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Hello, everyone, and welcome to the 3rd lecture in a week 11 in the Intro to Robotics course, 

where we are going to continue looking at probabilistic robotics. So we have looked at 

various estimation problems and various kinds of models so far. So in the last lecture, we 

were talking about how the motion model has to be corrected in the presence of a map. 

So where does this map come from? So you can assume that the map is given to you a priori, 

but quite often, being able to estimate the map of the environment in which you are operating 

in, is one of the really an ability that we want an autonomous robot to have. So one way of 

thinking about it is, it is a core competency for autonomous system being able to detect, 

estimate the map of the region in which they are operating. 

So formally, what we are going to assume is, a map m, has essentially just a list of objects in 

the environment, along with their properties. You could say, okay, there is an obstacle here, it 

is in location x y, and then the orientation of theta 1, so that could be m1. So I am going to 

look at this as a collection of objects, along with their properties. 

In some sense, this whole map estimation problem is a lot more difficult than what we have 

looked at so far. All the problems in terms of state estimation and even estimating the motion 

models, and so on, so forth are slightly easier because even if you are operating in a 



continuous space, so we are at any point of time keeping track of only one location when we 

are looking at state estimation. So all the Bayesian filter problems and all are slightly simpler. 

But in the case of mapping, we are literally looking at so many different locations. In fact, if 

the, if you are operating in a continuous space, then you are really looking at being able to 

represent this continuous workspace in some kind of an abstract form. So make the job easier. 

So think of this as a more of a discrete estimation problems, we move it down into this kind 

of a list of objects and their properties. 
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And so the mapping is done in two ways. So typically, so this list of objects that we talked 

about, they could either be some kind of a feature-based map. So in a feature-based map, n is 

some kind of a feature index. So features could be the different objects in the environment, 

could be wall, positions of walls and partitions, and so on, so forth. 

And so the value of mn, remember m is just, mn is an nth objects, contains other than the 

properties of the feature, it also contains the Cartesian location of the features in the, in the 

workspace. So you can just say, okay, here is the x y location, I have a feature, it is like, it 

could be a table, so in which case, I would have some kind of dimensions of the table, and so 

on, so forth. 

So the feature-based maps specify the shape of the environment at specific locations namely, 

the locations of these objects that you have on the map. It does not necessarily give you a 

complete description of the shape of the environment where there are no objects. So it, 



sometimes it is actually useful to have this feature-based maps when I am trying to do 

localization in a world. 

So if I am actually next to a specific feature, if I am next to, for example, if I am next to a 

particular building, when I am trying to do navigation, it is easier for me to know where I am, 

oh I am next to that building. So that way I get, I get more information when I have this kind 

of feature-based representation. 

And likewise, another advantage with feature-based representation is it is easy to add 

additional features, and also it is easy to move an object around. So I can adjust the position 

of an object on the map just by doing additional sensing or getting closer to the object and 

therefore being able to refine my position estimate of the object, and so on, so forth. 

So feature-based maps are easier to update in some sense. And, and I can do this without 

having to worry about actually verifying any of the other locations or other objects that are 

there in my, in my map. So I can just independently adjust the position of the new features. 

So that way, it is convenient in certain conditions. But in other ways when I want to figure 

out if a particular location is free for me to move into, suppose, do I have an obstacle or not? 

Like we were talking about in the motion model. In such a case, I would really have to run 

through all my objects, all my features to figure out if there is a feature that intersects with 

the location that I want to move to. 
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In such cases, it is easier for us to maintain what are called location-based maps. Like can 

feature-based map, each m correspond each mi; corresponds to a specific object or a specific 

feature that I want to map. In the location-based maps, each mi corresponds to a specific 

location. So we call these location-based maps as volumetric maps in the sense that they offer 

a label for any location in the world. 

So in the feature-based maps, you do not get that, in volumetric maps, they not only contain 

information about the actual objects, they also contain information about absence of objects. 

For example, free-space. So if I want to know if there is a particular location, to which I can 

move to having a location-based map and having seen that location as marked as free-space, 

is a useful thing to have. 

So in many cases, when I want to do these kinds of planning, path planning, and so on, so 

forth, I would like to have this kind of location-based maps. When I want to do localization 

and I want to figure out where I am in the map, with respect to landmarks, and so on and so 

forth, feature-based maps are easy. And when I want to do planning, and I want to do some 

kind of prediction in terms of where I will end up with, location-based maps are more useful. 

And quite often, in many practical scenarios, we would like to go back and forth between the 

two. And so for the rest of the lecture, I will look at a specific kind of location map, location-

based map, which is very popular, which are called occupancy maps; occupancy grids, or 

occupancy maps. 

And basically, the idea here is the assigned to each x y coordinate, a binary occupancy value, 

it is either 0 or 1. 0 means that is its location is free, 1 means locations occupied. That is why 

it is called occupancy maps. So 1 means a location is occupied. 

So I can query any location in a world, and then figure out whether that location has a object 

or does not have an object. So if you actually, you can even store it as a bitmap as 0 on 1. 

And for, sometimes even for large spaces, you can have a compact occupancy grid or 

occupancy map. 

So when you are operating in a continuous space, so we typically do not look at each 

continuous x y coordinate value for occupancy grid, occupancy maps. What we do is we 

actually make a grid space around it, so we make like a grid line. So we will see it later on 

one of the slides, and for each cell in the grid, we assign a occupancy value. 



As supposed to assigning it for each x y coordinate, because if we are operating in a 

continuous space, then this is not really a practical approach. So what we do is we discretize 

the state space and make it into a grid and that is when occupancy maps are also called 

occupancy grids. 
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So looking at the occupancy grid algorithm, so in some sense, the goal is to compute the 

following posterior. So given a sequence of observations and the sequence of states, in each 

state, I am making some kind of an observation, I would like to estimate a map m. What is 

the probability over the map m? 

So remember, m is actually a collection of mis. For each, mi denotes a particular index in the 

map. So it is a collection of these objects. So it could, so in the occupancy grid, each mi is 

going to correspond to a location. 

So and the controls really play no role in the occupancy grid maps. Since we already know 

where we are? So for each location, I make a measurement, I really need to know whether I 

am, it is occupied or not occupied. So I do not really need to know, what is the control that 

will get me through that space? 

In some sense, I can assume that the path that I am actually following for doing this mapping 

is already known to me. So we are going to say that each mi denotes a grid cell with index i. 

So which is each, so I am going to say m1 means index 1. 



So and an occupancy grid map is essentially just a collection of many of these grid cells, mi; 

so for all the grid cells mi. And each mi is going to have either a 1 or a 0, so mi equal to 1 

means that it is occupied; 0 means free. And I am going to use the probability of mi to refer 

to the probability that mi is equal to 1 that it is actually occupied. 

So whenever you see, when I, whenever we write p of mi, it actually means the probability 

that the ith cell is occupied. 
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So, and then what we do here is instead of looking at this probability, probability of m given 

z1 to zt, I am going to just say that, what is the probability of mi given z1, z1 to t and x1 to t, 

and then look at the, look at this for each one of these cells independently. 

So I am going to assume that the probability that a cell is occupied does not influence or gets 

influenced by any of the other cells in the state space. It is influenced only by the 

measurements I am making and the actual state values. So only, it is influenced only by z1 to 

t and x1 to t. So this makes my problem much easier. Otherwise, I will have to look at this 

very large joint estimation problem. So instead of that, we will assume that each cell is 

estimated independently. 

Now, if you think about it, so why are we getting here? So I have a single variable that I am 

trying to estimate. And this single variable is static. I am assuming that the cell is static, it is 

not changing, it is not going to get affected by my actions or my movement because we are 

talking about the map, so the map is either clear there or it is occupied. 



There is a single variable taking on one binary value 0 or 1 and it does not change. So we 

already looked at this. We already looked at the binary Bayes filter with static state earlier 

and we already looked at the algorithm. 

So all we really need to do now is to apply that algorithm. So where, instead of looking at x, 

and so looking at the state x given a sequence of observations, I am going to look at what is 

the value of mi, probability of mi given the sequence of observations, and the sequence of 

states I have seen. 

It is exactly the same algorithm. So instead of looking at it as a state estimation algorithm, I 

am going to run the binary Bayes filter with static state algorithm to solve the occupancy grid 

mapping problem and using the same kind of log-odds representation of occupancy. 
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So this algorithm should look very familiar to you. This is you can go back and look at the 

binary Bayes filter statistic algorithm. And here for each, so what do I have here? So I have 

the likelihood of the occupancy that I have seen so far, starting from the beginning. 

So basically, t minus 1 is like my belief state on the map, it is like the belief state on the map. 

So what is the likelihood that cell i is occupied at time based on the measurements I have 

made till time t minus 1, so that is what the set is. 

So we will have one entry for each value for i and then you have your current state and your 

current measurement. Now, for all cells mi, now if mi is in the perceptual field of zt, so what 

do I mean by that? That means that when in xt, I am making a measurement zt, so how much 



of the world can I see at zt? Depending on what kind of sensing do I have, it is not that I am 

only looking at the current state I am in. So I could look at a region of state around it, as we 

will see in the next couple of slides. 

(Refer Slide Time: 13:17) 

 

 



 

So, for example, I will just go, just look at this for the measurement model. So even though I 

am here in this particular state right now. So I am actually able to see a lot more states based 

on my field of vision. So I have this field of vision, so I am able to see a lot more states and I 

can actually make estimates about whether these states are also occupied or not just by 

making a measurement at Xt. 

So when I say I am at Xt and I am making a measurement zt that does not mean that zt 

returns information only about the current cell occupied by the robot, it could actually give 

me information about more parts of the state space. So that is basically what we are trying to 

take into account here. 

So, when I say if mi is in the perceptual field of zt, that means that the measurement zt gives 

me some information about the cell i, then I update the log-likelihood using the inverse-

sensor-model that I have earlier. 

So if you remember this expression, so this is lt minus 1 comma i which is my old belief in 

the likelihood form, and then the inverse-sensor-model. So the likelihood through the inverse-

sensor-model and minus l naught which is the initial likelihood that I start off with. So this is 

my update equation. 

And if it is outside the perceptual field of zt, that means, I cannot make any estimate about 

whether cell i is occupied or not. If it is outside the perceptual field of zt, then I leave the 

likelihood as it is. So the new belief state is same as old belief state because I have not made 

any measurement on cell i for me to change this. And to do this for all cells mi, at the end of 

it, I get the new map. This is the new belief over the map. 



Remember, what we are looking for is a probability of m, given x1 to t and z1 to t, and this is 

the new probability of m given z1 to t x1 to t. So I hope that is clear, I am going through this 

a little faster because we already seen the binary Bayes filter with static state and this is 

exactly the similar kind of an algorithm, except that instead of looking at the belief over your 

current location, you are looking at the belief over a particular cell in the map whether in the 

occupancy grid. 

So now, the interesting question is, how do I come up with this inverse-sensor-model to use 

in this occupancy grid algorithm? So how do we come in the occupancy grid algorithm? So 

what we do is as follows. So just think about this for a minute. So if the robot is here and 

there is an obstacle either here or here, there are two different situation where we are talking 

about. 

Both, in both cases, the robot has the same kind of field of view. Robot has like a 15-degree 

cone of vision, let us say. And in one case, because there is an obstacle nearby, the robot is 

able to look at all these states, all the states marked in white and it can tell you these are clear 

and it can look at all the states marked in black and can tell you there is an obstacle there and 

all the grey cells, it cannot give you any information over and above what you already know. 

So this is not something that the robot, the current measurement can give you any information 

on. 

And here is a case where there is an obstacle that is a little farther away, the robot could 

potentially, so it could potentially look at a lot more states here. The robot could potentially 

look at a lot more states here, and then it can give you information about all of these saying 

that they are clear because this is a, in the field of view there is nothing that stops it until it 

hits the obstacle. 

Beyond the obstacle the robot does not know what is there, before the obstacle, the robot 

knows what are the cells and these are all free and anything outside of this field of view or 

behind the obstacle, it cannot give you any additional information. 

So the inverse model is basically implemented in the log-odds form directly so that I can just 

use the inverse model here instead of saying the log-odds of the inverse model. So that is 

what we had earlier. So this is the log-odds of the inverse model. So instead of saying that I 

could sorry, yeah, I have to cancel that. So instead of saying the log-odds of the inverse 



model I can just say the inverse model here and learn the inverse model in terms of the log-

odds. 

And so, here you can see that everything that is white means it is free, everything black 

means it is occupied, everything grey means I do not know, really. So how do we go about 

doing this? 
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And so here is a here is an algorithm that tells you what is being computed in the previous 

slide. So I am going to assume that the current state xt is given by x, y, and theta; so x, y, and 

theta. And the cell i, the index i denotes a cell mi and which is centered at xi yi. So if you 

think of this as a cell, so the center of the cell is what I denote as xi yi. 

Now r is the distance of the cell from the robot and phi is the angle the cell subtends with the 

robot; the direction, with the direction the robot is facing. So phi is the angle it subtends with 

the direction the robot is facing. 

So now, among all the possible sensors that could be looking in that direction, remember zt is 

a collection of all sensor readings, I pick the one that is pointed most in the direction of the 

object. So this basically this means that so this is the sensor, theta j sens, is the sensor that is 

pointed as close to the direction of the object from the robot. So I pick that. 

Now, what I do is if this object is farther away than the maximum range of the sensor, or 

where the sensor says there is an obstacle, if the object is farther away than the maximum 

range of the sensor or where the sensor says there is no obstacle, whichever is the minimum 

of the two, then I say that hey, I do not know anything, so I am going to return l naught. 

Or if the object is too far away from the direction the sensor is looking, remember, this is the 

sensor that is closest to the object that is looking in the direction closest to the object but even 

then the object is too far away. In both these cases, I am going to say that, I do not know 

where it is. 



So this, both these cases correspond to, so the first condition, the r condition corresponds to 

the cell being in one of these locations and the second condition, the one on the phi 

corresponds to the cell being in one of these locations. So in both cases, we say that we will 

return l naught. So what does it mean to return l naught? 

Remember, if you plug in l naught here, I will have l naught and this will become minus l 

naught so they will cancel out. So I will basically leave the belief as it is without changing 

anything. So that is what I mean by saying, I will return l naught there. 

Then if zt k, which is the distance of this, of the obstacle, zt k is less than z max; that means 

that the robot has sensed an obstacle, and r minus z max is less than alpha by 2. That means 

the distance to the cell mi, the distance to the cell mi is within the object; alpha is the object 

thickness, so it is within the object thickness from the maximum range, so in which case, I 

will return that the cell i is occupied. 

Or on other hand, if the distance is actually less than, r as the distance to the cell if the 

distance is actually less than that zt k, which means, zt k is the distance at which I have 

sensed an obstacle. If r is less than zt k, then I will say r is free. Then I will say the cell mi is 

free; so l free. So the cell mi is free if r is less than zt k. 

But if r is not less than zt k, if r is actually greater than zt k then I am going to say it is alpha 

by 2. Then I am going to say that the cell is occupied. So what do we mean by cell is 

occupied? So this is an algorithm taken from the book and that is the error of the book itself. 

So here this case, you should read that as so that means I have detected an obstacle that is 

within the maximum distance of the, within the maximum range of the sensor and the 

distance of the cell is within the obstacle thickness of this distance, in which case, I would 

say that it is occupied. So this should be zt k or if it is less than zt k, then I am going to say it 

is free. So that is basically the algorithm. 

So this is how I build up a inverse range map. So I have talked about two kinds of maps. One, 

which is a feature-based map, which is typically more useful when I want to do localization, 

as we will see a little later. And the other is this kind of location-based map of which the most 

popular is the occupancy grid map. And we just saw that how we can use the binary Bayes 

filter with static state and an inverse-sensor-model in order to estimate the occupancy grid 

map. 


