set and it is a bounded set because we see that all the points are at most distance 

fixed away from the origin hence it is a bounded set. 

So, in order to use Poincare Bendixson criteria we are going to check that. This set M is 

a positively invariant set also, when would Poincare Bendixson criteria be applicable, the 

set time should be a close and bounded set should be positively invariant and there 

should be no equilibrium points inside it or at most 1 equilibrium point, which is either 

an unstable node or an unstable focus. So, let us check what is the property of this 

particular M? 
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We show that M is positively invariant. So, how can we show that this set M is positively 

invariant. So, what we will do is, we will take the circle of radius 6 and we will check 

that this circle of radius 6 the outward, the vector that is perpendicular to this boundary is 

outward like this. This is a vector we will check what is the inner product of this vector 

with the vector field. If at every point along the boundary this vector field is directed 



inwards. It means that all the points are trajectories are coming inwards. What are these 

vectors, this is the unit vector perpendicular to the boundary and directed outside the 

region. The region is inside, this as far as the boundary 6 is concerned as well as this 

boundary of radius 6 circle of radius 6 is concerned. This is a vector that is directed 

outwards. So, let us check what is this vector it is nothing but x 1 x 2 vector, it is inner 

product with f of x at that point, f of x at each point again a vector of dimension 2. We 

will check whether this inner product is positive or negative. If this inner product is 

negative on circle of radius 6, it means that along the circle all trajectories are going 

inwards, why is it inwards because this is a vector outward and this is the f of x. 

If this particular angle is this dot product being negative mean that the angle between 2 

vectors is an obtuse angle, why because what is the dot product of w dot product with v. 

This is equal to w norm times v norm times cos of the angel between w and v. So, if this 

quantity is negative, it means these 2 quantities can be negative. So, this cos theta is 

negative and cos theta is negative only for theta beyond 90 degrees which means that this 

angle between these 2 vectors is greater than 90 degrees. 

Since, this vector is a vector that is directed outside the boundary this angel being obtuse 

which means that f is directed inwards. So, let us check whether this quantity is negative. 

So, x 1 x 2 times f of x, f of x is what we can see from this particular thing f 1 of x is first 

rho times x 1 x 2. So, this is nothing, but x 1 times twenty 5 minus x 1 square minus x 2 

square plus x 2. This is f 1 of x and f 2 of x is minus x 1 plus x 2 times 25 times x 1 

square minus x 2 square. So, when we do the dot product of this that is nothing but this 

row vector times this column vector. 
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When we evaluate this let us see what we get. So, x 1 square times 25 minus x 1 square 

minus x 2 square plus x 1 x 2. This is just this quantity here that I have written is just x 1 

times the first component here plus x 2 times minus x 1 plus x 2 square times 25 minus x 

1 square minus x 2 square. So, x 1 x 2 minus x 1 x 2 these both cancel. So, we get x 1 

square plus x 2 square in common 25 minus x 1 square plus x 2 square. 

Now, note that we are going to evaluate this along the circle of radius 6. So, we get 6 

square times 25 minus 36. So, this is some quantity that is less than 0, that is all we 

needed. So, this proves that along the circle of radius 6 the arrow is directed in wards. 

Now, let us check what happens along the inner circle. This is a circle of radius 4 and 

along this boundary this is a unit normal and the f itself, there are 2 vectors at each point 

along the boundary. 

One vector is the direction of f of x at that point and another vector is the direction of the 

unit normal and in this case, this vector says that it is directed in wards, why because M 

lies to the outside of this region, outside of this circle. M was the set of all points of 

radius greater than or equal to 4 and less than or equal to 6. Since, we are taking a circle 

of radius 4 the circle region is to the inside. So, this vector is directed inwards of the 

region. So, at each point what is this vector it is this x 1 x 2 again. The direction of f at 

that point is f 1 x f 2 of x. Now, because this vector is a vector directed towards inside 



the region along the boundary, this particular quantity being greater than 0 means that the 

angle is acute angle. 

The angel between the 2 vectors is less than 90 degrees and then it would mean that the 

trajectories are all coming inwards into the region. So, that are all these trajectories that 

are coming into the region as well as the boundary is concerned. As well as the boundary 

is concerned the circle of radius 4. So, by the same argument all we have to do is written 

a substitute x 1 square plus x 2 square is equal to 4 square and not 6 square. This quantity 

becomes 4 square when we are looking at the circle of radius 4 and this quantity 

becomes 25 minus 16 which is now positive. So, this is greater than zero on circle of 

radius 4. So, this proves that the set M is positively invariant. How have we shown that 

this set is positively invariant.  
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We have said that this set M has boundary consisting of 2 circles. So, this is one 

boundary circle 4, the other boundary is circle of radius 6 and the region is like this. This 

is a region M all along the outer circle the trajectories are coming inwards into the 

region. This is what we checked because the angle was obtuse there. All along the inner 

boundary also the trajectories are coming inwards. So, check that as long as the region M 

is defined as set of all points where the radius of the x 1 square plus x 2 square is greater 

than or equal to say 4.9 and less than or equal to 5.1. 



It will still be positively invariant, that is only property that we used. Such an M will be 

positively invariant. Hence it will contain a periodic orbit. Is there an equilibrium point 

inside this region, that is another thing we are supposed to check before we use the 

Poincare Bendixson criteria this is the last thing we will check before today’s lecture 

ends. 
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So, let us put f 1 of x equal to 0 and f 2 of x equal to 0. So, f 1 of x we had evaluated and 

we had got that equal to what is shown here is f 1 of x and this is f 2 of x. We have to 

substitute both equal to 0 and find the values of x 1 x 2 such that both these functions are 

equal to 0 those x 1 x 2 values will comprise the equilibrium points. 

So, one can check that the only equilibrium point for this is x 1 x 2 equal to 0, 0. In other 

words if M is a set of all points of distance greater than or equal to 0. If the radius is 

strictly greater than 0 then M will not have any equilibrium points that is why we can. 

So, this implies that x 1, x 2 equal to 0, 0 is a only equilibrium point. The equilibrium 

point itself is stable or unstable one can check, let this be as a home work that this 

equilibrium point is unstable why because at this equilibrium point we ensure that the 

diagonal entries of this particular matrix, of which matrix. Let us go back to the slide, of 

this particular matrix for x one equal to 0 and x 2 equal to 0. 
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This particular matrix has diagonal entries positive. Hence the equilibrium point is 

unstable focus. So, this allows us to use Poincare Bendixson criteria. Since the region 

that we have considered set of all points of radius greater than 4 and less than 6 greater 

than or equal to 4 or less than or equal to 6 is compact, is positively invariant and has no 

equilibrium point. Hence it is a periodic point, by making this set M smaller and smaller 

such that it just contains the circle of radius 5. 

So, we can take the region of M to be set of all points of distance slightly less than 5 and 

slightly more than 5. It will still the same argument will hold and there will be a periodic 

orbit. This shows that, there is there is no continuum of periodic orbits here that is an 

isolated periodic orbit for this particular example. We will consider modifying this 

example obtain the Vander Paul oscillator as a special case.  

Thank you.  


