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Hello everyone, so this week so far, we considered the problem of mobile robot localization, 

we looked at the localization taxonomy. We also looked at the Markov localization. And we 

saw a little bit on how to do this localization, given a feature base map, most of the 

algorithms are looking at grid based map.  

Now, for the next lecture, we are going to look at path planning strategies for robot motion. 

So, what does this path planning strategies mean? The path planning strategies means given a 

map, and a localization algorithm, so figure out a path, that is feasible, so that I can get from 

some starting location, let us say here, to some ending location, which is say in the top corner 

of the robot, there is some obstacle here in the middle. So, all of this is known to me in the 

map. And my goal is to find a path, a feasible path, starting from a given location, and going 

all the way to the destination, which here is in the top corner.  

So here, we are going to assume that the map is given to us, and whatever discussion I am 

doing will be in the context of location-based map, like a grid base map or anything. But then 

I could think of other kinds of strategies as well. But the thing with path planning is, it is 

good to know the open space as well as the occupied space in the in the world, so in the map, 

so that makes it easier for me to plan a path, a feasible path would always take my robot 



through open space, you must have seen this in sea space, how we look at avoiding collisions 

and things like that. So, feasible paths will do that.  

So, I am going to look at strategies for searching for feasible paths. It happens that the 

algorithms that we will look at all actually look at optimal paths. Basically, they return the 

shortest path to go from one location to another. And you can think of other algorithms 

wherein more complex environments, we are looking at all possible pathways are not really 

that feasible, even examining a good fraction of the pathways are not feasible.  

There are more probabilistic path planning algorithms, which with high probability give you 

a good path. But they will return the feasible path. So those are not, those are for the future. 

So, for things that you could look at later.  
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So, we will start off with a very simple path planning algorithm called a breadth-first search. 

Breadth-first search is an algorithm that was originally designed for traversing any kind of 

graph data structure, starting from a node. So, in our case, the graph data comes from the 

connectivity in the map. Suppose this is like my grid map. And let us say that each one of 

these squares is a grid. So, I can say that each grid cell, is connected to 8 of its neighbors. So, 

you could think of this as a graph, where each node has 8 neighbors.  

So, some nodes will have only 3 neighbors, some will have fewer, so this one has only 5 

neighbors. This node has only 5 neighbors, and this node has only 3. And so, nodes that are 

here actually have neighbors that are not reachable, so like that, so you can think of this free 

space here as a graph. And so, breadth-first search allows you to search for a path on this 



graph, so you can think of that each node has 8 neighbors, mostly. And then I have one node, 

which is the start node for me, which is here, and one node that is the end node, which is 

there, and I am going to do breadth-first search. Basically, I am going to search this graph till 

I get to the code.  

So, here is how breadth-first search will operate. So, given it starts vertex v, and a graph, G, 

so in this case, the graph would be a representation of the free space of the map. So basically, 

it starts with v, it is, it puts v into some Q, so it is some kind of data structure Q. And as long 

as there are nodes there are in Q. As long as Q is not empty, it is going to take the first 

element from the Q, that is what the dQ means, it will take the first element and if v is the 

goal, then say return hey, I found the goal. But if v is not the goal, then we look at all edges 

that go out of V.  

So, what you mean by all edges had got of v? So, in this case, it will be all the 9, all the 8 

neighbors, so take a node, so it will be all the 8 neighbors that are there for that node v. For 

all the edges that go to v, then if w has, so you call this vertex w, so if w is already not 

labeled as discovered, then label was discovered, say hey, now I have seen w, if it is already 

been seen, ignore it. But if it is not been seen before, then I will say, now I have seen w, and I 

maintain this parent data structure, so that I can actually recover the path and the once I 

reached the goal. And then I will say that the parent of w was v.  

So, what does this mean? That w was visited for the first time, when I expanded the graph 

from v. Now, I put w in the Q, and I keep going. So, when will Q be empty, either, so when 

will this loop end? Basically, the loop will end, if I find the goal, or I have explored all the 

vertices in the graph and there are no more vertices for me to see. We explored all the 

vertices in the graph, and there are no more vertices for me to see.  

So, I will be saying vertex and node, exchangeably, but to denote a cell in the graph. So, each 

cell here, each cell in the free space becomes a node in the graph. And if there are the 

adjacent cells to that are connected by an edge in the graph, so I will say sometimes node, I 

will say vertex, it is a common terminology in computer science, I will go back and forth. 
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So, let us look at pictorially, how this is going to look like. So, here is my graph. So, you can 

think of this as a place where each cell has either 2 or 3 neighbors, 1, 2 or 3 neighbors. So, 

this is a map in which each cell has 1, 2 or 3 neighbors, I am starting from the cell, marked 

green, so that is my start node. Then, what I do is I first visit the node to the right and then I 

mark that as visited, then I will add these 2 nodes to the Q.  

So, first, when I visit this, I will add this and this to the Q. Let me pick up. So, when I first 

visit this node, I am going to put this in the Q and this in the Q both. And I am going to put 

this in the Q and this in the Q, these 2 nodes, go into the Q. Then what I do, I look at the first 

node in the Q, which is this so I will I will pick up. So, I will pick up this node in the Q, as 

the first node in the Q, and then I will add this node, and this node to the Q.  

But remember, this is already there in the Q. So, that is the number 1, so this will be number 

1 in the Q. This will be 2, this will be 3, and this will be 3. So, I have 1, I have 2 and I have 3. 

So, what will be the next node that I will take up for expansion? 
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Exactly, so this is the node that I marked 1, now what will happen in the Q, I will have this is 

1, this will be 2, and that will be 3 in the Q. So, the next node I will take up is the 1 on the 

bottom left, so the node that I consider, will be that. And now I do not add anything more to 

the Q. So, my Q will still have this as 1. And that as 2, I will continue with the 1, and that is 

not going to change much.  
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And then I will go to the next one. Now, what happens is, the Q could have become empty. 

But I am going to add these two to the Q now, and therefore I will continue, I will finish that. 

And if any of these had been the goal, I would have stopped much before. So, here is just an 

illustration for how breadth-first search will look at every node in the graph. And if there is a 

goal somewhere in between before this, I will find it and it is guaranteed.  

As long as the edges do not have any weight, as long as the edges are all having the same 

weight, either they do not have any weight or is another way of saying is they all have the 

same weight, then I am guaranteed to get to the, get the shortest path to the goal, guaranteed 

to get the shortest path to the goal. So, how is that? So, suppose you remember, whenever I 

mark a node as visited, whenever I mark a node in green, I will add a parent to that node.  



So, what will be the parent of this node? The parent of this node is that. And, what will be the 

parent of that node? That is that. Suppose I want to reach from here to here. Now, what I 

want to look at is I will go to the target node, I will keep looking at the parent of the parent of 

the parent of the node until I reached the source node. So, that is a way I will reconstruct the 

path.  

Suppose I want the path from here, to here from here, so I will keep going and from this 1, I 

look at the parent which will be this and for this, I look at the parent which will be this, for 

this I look at the parent, that is a source node that I wanted. So, given of source node, I can 

find the shortest path to any target node by just following the parent marking that ended in 

my graph that ended in my data structure. So, that is basically how this algorithm will 

operate.  
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And so, it looks at every vertex and every edge at least once and does not look at it more than 

once, every vertex it looks at only once and every edge it looks at only once. And therefore, 

the time complexity is order of plus V plus E, and it needs to store the pointers and other 

things, the parent pointer and other things for every vertex like whether it has been visited 

and also the parents. So therefore, it requires storage of the order of V.  

And, so BFS is a complete method, so a method is described as complete. If it is guaranteed 

to find a goal state, if the path exists, if there is a path from the start state to the goal state, 

then a complete algorithm is always guaranteed to find it. And breadth-first search is 

complete. But an equal algorithm called depth-first search, where I just keep going. So, if I 



find a node has a child, I will just go to the child first. So, I will not go to the other nodes in 

the Q. So, if the node has a child, I will keep going to the child. And then after I finish with 

the child, I will come back, and I will see if there is another child to the node.  

If you think of the graph this way, so instead of, so if you think of breadth-fist search, it went 

in this order, depth-first search would go in this order. So, this node will be looked at, will be 

marked as visited only after this node is completed. In fact, this node will be marked as 

visited only after this node is completed. So, depth-first search could get stuck exploring a 

wrong path. If it is arbitrarily deep, when the path is infinitely long, then it will never come 

back and find a goal that is here.  

But breadth-first search will find a goal that it is a finite depth, even if the graph is infinitely 

large. That exists a path breadth-first search will find it. So, that is why we, what we mean by 

saying breadth-first search is a complete algorithm. But the problem in breadth-first search is 

it expands a lot of nodes, it visits a lot of nodes looks at neighbors of a lot of nodes, before it 

moves on to the next, it expands a lot of nodes, for every node, it expands all its children, it 

looks at all the children puts them in the Q before it moves on to the next level.  

And so, for every level, it is going to expand the level children of all the nodes at the previous 

level, even if it is very clear that it is not going to give a short path. So, this is a little tricky, 

especially when I start having weights on the edges, because all edges are not the same 

anymore. And I really like to follow edges that are more likely to give me optimal paths and 

keep the edges that are less likely to give me optimal paths for later. So, for this kind of 

weighted graphs, at where the edges have some cost. So, people look at other algorithms. 
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So, the most popular of this is something called the Dijkstra’s algorithm. So, the Dijkstra’s 

algorithm is essentially, it finds the shortest path between any 2 vertices a and b in a graph. 

And this works on graphs that have weights, I mean from a, if you want to be more picky 

about it, it works when graphs have positive weights, and not negative weights. But then we 

are talking about path planning here, so paths have positive cost, they are not going to have 

negative cost for us.  

And therefore, Dijkstra’s algorithm works perfectly alright. And, so among all the vertices 

that I have not visited so far, Dijkstra’s picks the vertex with the lowest distance, and 

calculates the distance from that vertex to each of the unvisited neighbors of that vertex. And 

updates the neighbors in distance if it is smaller, so we will just see how it works.  



(Refer Slide Time: 14:56)   

 

So, let us look at the algorithm here, at any point of time we start off with full graph, and so 

we have the vertex at Q, which has to be examined, just like we had the Q earlier for BFS, we 

have the Q. And for every vertex, we start off by saying the distance from the source to that 

vertex is infinity, because I do not know, I have not found out the distance from the source to 

the vertex. So, it might as well be infinity.  

So, I am just putting it at a very large distance, infinity means a very large number. And of 

course, I cannot represent infinity itself, it means that probably the largest number that I can 

represent in my computer or whatever. And then I say that the previous node in the graph, 

like we had the parent in BFS, the previous thing is now starts off with undefined because I 

do not know how to reach to B.  

And, now I put all the vertices in Q, so I need all the vertices in Q. And then at the end of it, 

the distance to the source is 0, because I know how to get to the source, I am starting there. 

And then just like we had in BFS, I will say with Q is not empty, so, I will pick the vertex in 

Q that has the minimum distance u. Remember what is distance, the distance u is the distance 

of the vertex u from the source.  

How much, what is the cost of the path, starting from source to get to u is what I mark as 

distance u, now notice that at any point in the algorithm, the distance u might not be the 

correct shortest distance, but at the end of the algorithm, the distance u will be the shortest 

distance from the source. So, now I, so what do I find now, first, I pick the u that has the 



shortest distance so far, that I have estimated from the source, and I will take the u and 

examine this u, now u is going to become visited.  

So, what I will do is? I will take the u from Q, and for each neighbor of u, so I look at how far 

I have come from the source to reach u, and how much more I have to go to reach v from u. 

So, I will compute that. So, I call that as the current alternate distance. If the alternate 

distance that I have computed is already less than the distance I already have stored for v, 

remember I start off with infinity.  

But it is possible that from some other u prime, I would have visited v already from some 

other u prime, I could have found out a shorter path than infinity to v. But now what is going 

to happen is, if this alternate length I computed is shorter than the original length that I had 

for v, original distance I had for v, then I will change that. I will also change the parent of v to 

u, because this is the one that gives me the shortest distance. And then finally, after this 

algorithm completes, I will return distance and that gives me the shortest path length from 

every, from the source node to every vertex in the graph, that is what distance gives me.  

And what is previous gives me? For every node in the graph, previous tells me what is the 

previous node in the shortest path from the source to that node. Suppose I want to look at 

previous of u, previous of u will tell me, what is the shortest path, I mean, what is the node 

just before u in the shortest path from the source to u? So, that is basically what these things 

are. So again, this little confusing.  
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So, let us look at it in a in a pictorial form. So, I start off with a as my source, so the vertices 

are labeled 1, 2, 3, 4, 6. And I start with 1 as my source vertex, and 5 as my destination 

vertex, number I was trying to get from a to b, so 1 is my source, 5 is my destination that I 

really like to get. And, if I can run it on the whole graph, the Dijkstra’s actually gives me, it is 

called the single source shortest path problem. So, I start off from 1, it will give me the 

shortest path to all the vertices, if I run the algorithm completely.  

And remember, I have the full graph, so these numbers, right now that you see are the edge 

weights. So, 7 here means, to go from 1 to 2, I have a weight of 7, that means I have to spend 

7 units, whatever it is, I have to spend 7 units to go from 1 to 2. And likewise, to go from 2 to 

4, I have spent 15 units. So, I really like to get to 5 in the shortest cost possible. And it is not 

immediately just looking at it in a glance, it is not clear what is the shortest path. So, we have 

to do some computation.  
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So, now I start off with 1. And, then what I do is? I look at the neighbors, so what are the 

neighbors 2, 3 and 6. So, I will update the distance of 2 to 7, I will update the distance of 3 to 

9. And, I will update the distance of 6 to 14, because that is the path cost from going from 

here to there. And the previous cost was infinity, therefore, I can replace it. And for all of this 

2, 3 and 6, I will say the previous node is, the previous will be 1.  

Now, which is the node I should be looking at next? The 1 that has the least cost so far, so 

which will be 2, So I look at 2 next, then I look at the distance from 2 to 3, that is 10. So, the 

total here is 7 plus 10. So, the total to get to 3 from 2 through 2 is 17. So, 17 is more than 9, 



therefore I will keep the 9. So, the previous of 3 is still 1, the previous of 2 is 1, but I will 

keep that distance here as 9, and then I look at next neighbor of 2, I look at 4, so I have a 7 

here, then I have a 15 here.  

So, the distance of 4 is going to become 22. And the previous of 4 will be 2. Remember that, 

so previous of 2, 3 and 6 are all still 1, the previous of 4 is going to become 2. So now, the 

distance of 4 is 22, which is 7 plus 15, great. Now, I am done with 2. 

(Refer Slide Time: 21:40)  

 

So, what is the next node I should consider? 3, because 2 has a cost of 22, 3 has a distance of 

9 and 6 has a distance of 14. So next node, I will consider is 3. So, 1 and 2 are already been 

considered. So, I will already complete it, so I will not look at 1 and 2, I look at only 4 as a 

possibility. So, remember 4 has a distance of 22 already. Now, if I come to 4 through 3, so I 

will have a distance of 9 plus 11, which is 20, which is less than 22. Therefore, I will replace 

the distance of 4 as 20.  

And, what are the change I will make? I will, so previous of 4, earlier was 2, now previous of 

4 will become 3. So previous of 2, 3, and 6 are all 1. And previous of 4 was 2 earlier now it 

will become 3, because that is the one that I have used for getting that 20 computation. Next, 

what will I do I look at the neighbor 6. So, what do you think is going to happen?  
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So, for 6, it is 9 plus 2, which is, 11. And earlier, we had a distance of 14. Therefore, I will 

replace that for 6 as well. So, I will make it 11. And not only that, the previous of 6 from 1 

will now become 3, the turns out that getting from 1 to 6 through 3 is shorter than taking the 

path directly from 1 to 6, whatever could be the reason. So, there could be slightly some 

obstacles here. So, where I have to spend more energy to get through, while going, from 

going by a 1 by going by a 3, might be a easier path for the robot to move, so whatever 

reason.  

So, it is just an arbitrary graph here. So, I am not assuming any kind of triangle inequality or 

anything to hold, that could potentially be like a small ramp here, which might actually take 

more energy for me to consume while going through 3 might avoid that ramp. So, now 3 is 

done. Which is the node I should look at next, which is 6. And So, the neighbor of 6 that I 

will consider is 5, and because other neighbors are 6 are all done.  

So, when you look at the neighbor of 6, so going from through 6 to 5, so 6 already has a 

distance of 11, which I do not have to go back in the past and examine I already know how 

much distance I have to travel to get to 6, so it is 11. And I have traveled a further 9 to get to 

5. So, the total distance to get to 5 is 20.  
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So, 6 is done. And we are actually done completely, because the other node I have to look at 

this 20 is 4, other node is 5, but 5 is what I am interested in. So, I have reached 5. And there 

is no way that I can get to 2, I mean, I can get 2 for better than 20 because getting to 5 already 

needs 20 and vice versa, like I cannot get a cost of 20 better than 20 to reach file because to 

reach 4 itself, I need 20. Now this is done. And, so what is the best path to get to 5?  

Remember that my parent of 5, or the previous of 5 is going to be 6 because that is the one 

that I used here. So, from 5 I will trace the path back. The previous of 5 is 6, previous of 6 is 

3, previous of 3 is 1. So, the path is 1, 3, 6, 5 is the shortest path to reach 5. And likewise, 1, 

3, 4 is the shortest path to reach 4, and others are directly connected to 1.  

So, have I basically computed the shortest path to reach every one of the nodes here, in the 

graph. But then I do not have to look at all the nodes in the graph, if I had a specific 

destination in mind, if 5 was my destination, and suppose there is a whole graph out here, I 

do not have to look at it, because I have reached my destination. So, I do not have to examine 

any further, neighbors are 4, primarily because 4 has a cost of 20. Next, I do not have to 

examine anything further.  



(Refer Slide Time: 25:45)   

 

 

So, let us quickly look at illustration of this. So, I am waiting for the animation to restart, so 

that we can start from there. So, cut off all this part. So, notice that we started this corner, so 

then we start examining all these nodes. So, all the red ones are the ones that are done, and 

the blue ones are the ones that that are yet to be visited and then we continue here. And then 

when you hit the obstacle, you will see that all of these nodes or do not have any further 

neighbors to examine, so they are all being stopped.  

And then these are all having, the color coding is basically the distance, and so, the redder 

you are, the closer you are to the goal and greener, you are farther away, and then eventually 

you will reach the, you will reach the goal. So, this is essentially how the Dijkstra’s algorithm 

is going to work. In fact, here since the cost is all uniform, is very similar to A star search. 



But this is how the Dijkstra’s, since the costs are all uniform, it is very similar to breadth-first 

search. But in the case of uniform cost, the Dijkstra’s could potentially work very similar to 

breadth-first search.  

So, if you think about how long Dijkstra’s algorithm is going to take, if I am using only 

regular arrays to implement this, it is going to take order of V square, because every time I 

have to go through it to find out what is the, what is the minimum cost vertex, or minimum 

distance vertex every time so that I can expand, but I can be more efficient. If we use 

something called a min-heap, that is always going to return to me the minimum cost vertex 

with the small cost and the constant cost, in which case I can be more efficient here, so we do 

not have to really worry about analyzing the algorithm for full efficiency.  

And of course, the space complexity is still order of V, the same things that we stored earlier, 

you have to store now, whether you have visited a node and what is the previous node, so we 

still have to store that. So, the challenge with Dijkstra’s algorithm is that it always looks at 

how far you have come, so far. From the other hand, if I have knowledge about how far I 

have to go also, like some kind of an estimate of how much more distance I have to travel, 

maybe I can be a little bit more efficient in my search.  

So, the idea of being able to use this kind of rough estimates, guess, guesses as to how far 

more I have to go, and so on, so forth, or what are sometimes called as heuristics, is what we 

use in the next algorithm we look at, which is called A star search.  
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So, not only it looks at the cost of the path, so far, which is, which will store in a variable 

called g, but it also uses, what is called a heuristic to estimate the rest of the cost needed to 

reach your goal. So, this heuristic will call as h. And so, at any point of time, when I want to 

select a node, A star selects the node that has the smallest g of n plus h of n. Notice that when 

you start at the source, you have no, g of n is 0, h of n is the entire distance to the goal, When 

you are at the goal, h of n is 0, because you have reached the goal g of n is the distance from 

the source to the goal.  

At any point in between, you would have had some distance you have traveled to get there, 

which is very similar to what the Dijkstra’s algorithm has. But then you also have some guess 

for what is the rest of the distance you need to go. And, A star always uses both, it tries to 

select a node n, that minimizes g n plus h n. In Dijkstra’s, what did we do in some sense, we 

are picking a node that has the least g of n. Here, we look at g of n plus h of n and pick the 

node that has the least g of n plus h of n, and notice that the heuristic function is problems 

specific.  

There is nothing very generic, but I cannot just say here is a heuristic function that will work 

all the time, and the heuristic function is also goal specific sometimes, because if I change the 

goal from the top right corner to the top left corner of the room I might and I have to use a 

different heuristic, and we would like heuristic functions, which are called admissible. So, 

admissible is the, the key term here. So, we would like heuristic functions that are admissible.  

So, admissible functions are those that never overestimate the actual cost of getting to the 

goal. It should not say, if it is going to take you say 10 units effort to get to the goal, here 

heuristic, it is okay, if the heuristic says it takes 9 units, or even okay, if the heuristic says it 

takes 5 units, that the heuristic should never say it will take 12 units. If the true cost is 10, the 

heuristic should never say 12, it is okay, if the heuristics says 5. Because that means you will 

explore it anyway. Because you think it is better path than what it actually is. But if you think 

it is worse than what it actually is, there is a small possibility that you might never explore it.  

And therefore, you might not get a, the least cost path, might not get the optimal path to the 

goal. So, since you do not want to miss the optimal path to the goal, we assume that here 

heuristic is admissible. 
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So, let us look at the algorithm. The algorithm looks a little complex, but it is not it is very 

similar to what he had in the Dijkstra’s algorithm case, except that, instead of looking at the g 

score, which is essentially the distance from the start to the node, I look at the g score plus the 

h of the neighbor, like the g score of the neighbor plus the h of the neighbor, which is 

essentially their estimate of the distance to go, the h is initialized a priori which is something 

that is given to you, the function h is given to you as part of the algorithm specification.  

So, all you need to know is the start and the goal, and the whole graph that you are traversing. 

And the most of the paths are similar, so I start off with saying that all the distance is infinity. 

And then, I start off by saying all the f score is infinity, and then I say that all the f score has 

to have. So, the f score of the start state is the h, you remembered, I was telling you that the 

start is start state basically is all the distance to go. And the goal state is got 0 heuristic, but 

that comes from the thing.  

So, and I also start off with my g score for the start to be 0. Why is that? Because I mean, I 

am already there at the start state, so there is no g score, remember g is the distance to the 

node and h is the distance from the node to the goal. And then basically, we just keep 

updating the, we pick the node that has the least g score plus h score, we pick the node that 

has at least g score plus h score, and then use that for expanding our search.  
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So, let us look at this here how it is going to work. So, here is a simple graph. And I have 

given the h score for each node here in brackets, so h of A is 4, h of D is 4.5, this is 2, here is 

4. And here is 2, notice that this is essentially a overestimate, so if you think of this, so the 

cost is actually 5. So, the overestimate part we have to, we have to delete. So, we are given 

the h scores here in brackets, here. So, remember that the h is actually a under estimate, only 

then it is an admissible heuristic.  

And if you think about it, so the distance from D to the goal is actually 5, I think on the 

graph, and we do not know that yet. If I know what is the shortest path, it is easy, but then my 

heuristic says it is only 4.5, and likewise, the distance from A to the goal is certainly much 

larger than 4. But it is okay, because it is still an admissible heuristic, so and then these 

brown numbers that you see here are actual distances of these edges. These are the weights of 

the edges. And so, I start off at node, S. And I am going to compute the f score for both A and 

D.  

So, the g score for A is 1.5, and the h is 4, and likewise, the g score for B is 2 and the h is 4.5, 

so I will take the sum 1.5 plus 4 gives me 5.5 and 2 plus 4.5 gives me 6.5. And therefore, I 

am going to pick A as the next node to expand. Now, I will expand A. Now, what are the 

nodes that I have to consider? I have to look at B. What will be my g score for B.? The g 

score for B is 3.5. So, this is basically the g of A plus the distance from A to B, which is 3.5. 

And my h score of B is 2. So, the sum of these two is 5.5. So, my f score of B is 3.5 plus 2, 

which is 5.5. And remember, my f score of D was 2 plus 4.5. Therefore, it is still 6.5. So, that 

is a bad thing.  



Now, what I am going to do is, notice that my admissible heuristic on this path, it is lot lot 

lesser. So, I am just being more optimistic about the distance from A to the goal from B to the 

goal, while I am being more realistic, so this is the correct h score, this is the correct distance. 

And this is more or less correct and putting 5 to 4.5. So, the guys were more optimistic. I am 

exploring them first. But I eventually get to D as well. So, what I am going to do next is 

explore B.  

Now the two options that they have to consider are C and D. So, what is the g score for C is 

the g of B, which is 3.5, plus 3, so 6.5 is the g score for C. And the h score for C is 4. So, I 

because I am next to the goal, so I can always initialize it to the correct distance. Therefore, 

my f of C is 6.5, which is the g score plus 4, which is the h score gives me a total of 10.5. 

And my D was 6.5. So, I am going to finally expand my D. So, I am not expanding my C, I 

am going to finally expand my D, and therefore what do I get, my new competitors are E and 

C. C we already know is 10.5.  

What about E? E is the g score of D plus the distance which is 3, so 2 plus 3, which is 5, so g 

score of E is 5. And the h score of E is 2. So, the f score is 5 plus 2, which is 7. And, 

therefore I am going to expand E next, 7 versus 10.5. I am going to expand E next. And, so, 

E’s g score is 5, and the distance to G is 7, of course, the h score of G is 0. So, I get 7 and I 

have reached G, so now I will backtrace the parent node, remember, we had the parent. So, 

the parent for G was E, the parent for E was the parent for D was S.  

And therefore, that is my shortest path. It is a very simple example, so that we can see what is 

happening, and notice that we never expand at C. If I had done breadth-first, I would actually 

expand at C also before getting to G. But I never expand C. And also, the problem here is 

because my heuristic function was a little off, If it had been a little bit more clever about this 

heuristic, this heuristic of being for let us say, that means 7, which is more likely, already is 

even 7 is an underestimate, because the distance from A to G is 9.  

So, even if my heuristic had been 7, I would have gone down this path, because this path, my 

total distance itself is 7. And here, my h score, my f score would have been 8.5. So, I would 

not have expanded this whole path, because my heuristic was a little off, I ended up doing 

the, this path a lot, before I got down to the correct path to get to the goal.  
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So, we will see how this works in this particular example. Again, waiting for the start this 

time. So, here is the heuristic, I am using this the direct distance to the goal, like just draw a 

diagonal line, whatever is the shortest path to the goal, assuming there is no obstacle, you can 

see that when I started here, it directly expanded that line because this is the shortest path to 

the goal. And my heuristic says that, hey, this is going to take you to the goal very quickly. 

Therefore, I only expanded that path, and now after that, I have just expand this whole region 

behind obstacle.  

But once I got to a point, notice here now I am expanding the whole region that is blocked by 

the obstacle because it is still trying to go to the shortest path to the goal. Then once I reach a 

point where I get a direct line of sight to the goal, there is no obstacle here anymore. It will 



now only go through this path, that path stops and only this is expanded and then I finally get 

to the goal. And, this is the path to the goal.  

So, a large fraction, if you remember, in the Dijkstra’s, we had expanded almost up till here, 

in the extras, whereas we had expanded a region almost up till here. Before, we found the 

path shortest path to the goal. And in A star, we are finding it while a large number of nodes 

are still not expanded. So, it turns out that this is actually a reasonable heuristic to have. And 

quite often, that is what the heuristic that we will apply in the path planning problems. It is 

essentially the distance as the crow flies to the obstacle and to the, I mean to the target. And 

that will always be admissible heuristic.  

And the time complexity of A star really depends on the heuristic, how hard is the heuristic to 

compute. And, the point is, if b is the branching factor, branching factor is the number of 

neighbors that we typically on an average have. So, in our case, the number of neighbors was 

8, so the branching factor was 8. And the shortest path to the goal, let us say is 10 steps, If I 

am doing dumb breadth-first search, I will really be expanding something of the order of 8 

power 10, the huge number of nodes.  

But then if I am using A star, I can prune away a large fraction of those, because they are too 

far away on the from, by as measured by the heuristic, so anything that is going to take me 

farther away from the goal, I will ignore. And therefore, something like A star where the 

heuristic allows me to, kind of focus my search is a much more efficient way of finding 

paths. 

In fact, if you in practical algorithms, practical implementations A star and for most simple 

robot navigation problems, so these were the, these are the kind of the workhorses like BFS, 

A star and Dijkstra’s are the workhorse algorithms for path planning. But in more complex 

environments, people prefer what are called probabilistic path planning algorithms, where 

you do small amounts of sample of the world to figure out whether you are going the 

direction, and these return feasible paths and might be optimal, but they do not typically, do 

not guarantee optimality they return feasible paths, but they do so much more efficiently than 

something like A star or Dijkstra’s.  

So, we have looked at multiple topics here, but we have covered it, covered these topics that 

are very very high level. So, starting from the notion of state representations, and state 

estimation, (())(42:44) filtered with different variants of base filters, looking at measurement 



models, motion models, map building, localization and path planning. And we have again 

touched upon these topics just to give you a flavor of what are the various things that go into 

building good robotic systems, and this in conjunction with whatever else you have seen 

already in the course, should be should be enough to get you started, but no means sufficient 

for you to say that I know how to do robotics not.  

And move largely the way to way forward is to get your hands dirty. I mean, start building 

small robot models and try to play around with those. Thank you. 

 

 

 


