Introduction to Robotics
Professor Balaraman Ravindiran
Department of Computer Science

Indian Institute of Technology, Madras
Lecture - 35
Particle Filter

(Refer Slide Time: 00:14)

» Gaussian filters assume that the belief distribution is of a
specific functional form described by a fixed set of parameters.

Welcome to Lecture 3 in Week 10. And so, in this lecture, we are going to look at what are
called non-parametric filters. So far, we have been looking at Gaussian filters for state
estimation. And the Gaussian filters essentially assume that your belief distribution is of a
specific functional form. In this case, it was, we assumed that it was a multivariate Gaussian and

it is described by a fixed set of parameters in this case, which was like mu and Sigma.

So even though we looked at a couple of variations of this, the fundamental underlying
assumption is that there is a specific functional form, that describes the belief distribution, and
that is given by a fixed set of parameters. So these are called parametric. So now, what we are
going to look at are what are called non-parametric filters and there are many, many non-

parametric filters. We will look at a specific one.

(Refer Slide Time: 01:10)
e

» Alternative to Gaussian Filters, non-parametric filters do not
assume a fixed functional form over the belief distribution,
allowing us to model more complex, non-Gaussian probability
distributions.

» The complexity of the function could vary to fit the
distribution, typically estimated by samples drawn from the
distribution.

Introduction to Robotics

So the idea behind parametric filters is that, idea behind non-parametric filters is that they, they
do not assume a fixed functional form. They can look at arbitrary distribution as | can see here.

So this is an arbitrary distribution, does not look like a simple Gaussian.

And so, the idea behind non-parametric filters is that the complexity of the function that we want
to represent, the density, the belief, belief distribution that we want to represent, the complexity
could vary to fit the distribution. So it is not like it is a fixed complexity function like the

Gaussian distribution.

It is not of a fixed functional form but the function could vary and typically depending on the
kind of samples that we draw from the distribution, we kind of increase or decrease the number
of parameters that we use for describing the function itself. So even though we call it non-
parametric, does not mean there are no parameters, it just means that there is not a fixed set of

parameters which we use for describing the function.

Advantage of this kind of non-parametric filters is that they allow us to look at complex and
arbitrary in some cases, arbitrary distributions and we are not restricted to Gaussian distributions.
So if you remember, the problem with Gaussian distributions was that there had to be one
hypothesis which we thought was most likely and we had small amount of noise around that

hypothesis. So we could not look at a hypothesis that supported us having multiple modes. So it
had to be a unimodal belief state and so, the non-parametric filters allow us to get around that.

(Refer Slide Time: 02:54)
e el

The Particle Filter

» Instead of representing the belief distribution by a parametric
form, partide filters represent this distribution by a st of
samples drawn from the distribution.

So what are going to look at in this lecture is specific, non-parametric filter called the Particle
Filter. So in the particle filter, instead of representing the belief distribution as a function, | am
going to assume that the distribution itself is represented by a set of samples that are drawn from
the distribution.

So the curve f describes the distribution that | am trying to represent, and the way | represent the
distribution is by just storing a set of samples that were drawn from the distribution. Notice that
this distribution is defined on a, on one dimension. So just this x-axis is the dimension, the y-axis
is actually the density for the, for the values of the x. So for each value of x, this, the y-axis

represents the particular density for the distribution.

So, essentially, what I am doing here is, | am sampling according to this distribution represented
by f and therefore, you can see that wherever the density is high, I get a lot of samples, wherever
the density is high I get a lot of samples, and wherever the density is low, | get fewer samples.

And you can see intermediate densities, | have intermediate number of samples.

So basically, instead of trying to represent this whole thing as a functional form, what I do is, |
just represent a set of points, x in this case. | just store a set of points x which in an indirect way

represent the distribution. That makes sense?

So in the case of the particle filter, | store a set of samples drawn according to the distribution as
opposed to storing like say, something like mu and Sigma of the distribution. So instead of
storing like a set of parameters for the distribution, I am going to store a set of samples that were

drawn from that distribution and that will be the representation | have for my belief distribution.

So | am going to make sure that we are specializing this discussion to beliefs but the notion of

particle filters can be used in a variety of other settings as well. Okay so moving on.

(Refer Slide Time: 05:01)
e

The Particle Filter

» Instead of representing the belief distribution by a parametric
form, particle filters represent this distribution by a set of
samples drawn from the distribution.

» The samples drawn from the distribution are called particles,
and are denoted by:

Xm0

=N NG e X
Each particle is a hypothesis as to what the true world state
may be at time t.

XE"'] ~ p(Xe| z1:e, w1:t)

As a consequence, as M — oo, the denser a sub-region of the
state space is populated by samples, the more likely it is that
the true state falls into this region.

Introduction to Robotics

So in the particle filter, like | said, you take a set of samples and these samples are called
particles. So these samples are called particles. These samples are called particles and we denote
them by x1 to xM right, this is basically a set of M particles, capital M particles. And each
particle is, in some sense, we can think of as a hypothesis, as to what the true world state may be
at time t. It is just a guess if you will, of what we think is a true world state at time t, and the way

we generate these particles is by sampling from this distribution.

So a particle at time t is sampled from the distribution which is probability of xt, given z1 to t,

and ul to t. This is basically all the observations | have seen from the beginning of time until

time t and all the actions | have performed beginning of time until time t. So basically what is
this? This expression is a belief state. So where do | believe that | am at time t? So this is
essentially what our belief state is and so, the set of particles are sampled from our belief state at

time t.

Now, as M tends to infinity, M meaning the number of samples that | draw, the number of
particles that 1 maintain, then this set of particles becomes a very good approximation of the
underlying density. So the denser a sub-region of the state space as populated by the samples; the

denser the population of samples, the more likely is it that the true state falls into that region.

So it becomes more of a proper representation of the underlying belief distribution. So the
particle filter essentially represents the belief as a set of samples drawn from the belief
distribution. We do not actually explicitly represent the belief distribution as a functional form

here.

(Refer Slide Time: 07:08)
]

» As with the previous algorithms, the particle filter algorithm
estimates the belief bel(x;) recursively from the belief
bel(xH).

Algorithm Particle_filter(X; ;. u, 2):

I:

2 X=X=0

3 form =1to M do

4 sample 2" ~ p(z; | ug,zy"y) =
3 v =plzn |z) -

6: X=X+ w"

T: cndl'n} R

8 form=1to M do

9 draw i with probability o w;’

10: add z;" o &,

11: endfor
12: retum X,

Introduction to Robotics

Now, as with the earlier versions of the Bayes filter algorithm, so here is a version of the particle
filter algorithm. And again, we update the belief of xt recursively from belief in xt minus 1. And
as before, the particle filter algorithm takes as input the current action ut, the current

measurement or the current observation zt, and our representation of bel xt minus 1.

If you remember, initially in the Bayes filter algorithm, bel xt minus 1 was just supplied as it is
and in the Gaussian filters, bel xt minus 1 was supplied by, yeah, mu t minus 1 and Sigma t
minus 1. In this case, bel t minus 1 is supplied by the set of particles xt minus 1. If you

remember, that is what we said.

So the, the distribution any point of time is represented by the set of particles xt. So, so we start
off with xt minus 1 as the set of particles that represent belief xt minus 1. So notice that, so what
do I mean by the particles representing the belief? That means that these particles xt minus 1,
there will be M such particles, so these m particles were obtained by somehow sampling from

the belief distribution at time t minus 1.

Now, | start off by initializing both my xt bar and xt which are two sets of particles, and this you
can guess, Xt bar is going to represent bel bar of xt, so the bel bar at time t and xt is going to
represent bel of time; bel at time t, bel xt. So xt bar which is script xt bar, it is going to represent

bel bar of xt, and script xt is going to represent bel of xt. So that is what we are going to do.

So | will just run through the steps and then later in the next few slides, you will see how this
implements the actual belief update. So what | do is initially, so the lines 3 to 7, so lines 3to 7
are running through each, each of my particles once. So my particle here is a sample. So each of

my particles is going to run through once.

So what it does, the first, so what it does in line 4, so what is happening in line 4 is that, what is
happening in line 4 is that | take my previous particle and take one sample, which is the mth
sample, I am taking the previous particle from my belief xt minus 1. And then apply the action ut
which | know. | apply the action ut and | look at the distribution of the resulting state. | am

looking at the distribution of xt and I am just going to sample an xt m from this distribution.

Basically, 1 am going to perturb this particle by the action. I am going to move it forward
assuming that this is the actual state at time t minus 1. | am going to make a prediction as to what

would be the state at time t and | am going to sample from that.

So for every particle that | was using to represent xt minus 1, I am going to sample one particle

now to get (myself), get me xt, get the new xt. Now, this is a little tricky part here. So what I am

doing now at step 5, so what | am doing at step 5 is essentially trying to account for the
observation probabilities or the measurement probabilities.

We know that zt was the actual measurement that we made and | am assuming that xt m is the
real state. So | am looking at, okay, hey, if xt m was really the correct state, xt m was really the
correct state what is the probability that | would have made this observation. | am going to assign
that as what is called as a weight or the importance weight for the sample xt m. So | have wt m

which is the importance weight for the sample xt m.

And then | have, | am just adding to the bel bar representation, bel bar xt representation, the
sample xt m, so the actual, actual particle as well as the weight. So | am going to add the particle
and the weight to the bel xt, xt m, or rather xt bar. It is not quite, it is not quite bel bar, it is
actually something; so the xt m incorporates the movement. xt m incorporates the movement and
the wt m actually incorporates the observation. So the xt bar is not quite a representation of bel

bar because it already incorporates the effect of the observation through the weights.

So in fact, | could just stop here. I could just stop here and say that, hey, look now, | started off
with set of particles which were xt minus 1, | had 1 to m particles. Now, | have a new set of
particles, xt m, and a set of weights that tells me how likely is that the true state to be that

particle. Makes sense?

This probability tells me how likely is it that xt m, if xt m was the true state would have given
rise to the observation zt and now, | have this weight that tells me, okay, how likely is it that this
is the real state given that you have observed xt. So it is, in a way | can still construct, reconstruct

my belief, | can approximately reconstruct my belief using these weights and these particles.

Then what is going to happen is that since these particles are now going to contain, suppose |
come to a point where a particle has a very low weight. Because it says, hey, look, it is very
unlikely that this particle is something that would have given rise to this observation. Or it is just

a small probability event of you know, big noise.

So | am trying to move forward move 1 meter but suddenly I move forward 2 meters. | mean, it
could very well happen that somebody pushed the robot or something so that it moved forward 2

meters but it could be a very, very low probability event, you know. But then, let us say, that is a

sample | draw. Right now | have gone forward 2 meters but the robot has really not gone forward
2 meters, it has gone forward only 1 meter.

And then | make a measurement | am going to say, huh, this measurement is quite unlikely. But
then what is going to happen? | am going to have a location that says the robot is 1 meter away
from where it really is with a very low weight. But then when | go back and try to do a
resampling of this when | make the next action, I will still keep pushing this particle forward and

I am going to give lower and lower and lower weight to it till it becomes vanishingly 0.

So what will happen is because there is so much noise in the system, many of the particles'
weight will go to 0. And so, | will be carrying around a lot of particles whose weight is 0 and it is
not a great filter then. It is not a great representation of my belief. So if | have, a lot of my
particles have weight 0, then I am basically using only one or two samples to represent my
distribution and | could be very wrong in that. We will see that in a minute when we go to the

actual illustration of this algorithm.

So how do | overcome this? So | know, | told you that already my xt bar has enough information
that incorporates the observations but the set of particles are not really great. So what I do is
something called resampling. So this, this phase, lines 8 to 11 of the algorithm, | do what is
called resampling of the particles. | have the same, | have M particles now, each having some

weight.

Now, what | will do is I will resample M particles, capital M particles again. So new set of
particles that 1 am drawing but the probability that | will draw one of the earlier samples, so
remember that I am going to draw samples here with replacement from xt bar. What | am doing
in line 9 is drawing samples with replacement from xt bar. So people, all of you are familiar with
sampling with replacement. So we are going to do sampling with replacement from xt bar.

So what we do there is we will pick a number i with a probability that is proportional to wt i. So
what is wt i? It is the weight of the ith particle in my set xt bar. So | have computed M weights.
So this wt i is the weight of the ith particle in my xt bar. So I am going to sample an i
proportional, probability proportional to wt i.

Basically, that means that | am going to take each wt i divide it by sum of all the ws, and that
gives me the probability that I will sample i. Now, once | have drawn a sample, 1 am going to

add the corresponding particle. The one that is here, xt i, I am going to add it to xt; script xt.

So | am going to that M times because M is the size of the particles that I am maintaining. So |
will draw M sized particles like this. Notice that these particles | am drawing are exactly the
same set of particles here. Just that some particles might be drawn more than once and a few

particles could just be left out in this new set M.

Why could particles be left out in the new set M? Because they have low probability and
particles could be repeated in the new set M because the probability of the you know, the
probability mass in that particular state in the belief state is very high. And then I do this for M
times so that | get a new set of samples M and then | return xt. So remember, so the last thing

that return is bel xt so this is basically bel xt.

So this is not quite neatly broken down into the first step where | compute bel bar and the second
phase where | compute bel. So the first phase here is where | actually, you know, do my
prediction as well as accounting for my observation. My prediction and the correction

computation is already done in the first loop.

So that is my prediction computation and that is my correction computation. | am already done
that in the first loop. And what | am doing here in the second loop is essentially resampling the
particles so that I actually get a more, more appropriate representation for bel.

(Refer Slide Time: 18:22)

» The set of particles resulting from iterating Step 4 M times is
the filter's representation of bel(x;)

» Line 5 calculates for each particle le] the so-called

importance factor, denoted by w!'"]A Importance factors are
used to incorporate the measurement z; into the particle set.

Introduction to Robotics

Prof. Balaramal

» As with the previous algorithms, the particle filter algorithm
estimates the belief bel(x;) recursively from the belief
bel(thl),

Algorithm Particle_filter(X; ;. uy. 2,):
X=4=0
form=1to M do

sample 2" ~ p(x; | up,z,my) o=

|

5

3

4

5 w =ply|zy) -
6: X=X+ w"

7 endfor < 'mh

8. form=1to M do

9: draw i with probability o w;"
10: add z," o &,

11: endfor

12: return X,

Introduction to Robotics

So as we said earlier, so the set of particles that | get from the last step. So is essentially my
representation for bel of xt and so, the one | get in step 4 is kind of, so step 4 is that. So the set of
particles is kind of my representation for bel bar.

So that is not yet, that is not yet incorporated in my observation value. So it is a representation

for bel bar. And what | finally get from line 9 is my, is my final representation for the belief of
xt.

(Refer Slide Time: 19:04)

» lines 8-11 implement what is known as resampling or
importance resampling.

~ The algorithm draws with replacement M particles from the
temporary set X;. The probability of drawing each particle is
given by its importance weight.

~ Resampling transforms a particle set of M particles into
another particle set of the same size.

~ By incorporating the importance weights into the resampling
process, the distribution of the particles change: whereas
before the resampling step, they were distributed according to
bel(x,), after the resampling they are distributed
(approximately) according to the posterior
bel(x,) = np(zx"bel(x)

Introduction to Robotics Prof. Balaraman Ravindran # 8% SISTIS |

So let us look at, let us look at; I will skip this line, I will come back to this or let us go over the
slide, it is fine. So like we said, like lines 8 to 11 implement what is known the resampling or the

importance resampling process.

And as we said, the algorithm draws M particles with replacement from the set xt bar. Remember
that xt bar is really not bel bar t. So actually, the original set of particles that we sampled in line 4

is our bel bar representation, not now.

Now, what we do is essentially doing something like this. So our bel of xt is now sampled, is
now kind of equal to the observation probability, the probability of zt given xt m times bel bar xt.
So each particle that I am sampling here is going to be, sorry, so we have to edit the last part
when we start talking about resampling. So | am going to redo the whole thing for this slide,

okay.

So like we, like we looked at, when we were discussing the algorithm, lines 8 to 11 implement
what is called resampling, and sometimes it is called importance resampling. And again, | am
going to draw M particles with replacement from the set xt bar. Remember xt bar is not really the

set of particles representing bel bar.

So bel bar is essentially, whatever we computed in line 4 gives you bel bar and xt bar is the

particles with the weights. And like we mentioned, this is already encoding your bel xt in some

way but the particles are not the right set of particles. Therefore we get the better set of particles
when sampling with replacement.

And so, before | sample with replacement, they were distributed. The particles were distributed
according to bel bar xt that is what we said. So the xts were representation of bel bar already
after line 4. But after the resampling, they are distributed according to bel of xt, more or less. So
that is basically the idea here. And so, let us look at how this is going to work.

(Refer Slide Time: 21:42)
[

lllustration of Particle Filter

nn
—_—

Introduction to Robotics Prof. Balaraman Ravindran 5%

» As with the previous algorithms, the particle filter algorithm
estimates the belief bel(x;) recursively from the belief
bel(x,_l).

Algorithm Particle_filter(X, ., u;, 2):
X=X=0
form=1to M do
sample ;"' ~ p(zy | up,zy")) o=

X=X+ (" w"
endfor —
form=1to M do

9: draw i with probability o w;’
10: add z," 0 X,

1: endfor

12: retum X,

:
3
4
5 wi = plz | zy) -
6
7
8

Introduction to Robotics Prof. Balaraman Ravindran

Here is the simple belief representation. You can see that already this is something that a simple
Gaussian filter cannot do. So we are basically having a bimodal distribution. So the state x here

is just a single line.

It could be anywhere on this x-axis. The robot could be anywhere on the x-axis. And | am going
to assume that there are these two peaks. | am not sure whether the robot is here or whether the
robot is here. Of course, | am going to have some baseline probability that could be anywhere on
the line because of the noise. But most of my probability mass is now concentrated around these

two modes.

And the way | would do my representation; now, here would be a lot of particles will represent,
will be present here, and another set of particles will be present here, and there will be very few
particles elsewhere. So maybe there are 1 or 2 in other places but most of the particles will be
present in these two modes. So this will be my representation of this kind of a belief state using a

particle filter.

Now, let us assume that | do the action, move right. | do the action, move right. So what should
happen? So what am | going to do is I will pick one particle, so this is what we do. | pick one
particle from the set of particles that represent my belief. This is my probability of xt given ut
comma xt minus 1 m. So that is basically the line that we are trying to look at here. Just let me go

back so that you can see what we are talking about.

So what | am doing here is step 4. So | am going to look at the probability of xt given that | am
applying ut to xt minus 1 m. Some particle, some mth particle at time t minus 1; 1 am going to
pick that, I am going to apply action ut and | am going to sample xt. So that is basically what we

have done here.

So I have taken, | have taken a particle here so you can call this, you can think of this as xt minus
1 m, and | have applied ut which is just this action, go right. | have applied ut here and then I
have sampled from the resulting distribution, assuming that it ends up here. So this will be my,

this red dot will be my new xt.

So this is xt minus 1 m, this is xt m. So it is basically the step. So every, for every particle here,
so | will pick that, I will apply the transition, whatever is the action and | will sample from the

resulting distribution and | will get a state. Great, and now | am moving on.

So what is the next thing | have to do? Once | have done that, basically, | end up with this as my
belief distribution. You can see that. So from these two being my modes, now | have become,
these two have become my modes. And | have basically moved. So basically, what does it mean?

The set of particles that were here have moved here. The set of particles that were there have
moved here, and the set of particles that were here have moved here. That make sense? And you
can see that it has flattened out a little bit. It is not as peaked as it was here. It has flattened out a
little bit. Why is that? Because there is some noise in the movement.

So when you try to move one particle from here forward, it does not always move the same
distance forward. There will be some kind of a region of uncertainty around the end. So it might
end up here, it might end up a little bit earlier or it may end up a little bit later. So the motion
need not be deterministic and there will be some kind of a smearing out of the particles. And that

is essentially what you see here and why this is, why this looks a little bit more flat.

Next what | have to do is account for the, | have to account for the observations. So now, this is
what my observations tell me. What does my observation tell me here? So okay, so whatever
observation | am seeing now, so maybe | am seeing a patch of red on the wall, or | am seeing a
door on the wall and things like that. So that door or patch of red could only occur in these two

places.

I think there is a door here on the wall and there is a door here. There are two doors here, there is
door here and there is another door here. And so, now, even though | have moved to the right, |
have moved to the right and | actually still see a door. Let us say, my observation says that, hey,

there is a door in front of you.

Now, we know from the way the observation works that the door can only be seen in one of
these two places. We know that the door can be seen only in one of these two places. So what
does that mean? The robot has to be either here, right in front of this door or it has to be in front

of this door.

But we started off with the belief that had robot in front of one of the two doors and now, |
moved right, correct and again | see a door. So | know from my observation probabilities that it
has to be one of these two places but I know from my motion model it has to be one of these two
places likely, therefore, | am most probably here right and most probably here. So how does that

work in this particular case?

(Refer Slide Time: 27:05)
e

lllustration of Particle Filter

bel(x)

>
+

bel(x)

Introduction to Robotics

So now let us pick a few particles now. | am going to tell you how this whole importance
resampling part works. Now, we already saw how we projected one particle and got this, so we
got this particle here and how we projected, now we could have projected this forward and let us

say, we got another particle here, I am just picking 3 particles as samples.

And then, this particle could have come from either the motion models telling me that a particle
has not moved at all, there is some probability of xt being the same as xt minus 1. Maybe that is
a chance of a failure of the action, or it could be that there were some stray particles here or there

to accommodate for background noise, and one of those particles kind of happened to be here.

Just whatever is the reason, | am going to pick these 3 particles as samples to tell you how the
importance resampling is going to work. So when | start off, when | do the prediction update,
when | am actually moving these particles forward based on the action, all of these start out with

an equal weight.

So all of these would have notionally equal weight, | have not assigned weights yet, But now, |
am going to assign weights. So how are my weights going to be? They are going to be, looking
at the probability, | am going to add the probability that the observation happens here. So
literally, so the weights will now, there will be a lot of weight for this guy because | have my, so

this is my posterior.

I have updated this, so this is my prediction bel bar and this is my, it is going to be the overall
weight assigned to this particle. So these now, sizes have become proportional to the weight and
these you can see that, have actually gone down from their default value. These weights have
become very, very small. Now, what | am going to do is | am going to resample these particles
according to these weights.

(Refer Slide Time: 29:06)
|

lllustration of Particle Filter

bel(x)

Introduction to Robotics

» As with the previous algorithms, the particle filter algorithm
estimates the belief bel(x;) recursively from the belief
bel(x;-1).

Algorithm Particle_filter(X; ;. u, 2):
X=X=0
form =1to M do
sample ;" ~ p(zy | up, zy"y) o=
v =p(n|z) -
X=X+ (" w
endfor ——
8: form=1to M do
9: draw i with probability o w;’
10: add " to X,
11 endfor
12: return X,

SR N ey

Introduction to Robotics

When | resample the particles according to these weights, then what will happen is | will, more
and more particles will end up in this region as opposed to the other regions and I can see that
even though this was my bel bar update, after | do the reweighting, after I assign the weights and

I do the resampling this becomes my bel.

So this is, this was my original bel. This is bel of xt minus 1, this is bel of xt, and this is bel bar
of xt. Make sense? So this is exactly how the particle filter will operate. So | will have a set of
particles, to begin with. I will have a set of particles, to begin with, I will pick each particle from

here, 1 will apply my action, and | will sample from the resulting location.

So I will have a distribution over where this particle could end up, so | am going to sample from
that. So | am going to basically take this set of particles and 1 am going to move them and so, |
am going to get something like this. So there will be a slightly you know, spread out distribution
that looks like that.

And then, I am going to accommodate my observation probabilities. | am going to accommodate
observation probabilities and observation here, as you know, was that | saw a door, therefore, I
am going to accommodate that. And wherever the particles correspond to you know, the motion

being reliable and the observation matching what you see, those are going to get high weights.

Now, | am going to resample these particles. These particles should have now moved out toward

here. I am going to resample them according to the weights. So probability proportional to the

weights and | will end up with something that looks like this. There will be lot, lot of particles in
this space. So many of these particles will end up coming here and fewer and fewer particles

would go here.

Basically, I will be resampling the same particle multiple times because as you can see, that if
my density here is going to be much higher than what | had as densities here, so more fraction of
my M particles, my capital M particles, a larger fraction of those should end up in, should end up
in this region. A larger fraction of those particles should end up in this region. So how is that

going to work out?

So a lot of particles that are here will receive a small weight and when | resample, many of them
will not even get sampled. Remember | am sampling with replacement so if these particles have
a small weight, they will not get sampled. But the particles that are here, and because they have a
large weight now, all the particles here, they have a large weight, will get sampled again and

again.

Remember, | am sampling with replacement. Even If | sample high weight particle once, it goes
back into the pool so I might actually sample it again. So many of the particles that correspond to

this part of the state will keep getting sampled again and again, so | will be repeating those.

So | am basically going to make my, the particles, set of particles get concentrated around this
region, maybe there will be one or two occasional particles that are spread out but most of my
particles are going to be here.

So the next time | am going to do a forward or a backward action or whatever motion here, that
activity is going to basically be applied to this part of the state space and less likely to the other
parts of the state space. So mostly, the particles will get concentrated in one region of the state
space. So | hope that makes sense.

So what I am going to do now is just go back and look at the algorithm once more, so that it
makes, it is now people can see it more clearly. So what we do here, we start off with a set of
particles that represent belief at time t minus 1. | have my action at time t and | have my

observation at time t. We saw all of these.

The action was to go right, observation was see a door. And now, for every particle that | have in
X, script xt minus 1, | am going to take each particle one at a time, that is, | am taking a particle, |
am applying action ut, I am going to apply action ut and then pick a new particle xt m. So that is

a particle corresponding to t minus 1.

And this particle essentially, you can think of it like, hey, I am moving my state from xt minus 1
to xt because | did action ut. So that is basically it. So at this point, at step 4, we saw that the
second belief that we had, that the bel bar is formed by doing this.

The next thing | do is assign weights depending on how likely it is that | am going to see an
observation given that this is the particle that | have drawn. And it turns out that, so the places
where we can see a door is the one that we are likely to pick and so, the weights for those are
very high.

And then | am going to assign the, | am going to add the weights to my particle and create xt bar
and | am going to resample from that. And when | resample from that, | am more likely to
sample in particles from regions which correspond both to the motion prediction as well as to the
observation probabilities and that is essentially what you saw here. So this is what happens when

I do the resampling. And so, that basically what the particle filter does.

(Refer Slide Time: 34:57)
[

Challenges with Particle Filters

Finite number of particles: The particle filter approximates
the true distribution only in the imit as M — x. For finite
number of particles, the representation is biased. Negligible
effect with reasonably large M, say 100.

High variance: Due to the randomness introduced by the
resampling phase, the particle filter estimator as a whole has a

high variance. Address this by reducing the rate of resampling,
or use a low vanance sampler.

If we resample too often, we lose variety in the samples. If
resample too infrequently, we will have a majority of the
particles in low probability configurations.

lllustration of Particle Filter

belix)

Introduction to Robotics Prof. Balaraman Ravindran

So particle filters are great but there are some challenges with using particle filters. So the first
challenge is we use a finite number of particles. So you know that we said that when M tends to

infinity, when capital M tends to infinity, the particle filter approximates the true distribution.

But for a finite number of particles, there are all kinds of problems that come in and we typically
say that the representation is biased because of the small number of particles that you are using.
And if there is more nuanced, more complex distribution, you might not have enough particles to

represent the whole region.

But then what we typically find in practice for most applications that we are interested in, in the
robotics domain is as long as M is reasonably large, and say even 100 or maybe in the 100s if

you will, this bias effect is negligible except in very, very rare cases.

And therefore, for all practical purposes, you can still use the particle filter but you have to use a
large number of particles. You cannot just say that | am going to use 3 particles, 4 particles; you
will have to use a large number of particles to make sure that you do not get into the biases
associated with the finite number of particles.

So the second problem is there is a high variance that comes in when you are using a particle
filter because of the randomness that we are having in the resampling phase. So what happens is,

if you remember what we saw here in this particular case, a lot of these samples that were

retained in your bel representation were essentially the same sample being repeated. So, and this

is something that will always happen.

Suppose | had like 10 samples here and | had 10 samples here, when I do the resampling, | am
going to get, say, 18 samples here and 2 samples here. And to, just to keep the numbers small; so
I had 10 here and 10 here, now I do the resampling, | am going to get 18 here and | am going to

get 2 here.

So that 2 is not a problem but if the 18 is going to have a lot of repeated copies of the same 10.
So basically, what is happening is | am kind of reducing the variety in the, in the particles. Now,
that is fine. You will think that reducing the variety in the particles will reduce the variance. It

does but that is for a specific run of the particle filter.

If I give you the same sequence of observations and same sequence of actions and observations
and ask you to rerun the particle filter, just because there is a randomness here in which particles

I choose to resample, I might end up with a different set of particles being repeated.

Again, the variance could be low for that particular run but across runs which particles are
retained and which particles are used for continuing to update my thing could be very different
because | am going to concentrate on a small number which are keep repeated, which are

repeated. | am going to concentrate on small number of particles that are repeated.

So this could lead to a huge variance in the estimate. So one way of getting around that is to say
that, hey, this I am getting this only because | am resampling so often. So every time I resample |
kind of reduce variety in the particles. So why do not | resample you know, maybe at a lesser

frequency. So | can reduce the rate of resampling.

Instead of resampling after every movement, maybe | will resample after every 10 movements or
every 20 movements or every 30 actions, instead of resampling after every action. So that is one
way of doing it. Then there are other things called the low variance samplers for particle filters
which we could use and | am not getting into that. I mean it is discussed in the book if you are

interested in looking at it.

But then, when | am going to reduce the rate of resampling | have to be very wary of some
things. So we already saw that if we resample too often, we lose the variety in the samples. But
on the other hand, if we resample too infrequently, if I say | am going to resample every 100
actions or every 200 actions or something like that, what will happen is the problem that I

pointed out earlier, you remember? | said, what happens if we do not do resampling?

I can still reconstruct my belief just by using the particles I get for my bel bar and the weights,
but what will happen is as | keep doing these updates again and again and again, the particles are
more likely to move into low probability configurations and eventually, the probability is to go to
0 of the particle being there and that is going to create a problem because my set of particles will
become not very representative. | will only have a very small set of particles, not the M that |

thought I have.

So if | resample too infrequently, we will have majority of the particles in low probability
configurations. So we have to figure out what is the right rate of resampling so that we can
maintain this and it comes from you know, it is lot of factors that go into it.

It depends on the complexity of the motion model, how noisy your sensors are, how noisy your
actuators are, and so, typically, it takes you a few you know, iterations before you can get this,
this whole thing correct. And it comes, it becomes easier with more experience using these. And
particle filters again are very, very popularly used in many of these state estimation problems.

(Refer Slide Time: 40:44)

Challenges with Particle Filters

3 Divergence between proposal and target distributions:
Consider the case where the sensors are deterministic and the
motion model is noisy. Almost all particles will have an
importance weight of 0. One way to address this is to assume
sensors are noisier than they actually are.

4 Particle Deprivation: In high dimensional spaces, finite set of
particles are always sparse. Random resampling could cause all
particles near the true state to vanish. One way to address this
is to periodically add a small number of new particles samples

uniformly over the space.

Introduction to Robotics Prof. Balaraman Ravindran

And there are couple of other challenges. So one problem is that, so the bel bar and the bel
distributions can become very, very different when you know when we have sensors and

actuators that have different levels of noise.

Here is an extreme example. Consider the case where the sensors are almost deterministic and
the motion has some noise. So now, what happens is | move forward. | move forward and then
my, my motion model is going to smear my particles out over a range. But let us say that my
sensor is very accurate. It can tell me exactly what the x and y, or the x-coordinate is for the
robot.

Now, since my motion model is noisy and it has smeared out the particles, most of the particles
are going to have a weight of 0 because they are not at the right x, y coordinates. In fact, given
the way this whole thing is going to operate, almost all the particles will have a weight of 0
because maybe 1 or 2 of them will actually end up at the exact right coordinates, most of the

others would be slightly off.

And since my sensor is deterministic and gives me the exact x-coordinate, all the others, the
probability of z which is at specific x-coordinate given the location of the particle would be 0. So
what is going to happen is my weights almost all fade away to 0. And now, sampling with

replacement is just not going to make any sense. Maybe there are one or two particles or, which
will have a non-zero weight. I will basically be repeating those particles again and again.

Now, this will be very, very different from what is actual belief that | wanted to represent. And
in fact, what happens is, maybe in one step you get that but as you keep repeating these updates
multiple time, you have all your weights go to O in which case you will have no particles to

resample.

So one of the ways that, one of the simple ways that people address this, it typically it comes
from having sensors that are too focused and, but you are not able to predict the motion
correctly. So what people do is they assume that the sensors are noisier. Basically, you look at
your probability of z given x and you add a little bit of noise to it.

You do not use the actual probability of z given x, you add more noise to it than is actually there
in the sensor. And this allows you to get around. This is a very cheap and simple way of making

sure this divergence problem does not happen.

And the last problem, last challenge, 1 should not say last problem, last challenge in
implementing particle filters is something called the particle deprivation problem, or particle

deprivation challenge.

So typically, I mean we have been talking about one dimensions and other things because easy to
draw but typically, you are operating in a very high dimensional space. So a lot of different state
variables that you have to take care of while representing the robot. And any finite, any small
finite set of particles, even | am talking of 100, 200, or something like that it will always be

sparse in a high dimensional space.

So when I am randomly resampling things, when | am especially, when I am initially, when | am
doing my random resampling, so it could, I could very easily come to a point where particles that
are close to the true state vanish. And so, instead of being at the exact correct state, instead of
being close to the true state. | might actually sample things that are slightly farther away, and

given the space is high dimension, so everything is sparse.

There will be only a few particles, to begin with, that were very close to the true state, and now,
they will vanish because of the random resampling. And I could start sampling slightly farther
away from the true state but then, once | start projecting those particles into the future, they will
move further and further away from where the actual state of the robot is and | might come to a
point where | might not have any particles close to the true state for me to make any reasonable
belief updates. | might actually be completely deluded into thinking somewhere else.

So one way to address this is to not resample M particles every time, resample something less
than M and then add a small number of new particles, sampled uniformly over the space. And
just randomly you know, reset some of the particles instead of where | was projecting it and
going, just randomly reset the particles to somewhere over the space and then continue that.

So your importance resampling, instead of sampling M states, M particles will sample numbers
M minus k where Kk is the number of particles you add to refresh the particle set. And you do not
have to do this every time step. If you do this every time step then you are actually losing the
whole effect of the particle filter. You do this, say, every few time steps, maybe every 10 time

steps, or every 100 time steps.

Or you could do something more cleverer. You could look at the variance of the particles. If you
find that the particles are all you know, kind of clustering around one state, then you could say,
hey, | am going to do a resampling. Then I am going to do this refresh of the particles. So you
could say, okay, the variance of the particle space is getting low. I am going to just stop and

resample or add a new set of particles; not resample, it is refresh.

I am going to just refresh the particles and so, | am going to take k new particles and then add
them randomly over the space, and then | will start updating. Hopefully, it will cover up for any,
any problems that could be there.

So particle filters are very powerful. They allow us to model arbitrary distribution, they are
simple to implement. And then, in many cases, people have very, very efficient implementation
of particle filters, so that you can do this at run-time so the robot movement is not impeded by all
the particle computations that you have to do.

And other thing is | did not say anything about what the motion model and what the observation
model should be. I mean they could be anything, | do not have to assume any specific form for it
as long as it is easy to compute so that I can plug that into my lines 4 and 5 of my algorithm and |

can do this. As long as it is in some form where it is easy for me to sample from.

And there are some caveats, there are some things that you have to be careful about but given
advantages that you get of using particle filters, so it makes sense to look at these challenges and
make sure that you are addressing them. And like | said, there are easy ways to address these
challenges and there are more robust ways to do this as well. And so, we just go ahead and use

particle filters. I will stop here.

