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Welcome to the final lecture of week 11. And so, in this lecture, we will look at the last 

component that we need for making our estimation models work. So our state estimation 

models work, which is essentially the measurement model. 

Remember, the measurement model tells you what is the probability of z given xt. What is 

the probability of zt given xt. And if you are using a map, it is given xt comma m. So the 

measurement model tells you what is the probability of zt given xt comma m. 

And so, what I am going to do in the next few slides is basically look at one specific kind of 

sensor and develop a measurement model for that sensor alone. And so, we are going to look 

at what are called rain sensors in the following slides. But whatever principles I am talking 

about now, so they basically can apply to other kinds of sensors as well, whether it is a 

camera sensor or a barcode-operated landmark detector, and so on, so forth. 

So in fact, there is a funny story about which one of my students did this, when there was this 

job to build a robot for, to move around in office space in the company, while people were 

trying to come up with very complicated algorithms for localizing the robot, figuring out 

which room or which cubicle the robot was on. He came up with a very simple solution. 



He printed unique barcodes for each location, and then he kept the robot with a barcode 

reader. So the robot just moves to a particular cubicle, reads the barcode and figures out 

exactly which cubicle it is in. It did not have to worry about all the cubicles looking similar, 

right. So sometimes, if you get the right engineering solution, problems become easier than 

trying to come up with something more sophisticated. 

But anyway, so getting back to the main lecture here. So the idea here is I am going to look at 

a typical sensor. So it could be, for example, an ultrasound sensor. So here is a illustration of 

that. So there is a mobile robot in the corridor, and it is basically has a range finder, these 

multiple ultra sound detectors running off in different directions. 

So typically, each of these ultra sound detectors is going to return the distance to the, the 

nearest object in the direction of the scan. So we can see that each of these rays here is one 

direction in which the ultrasound sensor is scanning. And most of the cases it is returning to 

you the distance of the nearest obstacle. In some cases, it fails. There is an obstacle here, it 

fails to detect. There are a couple of cases where it fails to detect objects. 

In the other cases, it basically stop short. So even though there is no object here, it basically 

returns that there is no. So some kind of failure of the sensors could also happen. But 

typically, it tries to detect what is the distance to the nearest obstacle in the direction of the 

scan. And if there is no obstacle, it is supposed to give you back whatever is the maximum 

value for the sensor range. 

In that case, you know that in that direction of scan, there are no obstacles. So that is 

basically what the rain sensor is going to give you and let us see how you can put together 

actual model for this rain sensor. 
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So just like we saw now, many sensors generate more than one numeric measurement value. 

So if I look at range finder as a sensor, it is going to give me the all the ultrasound readings 

that we saw. So we saw multiple ultra sound readings. So each one of these is going to return 

back a specific range value. 

And so, when I say I am using a single sensor, which is rain sensor, it could still correspond 

to a vector of measurements. So we are going to assume that these are z1 to zK and at every 

time t, I am going to have all of these capital K measurements available to me. And so at 

every time step t, I am going to make this measurement. 

And I am going to use z sub t k, small k, for a specific individual measurement. So it could be 

a specific value. So this could be k equal to 1, this could be k equal to 2, this could be k equal 



to 3, and so on, so forth. So this was specific values I will be looking at each one of these 

measurements. 

And the other thing that we are going to make life easier, so we are going to make an 

assumption that will make life easier is that I am going to assume that each of these different 

values that my range finder returns are independent. So probability zt given xt comma m is 

actually equal to the product over k of each of the individual sensors. 

So probability that zt1 given xt comma m times, probability of zt2 given xt comma m, and so, 

on so forth. So that is basically what I am going to assume to make my life easier. You can 

see that almost surely this is not true, but we are just going to make that assumption. So if I, if 

the map had not been given to me, if I did not have a map, the probability that this being true 

is even lesser, because without knowing the map if I hit an obstacle in a particular range, then 

it is quite likely that I will see an obstacle in a slightly displaced. 

If I see an obstacle in the direction theta is equal to 5, I am going to likely see something in 

that direction theta equal to 6. But given that I know the map, so when I say I know the map, 

that means, I know where the obstacle is exactly. 

In such a case, when you know where the obstacle is, the probability of me getting a reading 

that obstacle is there and I am pointing at 5 degrees or 6 degrees is independent of whether I 

got the obstacle reading, when I pointed at 6 degrees. So because I know that there is an 

obstacle at that distance because of the map. If I did not know, then this would have been a 

harder independence to write. So this gives me a little bit more leeway here. 
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So what we are going to do is, if you look, if you remember that we talked about multiple 

different kinds of errors that were happening, in some cases, there was an obstacle where it 

was missed. In other cases, there was no obstacle but it still returned an obstacle, and so on, 

so forth. 

So I am going to break down the kinds of errors into four different quantities. So I am going 

to say there is a measurement noise, a small measurement noise. Basically, this is due to 

things like, you know, temperature variations, the sensor is getting a little bit heated or even 

atmospheric variations, and things like that. So that could cause a slight change in the 

reading. So that we call as a small measurement noise. 

And then the second kind of errors are due to unexpected objects. The map says there is no 

object, but there might be an object, and therefore I am sensing something which I am, when 

I am expecting to not sense anything. 

And the third kind of error is due to failure to detect an object, could be because suddenly the 

refractive index is very high or the object is too black and I am not able to actually get any 

reflection out of it, so whatever. And quite depending on the kind of sensor that you are 

using, there are many reasons why the sensor might fail to detect an object, so how to 

accommodate for that. 

And finally, the last thing is, despite however clever I am, there is always a chance that 

something goes wrong, and how to accommodate for that. So I am going to say that the 

model that I have, the probability of zt given xt comma m is a mixture of all these four 



sources of error. So the overall stochasticity in the measurement comes from all these four. 

And we will look at how to model each of these densities. 

Before we go on, so just a small notation, when I say zt k star, suppose there is an object in 

the direction that the kth sensor is looking at time t, then zt k star is the true distance of the 

object. So zt k is the actual measurement. zt k is a measurement that is going to be influenced 

by all of these errors. 

So zt k is a measurement that is influenced by all of these errors and zt k star is the true value 

of the distance of the object. zt k star is what zt k is trying to measure, but it is getting 

corrupted by all these noises. It is just a notational thing. We will see how we use it in the 

next slides. 
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So the first thing we are going to look at is a small measurement noise. So the sensor roughly 

gets the range to the object, roughly gets the distance to the nearest object in the direction of 

the sensor. But then the sensor could have a limited resolution, so it could basically be 

rounding off because it does not have enough resolution. 

Now, there could be things like, like I said earlier, the sensor could heat up or there could be 

some kind of an atmospheric effect that is affecting the signal, and so, on so forth. Multiple 

reasons. So what, how we model this is as a very narrow Gaussian, whose mean is zt k star, I 

do not know this, but for the modelling purposes, I am assuming that zt k star is the true 

distance and I have a standard deviation for this Gaussian, which we call a sigma hit. 



Remember, this has to be unidimensional Gaussian, because measuring a single variable is a 

distance to the object. So it a, it is like univariate Gaussian, not a multivariate Gaussian. 
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So I am going to model it like this. So zt k star is the actual distance and I am going to model 

it as a narrow Gaussian. And remember that, so we will denote this by p hit. And remember 

that this measurement value cannot exceed z max, and it cannot go below 0 either. Because 

the distance is 0, I mean, so it cannot go below 0. 

And z max is the maximum value that this sensor can measure. So it cannot go beyond 0 or z 

max and therefore, it is not really a Gaussian, because we are going to truncate it. So between 

zero and z max, if zt k actually the value that you are plugging in here, if it is between 0 and z 

max, then the probability is given by a Gaussian, which we call zt k, so where zt k star is the 

mean and sigma hit is the variance of this Gaussian. 

And we add a normalization parameter eta, so that we compensate for the probability mass 

that was cut off beyond z max and beyond 0. Basically, we renormalize this by dividing by 

this, the area under 0 to z max. So that is basically what eta is. 

And if it is outside the 0 to z max range, the probability is 0. So it can never happen. So now 

we say this is the distribution p hit. So this is the noise that comes from small measurement 

errors. If there was no error, I would have measured it as zt k star. 
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The second source of error is due to unexpected objects. So why is this happening? So 

typically, we are assuming that maps are static. I am assuming that there are objects at certain 

positions in the map and I am not updating the map on a very frequent basis. 

But typical environments, which mobile robots are operating could be dynamic, I mean, there 

could be other robots moving around, there could be people moving around, or even things 

like paper flying around and stuff like that. And these are objects that are not contained in the 

map and, but can make the range finder give you a very short reading. 

Suppose there is an object at this distance from the robot, but there is a paper flying 

somewhere in between. So when the robot is taking reading, it will hit the paper and it will 

come back, it will not get to the actual distance of the object. So it gives you a much shorter 

reading than the actual distance to the object zt k star. 

So one way to think about this, let me put all these moving objects into the map or putting, 

put all these moving objects into the state. So the map is there but I can put them into the 

state and I will estimate their location as well. But this is very hard. I mean, come on, paper 

flying around all those things it is hard to. 

So what we will do is, instead of that, we will just treat it as a sensor noise. We will treat it 

sensor noise. So what do I mean by that? I will just say occasionally, my sensor might give 

you a wrong information. We will account for that as well. So one thing you should note 

here, when I start reading this as a sensor noise, so remember that I have I have a cone. So if 



there is an object that is passing by very close to the robot, it is very likely to be sensed 

because it is going to block my sensor, quite likely. 

But if it is flying away, flying farther away from the robot. This is the cone, if it is flying 

close, I am very likely to sense it. If there is a moving object that is farther away from me, I 

might not sense it, depending on the quality of the sensor, the resolution and things like that, I 

might actually miss this object and then most of my sense, my ultrasound emission might go 

past it and actually hit the true obstacle. 

So what it really sums up is, so the closer the object, the moving object is to the robot or is to 

the sensor, the more likely that I will sense that object. Therefore, the likelihood of sensing 

these kinds of unexpected objects decreases with the range. The closer you are, the more 

likely that I will sense an unexpected object. 
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So what we do to accommodate for that is to treat the whole thing as an exponential 

distribution. So the closer I am to the robot, the closer I am to a distance of 0. There is a 

higher probability. So the farther I am, I have a lower probability. 

And notice that beyond zt k star, I do not care. Because I would have hit the actual obstacle, 

so I do not care if there is a unexpected object after the obstacle. I am not going to see that. 

So only before the obstacle I am likely to see the unexpected object. 

So I expect to see an unexpected object before the obstacle. Therefore, so this should, this is, 

this is again incorrect. So this will be between 0 zt k less than zt k star, not z max. It should 



be zt k star. And so I am going to model this as an exponential distribution with the parameter 

lambda short. 

Again, I have a normalizing factor because after zt k star, I set the probability to 0. So all this 

probability mass has to be redistributed before zt k star and we will take care of that. So this 

is the second model. 
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And what is the third one? So the third one is when I fail to detect object altogether. So what 

happens when I fail to detect objects? That means that I have completely missed the object, 

so whatever reason. So it could be because the sensor failed, it just stuck somewhere. So my 

sensor keeps just returning the maximum value. 

Or it could fail because as object was very good at absorbing the light that it was emitting, 

and therefore it just did not get any bounce back. and therefore it just assumed that there is 

nothing in that direction and that till the range of, the maximum range, the thing is free. 

So at no, no conditions will I actually accept a reading that is greater than the maximum 

range. I will not accept a reading greater than z max, because does not make sense. Because z 

max is the maximum that the sensor could look at. 
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And so, what we will do is, we will just model it like a short noise. So it is just a point mass 

at z max. So point mass is z max. And this is essentially the probability that I completely miss 

the object at zt k star. So I will just basically return the value z max. 

So now, the thing is probability that that zt k is equal to z max, this 1, it is 0 otherwise. So for 

this component of it, just assigns some additional mass to z max. 
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Now we are coming to the last one, which is the random measurement. So it could basically 

miss the whole thing or it could generate some kind of a phantom reading when they bounce 

off walls. I mean, so there could be, I could detect something as being much closer than it is 



actually is. There could be some kind of a cross talk, some interference with other sensors 

that makes me put it at some, some random location. 
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So I am not going to overthink this. And this is going to say that, hey, look, after all of this 

careful consideration, there is a chance that I might mess, I could put the object anywhere 

between 0 to z max. I could put the object anywhere between 0 to z max. So I will say the 

probability is 1 by z max, this is basically uniform distribution. 

So what are the things, we have four different things right. So we had a Gaussian, then we 

had exponential, we had a short noise, like a impulse function. And now, we have a uniform 

distribution. So there are four different probability distributions and the actual probability of 

zt, given xt comma m is actually a mix of all these four distributions as we will see here. 
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So the four distributions, I basically look at it as a mixture. There is p hit, p short, p max, and 

p rand, right. So p max is when I actually miss the reading altogether. p short is when I hit on 

unexpected obstacles, p rand is I make a random error, and p hit is when I am actually 

measuring incorrectly, but I have a small measurement error. 

And each of these is weighted by a corresponding z value here, z hit, z short, z max and z 

rand. And the condition is they are all positive and they sum to 1. So there p is a probability 

distribution. And so, this is for the individual ray zt k. That is the one ray, k. I will have to do 

this for all k. And so for the set of readings that I am going to get, since they are all 

independent, I am going to compute the probability for each measurement, each k, and then 

take the product. 

So the, the final value q, that I return is a product of all the probabilities computed from each 

one of the 1 to k sensors that I have in my range sensor. So that is basically the probability of 

zt given xt comma m. So likewise, we do this kind of computation for various kinds of sensor 

models. And I mean, the book talks about a couple more. And if you want to get other 

flavors, you can read the book, so you can just look at the book. 

But as far as I am concerned, I will be happy if you understand the range finder measurement 

model thoroughly and because others are all simple expansions of this. Thanks. 


