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Hello, everyone and welcome to the final week of lectures in the intro to robotics course. And 

as before, we will continue looking at the algorithm and computer science aspects of it. So, 

we have looked at, you know, what constitutes the notion of state, and then we looked at 

recursive state estimation, looked at motion models, we also looked at mapping problems, 

measurement models, and also looked at how to estimate maps that far.  
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So, this week, so we will first consider the problem of what is known as the mobile robot 

localization problem. That is, the question is, given that you have a map of the environment, a 

map, in this case, it looks like this. So, there is a lot of walls and a few doors in between, let 

us say you are given the map of the environment in some form, find what the pose of the 

robot is, relative to the map.  

So, we already looked at this environment before in one of the examples, we are just looking 

at it again, in the context of localization, and then the second set of lectures, we will examine 

what are called path planning strategies for robot locomotion. So, the idea of path planning is 

you are given a map.  

And you are given a desired location that you would like to reach, let us say is in the top 

corner. How would you find the efficient path at least how to find a feasible path to go from 

your start location to the end location? So, given the map, and your models, motion models, 



and measurement models, and so on, so forth, so under your localization strategy? How do 

you form a path from start to the road? So, that is the second question that we will look at in 

these sets of lectures.  
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To start off, so a large fraction of the localization algorithms, a majority of the localization 

algorithms are essentially an extension of what we have seen as the recursive state estimation 

problem. In fact, many of the localization algorithms are a version of the base filter algorithm 

that we already seen, just like we looked at the map estimation algorithm was a version of 

binary base.  

And many of these localization algorithms would also be versions of the base filter algorithm, 

we look at the very, very basic version of it. And for more, more complex versions of these 

algorithms, I leave you to study by yourself. That is not the goal of the course, the goal of the 

course is just to give you a very brief introduction to the variety of different problems that 

you will be solving algorithmically when you are working with robotics.  

So, we will, we will start off by looking at a taxonomy of the localization problems, some 

kind of a classification of the localization problems, what are the various dimensions under 

which these localization problems can be classified. So, in fact, these are specific problems 

themselves. So, and each algorithm would address these problems in a variety of different 

ways. And we will also point out how the mark of localization algorithm handle some of 

these problems.  



So, the first dimension is the initial knowledge that the robot may process relative to the 

localization problem. So, what does the robot know? And when it starts, so that that tells you 

what is it that you want to do? What are the, what are the challenges that you would face?  

And the second is the nature of the environment in which the robot is operating. And the third 

is whether the localization algorithm actually controls the robot, the motion of the robot or is 

it just passively observing what is happening and so these are the three major dimensions. 

And finally, you could also have, whether you are working with one robot or multiple robots 

also, is gives rise to some interesting challenges, so, we will see in a bit. 

(Refer Slide Time: 04:08) 

 

So, the first one is what we will call local versus global localization. So, local localization, 

that means that I already have some idea of where the robot is. And I would like to be more 

precise in my localization in that locality, I would like to get a more precise estimate of the 

pose. And I have some idea that what the initial poses, so basically, as the robot moves 

starting from the initial pose, I would like to be able to track it with as little error as possible.  

So, that is what the local localization essentially means. And it kind of manifests itself as the 

position tracking problem. So, in the position tracking problem, we are a little bit more 

aggressive. We assume that the initial position of the robot, the initial pose of the robot is 

completely known.  

And then what you do is, you accommodate the small noise in the robot motion and the 

sensors that you have, and continue to localise the robot, continue to update the position of 

the robot assuming that the initial process known. So, this is the position tracking problem. 



And as you can see, is very similar to the Gaussian filters and the Bayesian filters we looked 

at earlier.  

And you start off with, in fact, many of the examples we looked at, we assume that we did 

not know the initial position, we were like, add a probability of 0.5 for both the initial 

positions a robot could be being, but you could start by knowing the initial position, and then 

tracking this. And we assuming that the error is usually small, otherwise, the error is very 

large.  

Then you would have difficulty tracking the robot, you assume that the measurement error 

and the movement error are small. And, and since the uncertainty of the robot is essentially 

confined to a small region near the robots, true pose, because you assume that you know, the 

true pose, and the uncertainty is confined to the region near the robots true pose, you can in 

fact, these are cases where you can use a Kalman filter very effectively with a single 

Gaussian also, or even extended Kalman filter, you can use those efficiently with a single 

Gaussian, because you are not really interested in accommodating multiple hypotheses.  

But you are only interested in tracking this one true pose with small amounts of error 

rounding. And because the uncertainty is confined to a small region, this is called a local 

localization problem, or local problem. That makes sense, this is exactly the kind of situations 

which the Gaussian filters were or more most appropriate for this kind of position tracking 

problem.  
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So, the second class of localization problems are called Global localization problem here, I 

am going to assume that the initial pose of the robot is completely unknown, I just know that 

the robot is initially placed somewhere in its environment. But it does not know where it is. 

Or even if it knows, it might have multiple positions where the robot could start at.  

So, we do not know exactly where the robot is starting. And since this, a there could be 

multiple hypotheses that I would like to keep track of, and b the error could be anywhere, that 

my initial guess could actually be very off. So, we as we call this a global localization 

problem, because I do not have bound upper bound on what the error is, so I could be 

anywhere in this space.  

And these are the problems for which Gaussian a single Gaussian based filter would have 

problem and things like the particle filter are more appropriate. And, in fact this is a much 

more difficult problem than the position tracking problem and includes the position tracking 

problem as a special case, as you can see.  

So, the initial position of the robot is unknown. Yes, but it could be, you know, in one of few 

places, which could even be one, if it is in only one place to start off with, then that becomes 

a position tracking problem, but then, so this is the one way of handling this, of course, is to 

just set the prior probability that you have to something uniform across the entire space.  

But then uni model probability distributions tend to have difficulty handling such a large 

prior. And we have to look at things like particle distributions, particle filters. So, that is the 

global localization problem.  
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And there is another interesting variant of the global localization problem which we call as a 

kidnapped robot problem. So, the kidnapped robot problem is actually a while variant. So, in 

some sense, it is it just makes the problem very difficult. What you are saying is a guy while 

the robot is operating, even if it has finally managed to localise itself somehow, and knows 

where the true position is it can suddenly get quote unquote, kidnapped, so basically you turn 

off the sensors of the robot pick it up, and place it somewhere else.  

So, now what happens is the robot is thinking that it is somewhere else with a very, very high 

probability wherever it localise itself, because the robot was kidnapped and teleported to 

some other location. It does not know that that transition has happened. It is truly in a 

different part of the state space, but it continues to believe that it is where it was originally 

localising itself.  

So, it makes it so to accommodate for this possibility of the kidnapping, you have to assume 

it is a global localization problem. You cannot continue to do position tracking. So, at every 

point of time you should be able to, you know, arbitrarily reposition the robot to another part 

of the state space.  

Now, except in sci fi movies, why would anybody want to kidnap a robot? Kidnap robot 

problem is just a fancy way of saying that I could have, you know, arbitrary errors in a 

localization problem because of some unlucky sequence of noise measurements, or unlucky 

sequence of, you know, actuator failures that happen.  

And therefore, the algorithm falsely thinks that you are in a different part of the environment, 

but it continues to get new measurements that kind of contradicts its original localization. 

And therefore, we would have to somehow recover from that earlier erroneous estimation. Is 

it clear so when we say kidnapped robot problem not really, that the robot is being you know, 

blindfolded and kidnapped or anything like that.  

It is essentially a way of telling, testing whether the algorithm that you have, can recover 

from arbitrary errors, arbitrary global localization failures, instead of putting you in the one 

corridor in the third floor, it might put you in another corridor on the second floor of a 

building, or if you look at typical and office spaces, you might be thinking that you are next 

to somebody's cubicle, you might be next to a completely different part of the office.  

 



Because all the cubicles look the same. And sometimes when I go to IT offices, I get lost, so 

the robot can certainly get kidnapped. In some sense, it can, it can localise itself 

catastrophically, in a different part of the state space. And so the question is, can you 

recover? It is different from global localization? Because in global localization problem, I 

know, the robot knows that it does not know where it is.  

Because it is a belief distribution is fairly large. But this problem, the robot believes it knows 

where it is. The belief distribution could very well be a spike, could very well be a delta 

function in a particular location, the robot knows for sure, that is where it is. Now, if I put 

you in a different if I kidnap the robot, it is impossible for it to recover, because the belief has 

to have room for it to recover.  

So, one way of handling these kinds of kidnaped robot problems should be to you know, 

periodically, if you are using something like a particle filter, so periodically to you know, put 

particles randomly all over the workspace and then try to see if you can recover the true pose 

by doing this kind of smoothing of the probability distribution, smoothing of the belief 

distribution.  

So, that is something that you have to keep in mind that you should never have a if it is 

possible for you to have this kind of localization errors, global localization errors, then you 

should make sure that your belief estimation algorithm never becomes too certain. It always 

keeps the possibility open of having some unknown pose be the true one.  

So that is always the, that is the challenge in designing algorithms to accommodate for the 

kidnapped robot problem. So, moving on. So, this is one dimension, so this is how, whether 

you think you are, whether you know how much, whether you are in which part of the state 

space or whether you have to assume for a global localization.  
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The second direction is looking at static versus dynamic environment. So, what do I mean by 

that? Static environments are those where only the robot is moving, or none of the other 

quantities are changing, everything else in the environment is the same, the object is there, 

map is fixed, every object in the map is fixed, nothing moves.  

And only the position of the robot changes, these are static environments. And these are the, 

again, the kind of situation that we have been looking at so far in the ball in the motion 

model, in the sensor model as well as the map, the state estimation algorithms you have seen 

so far.  

On the other hand, you could have dynamic environments. So, dynamic environments are 

environments where objects other than the robot, could also have varying locations or varying 

configurations. Like these are configurations that change over time. And even here, there are 

two kinds of, there two kinds of changes that are that could happen.  

So, one or changes that are transient, you know, like, like I was, I do not know, if you 

remember the example I was giving you in the sensor noise model, I said sometimes the 

paper could just fly in front of the sensor and cause it to make a short reading. So, these are 

very transient noises, transient motion, and they do not really, you know, they do not really 

affect your localization, they do not really affect your localization. And you could just treat 

them as noise, so this is basically what we are saying here.  

So, changes they do not persist over time, they are very transient, they are there for a small 

time that is there and then again, it goes back on the floor. So, these are not of relevance to 



the localization problem, or of the to the path planning problem. And therefore, we can just 

treat these as noise, and then account for that in our model, account for that in our model.  

So, that is exactly what we did in the sensor model, we accounted for these kinds of transient 

movement or transient changes in the variables, and then just decided to treat them as noise 

that is where the short noise came in to play in the sense of model that we had. So, and 

similarly any kind of this kind of temporarily blocking the path of the robot could also be 

modelled as noise in the motion model, like I am trying to move, but then there might be a 

small small probability that I fail, the not because, just because my you know, wheel sleep or 

something like that, it could also be because somebody was just standing in front of me and 

that one, one second, and after that, they moved away.  

So, when it tried to move, there was a noise in the transition. What we are really interested in 

or, you know changes that persist over time. So, what do I mean by that? Suppose I move 

furniture, I take a table from somewhere and put it somewhere else. Now what happens, the 

table is something which will block the path of my robot. So in some sense, some pathway 

got opened up, because the table moved, but some other pathway got blocked, because the 

table went there.  

So, if I was trying to put myself on the map and say, go next to the table, now where I have to 

go becomes very different, because I have to localise myself with respect to the table. And 

then I have to go there and if I move the table around, then my whole localization problem 

becomes complex, something that I have to redo all over again, not things like doors, If a 

door is closed, it is one thing if a door is open, it is a completely different situation.  

And likewise, if there is a significant change in the lighting condition, or if people are there 

and people are standing, and then I have to either move around them or I have to localise with 

respect to people standing there, and then they might be, they might actually move to a 

different location in the environment, and so on, so forth.  

So, there are a few obstacles, few objects, whose positions are of interest to me, both in terms 

of the localization problem, and also in terms of planning a path. In such cases, we have to 

figure out a way to handle the handle these objects. So, there are multiple ways in which you 

can think of handling these objects. One thing is to actually make these objects locations, 

properties as part of the state, if you make this object, locations of properties are part of the 

state, then basically have to keep updating the state whenever these objects move. And every 



time when I want to estimate the new state, I also allow to check whether these objects have 

moved.  

So, in effect, it becomes like a mapping algorithm also, where I am looking at a feature based 

map where the features are assigned to these objects. So, I am also estimating the map while I 

am estimating my location, so this becomes a mapping problem as well. But another way to 

do it is to assume that there is an independent mechanism that is updating the map.  

So, at every point of time, when you look at the map, I have the position of these objects 

clearly marked in the map, even though when they are moving around. And now I have to 

just accommodate my next estimate will have to accommodate the current version of the map 

and not the previous version of the map.  

So, I am going to assume that in this case, we can just assume that your localization can 

operate independent of the mapping problem and the updation of the map itself is done by an 

independent estimation process. So, there are multiple ways in which you can handle this 

dynamic environment.  
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So, the third dimension we wanted to talk about, it is what is called passive versus active. 

Passive versus active approach for localization, this essentially pertains to whether the 

localization algorithm itself controls the motion of the robot or not. So, in passive 

localization, the localization model only observes what the robot is doing. And based on that, 

just based on these passive observations, it tries to estimate where in the map the robot is.  



So, the robot could be just moving around randomly waiting for some, some tasks to be 

assigned to it. Or it could be just going around trying to perform its everyday task, trying to 

maybe it is, it has to fetch some mail and deliver it or whatever it is supposed to be doing in 

office environment, or maybe in a factory shop environment, whatever is the task that is 

assigned to it, the robot is trying to execute that task.  

So, the control itself, the movement of the robot itself, is not aimed at localization, it is not 

trying to localise itself actively. But the localization algorithm just has to run on the robot, 

observe all the actions the robot is taking and all the sensor information the robot is getting. 

And look at how to do the localization.  

Again, in some sense, this is what we have been looking at so far, in the state estimation 

problem where the goal of the control was never to get the better state estimate. The goal of 

the control was something else, we do not know. We were always given the control. And we 

were passively observing, what was the sensor reading. And what was the control that was 

given in order to refine our belief state. So, that is what passive localization is.  

Active localization, on the other hand, is very interesting, active localization says that, hey I 

am going to move my robot. So that I will find out where I am very quickly. I will not try to 

perform everyday tasks. Because if I am, if I do not know where I am, I could run into some 

kind of hazardous thing, I could run into an obstacle, or I could break the robot, I could fall 

off, you know, lead or something like that.  

So, I really do not want to go about it, because the cost arising from the badly localised robot 

is very high. So, what I do is I first control my robot and actually move in such a way so that 

I will minimise the localization error. And again, this has to be this has to depend on the 

belief state that I am in and the sensor readings and getting, based on that, I am going to 

move in a way so that I minimise the localization error. And then I move to some kind of like 

position tracking, kind of a mode, and then try to execute my everyday task. 

So, this is basically what we call it active localization, where at every point of time, you also 

try to make sure that your localization error is minimised. In some sense, this is how we 

operate, I mean, we just do not just start doing things without knowing where we are. If you 

are put in an unknown environment, the first thing we try to do is determine where we are 

before we decide what we are going to do next time. So, that is what basically the idea behind 

what active localization does.  
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So, here is an example where active localization will perform much better than a passive 

localization. So here is the, you know, a corridor. So, where most of the corridor looks 

symmetric, when I look from here, for example, I am going to see two doorways, and open 

space to the left and open space to the right. Correct and I am going to see two doorway. So, I 

really do not know whether I am here. Whether I am here or whether I am here, or whether I 

am here, because all of these places look similar.  

Let me, let me take, lets I, over here, or here, or here, all these three places look similar, 

because there is a doorway to the top, there is a doorway to the bottom. And there is free 

space to the left, there is free space to the right. And whatever slight angles I look at, I will 

always see the same measurement. 

So, if I, let us say I start in the middle of the corridor, so I do not know whether I am actually 

in the middle of the corridor or not, because I could either be here or here. So, what I should 

do is move to one of these two places, one of these two places marked by a circle, because if I 

come to this circle, I know for sure because there is an obstacle to the.  

So, therefore I know that I am at the right end of the corridor, or if I come here, then I know I 

am at the left end of the corridor, and then from here onwards, I can just start, you know, 

moving to whichever room I want, I will know for sure, otherwise I will always have this 

ambiguity as to which room I am in.  

So, this way this allows me these two locations allows me to disambiguate where I am in 

terms of the symmetric corridor. So, even though the rooms themselves are different, so once 



I enter a room, I will probably know. But then that is, that is a waste, and assuming that there 

is some room one of these rooms is actually a dangerous room, I do not really want to go in 

there and I have my robot fry.  

So, we would like to make sure that such things do not happen. So instead of just hoping that 

somehow the movement of the robot will allow me to localise myself active localization, that 

just basically tries to move the robot to one of these places, so that you can localise quickly, 

and then go ahead and do the rest of the job.  
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So, the last dimension that we would talk about is single versus multiple robots. So, the single 

robot case is the one that we have that is most commonly studied. And that thing that we have 

looked at also. But increasingly, it is becoming more common for people to consider using 

multiple robots system, because the space is large to cover and so you really like to have 

more than one robot.  

In fact, there are some very nice use cases of robot, teams of robots, you know, taking visitors 

through museums where one robot hands off to another robot at various points. And therefore 

you get this robot guided tour of the museum. So, there are things like that that people have 

been working on. So, you could treat this multiple robot localization problem as multiple 

independent localization problems.  

So, there is no need to actually consider this as a special case, just like if there are 10 robots, 

you have 10 single robot localization problems to solve. And you could do that. But what is 

interesting is, if I assume that the robots can detect one another, instead of just detecting the 



obstacles if the robot can detect another robot, there are a couple of things here, not only does 

the robot become another landmark, or another feature against which I can localise myself.  

But that robot also has a belief state about where it is, I could potentially get the belief state 

from the other robot, say, hey come, not only so if you detect another robot, you basically 

communicate the belief states to one another. And therefore, now suddenly, you find that I 

have a huge update to my belief, because a, I know where the other robot is. And b, I know 

that what the belief of that other robot where that other robot believes it is.  

Now, I know where I, this robot believes it is, and therefore I can combine both, and this 

opens up a lot of very interesting questions. So, what is the level at which the robots have to 

communicate to each other? You know, how do you accommodate the information of the 

robot? Can you ask the robot questions? Can you ask the robot question? Hey, I am trying to 

find this person, did you see him? A lot of interesting questions.  

Opens up when I start talking about multiple robot localization, and again, multiple robots 

and active localization makes it even more interesting problem, so in some sense, these four 

dimensions, we talked about capture the most important characteristics of the localization 

problems, there are other ways in which you can think of, you know splitting the localization 

question, but these are the primary variations that we have to worry about. 

Other kinds of variations could be depending on how noisy your sensors are, are they noise 

free, how many sensors do you have? How reliable are the sensors? What is the knowledge 

that you have off the map? What sort of a map do you have? So, all of these could potentially 

give rise to other interesting questions. 


