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Hello, everyone. Welcome to the first module in Week 10. So this week, we are going to 

continue looking at recursive state estimation equation. So the last week, we looked at the base 

filter algorithm. 

And so, essentially, so this is how it operated. So we were given the belief in the previous state. 

And then we had the control action ut, and also the measurement or observation zt that we made. 

And based on this, we ended up computing the revised belief for the state xt, for the time step t. 

And the way we did this is we first computed bel bar xt, which is essentially applying the motion 

model, which is given by p of xt given ut xt minus 1. Applying the motion model on the belief 

state, on the prior belief state. And then making a correction update or a measurement update, 

based on the actual sensory inputs that we get or the measurements that we need. And there we 

used the measurement model, which is p of zt given xt, and the bel bar that we computed in 

between. 

So this is essentially the structure of the base filter algorithm. This is the same structure we will 

be following for all the algorithms that we will be looking at this week as well. So one of the 



important things I want to remind you is that when we looked at the base filter algorithm, it is 

more of a conceptual algorithm. So I did say that, for practical implementation, we will run into 

problems computing the eta, so we had to look at simpler versions where we make assumptions 

about the model. So in the base filter algorithm that we looked at, we made no assumptions about 

the transition model. So it could be of any form. 

And similarly, we made no assumptions about the belief distribution nor about the measurement 

model itself. So all of these were assumed to be arbitrary probability distributions or mass 

functions, which we could then manipulate. 

And the very simple example that we looked at, they were all multinomial distributions. In fact, 

they were all binomial because it just only two outcomes that we were looking at. And that is the 

setup that we had last week. So this week, we will first start looking at a family of algorithms 

called the Gaussian Filter algorithms. 
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So here, the basic assumption with Gaussian filter algorithms is that the, the family of belief 

distributions that we are going to use. The belief distributions are going to come from a 

multivariate normal distribution. So the multivariate normal distribution here, which we will 

denote by the symbol n, of mu comma Sigma, where mu is the mean of this distribution. And 

Sigma is the covariance matrix. So you should be familiar with this, if not earlier, at least after 

looking at the revision videos from last week. 



So the density itself is given, the probability of x for under the normal distribution, n mu Sigma, 

it is actually given by this expression, as you know. So it is 1 by 2 pi root 2 pi, nearly root 2 pi 

Sigma, and e power x minus mu squared by Sigma. So this is what we know from the univariate 

and the multivariate version is this. 

And the idea behind the using this is that my belief state is going to be such that that is 1 true 

state and I have some margin of uncertainty around the true state. So if you look at the figure 

here, so the true state will be somewhere there. The true state will be somewhere there and I have 

some kind of uncertainty around what the true state is and that is represented by the Gaussian 

distribution. 

So that would mean that at every point of time, my belief is such that there is some known true 

state and uncertainty around that. So this is fine. So if you think about how we were doing it 

earlier, so earlier, let us say that there were like 5 different states that the robot could be in; I 

basically had 5 numbers. 

So which, which looked at the probability that the robot is in each 1 of those states, if you 

remember the door open door closed, so the 2 states where the door is open, or the door is closed. 

And basically, I had two numbers that represented the probability that I was in a state with the 

door open, and the probability that I was in a state with the door closed. 

There is really, there is no need to have any notion of similarity between these states because 

they were just numbers. There are just two independent numbers. Actually, I should not say 

independent numbers, were just two numbers that I were using, that I was using for representing 

this. 

I could have many more such state, not just 2. I could even have like 100 different states, which 

the robot could be in. And I would end up using 100 different numbers for representing the 

probability. 

But once I moved to this kind of a Gaussian setting, so what is the most important thing, apart 

from the fact that I am looking at a single true state and the margin of uncertainty around that; 

the other important thing is that I am also looking at a notion of distance in this state space. 



So the earlier, we were doing the other belief updates, I really did not have a notion of a distance. 

The, none of the probability distributions that I was dealing with had a notion of distance as an 

integral part of it. But now, when I get into a Gaussian family of distributions, so the notion of 

distance becomes very important because I have to compute what is the distance that x is from 

the mean. So very simply, there itself. 

So when I say, there is a region of uncertainty around a true state, that means, there is a notion of 

distance that allows me to model this region of uncertainty. So far, I, in the basic filter algorithm, 

I did not quite need to have a notion of distance. It is kind of moot if you think about it. In almost 

any robotic problem that we are looking at, we would have, we would have a notion of distance, 

very natural notion of distance. 

So it is not a very, very critical thing to worry about. But I just wanted to point out that from now 

onwards, we will have to worry about this notion of distance between the in the state space, so 

we actually have to worry about a place that has a distance defined on it that would limit the kind 

of representations that we can use for the statement represent the state space. 

And another thing to note here is that in the earlier case, so when we had like 5 or 6, let us say 

we have 5 or 6 states in which the robot could be in, and I was using 5 or 6 numbers to represent 

the probability distribution, that could have been multiple states, which the robot considered as 

equally good candidates. So my belief distribution could have been multimodal. 

But when I actually look at simple Gaussian distributions, when I start looking at a single 

Gaussian distribution, it actually turns out to be a poor choice, when these kinds of multiple 

hypotheses could exist. If this belief distribution could be multimodal, then the Gaussian cannot 

capture it. 

So all of this is great. But the Gaussian assumption is a very powerful assumption because it 

makes computation rather simple. And it is not often the case that we end up in situations where 

there are multiple distinct hypotheses and that for Gaussian filters are very popular family of 

filters that are used very widely in practice. 



(Refer Slide Time: 08:03) 

 

So the first Gaussian filter that we are going to look at is called the Kalman Filter. So apart from 

assuming that the belief is, a belief is a Gaussian, the Kalman Filter makes the following 

assumptions about the Gaussian distribution. 

So we already know that the dynamics, both the movement model, the motion model, as well as 

the measurement models, both of these are satisfying the Markov assumption. But now, we will 

addition, we are going to assume the following for the motion model. 

The first thing we will assume is the system follows a linear motion model. So what do I mean 

by that? So the state transition expression is given by that. So if I am given xt minus 1 and a 

given ut, so the new x is determined by a linear combination of At xt minus 1, and that At is just 

a set of coefficients for xt minus 1 and Bt times ut, again, the set of coefficients for ut, plus some 

kind of noise to account for the stochasticity. 

Remember, we had earlier, we had the probability of the state transition, we had this probability 

expression. What is the probability of xt given ut and xt minus 1? To account for this noise, 

account for the probability. So we are going to assume that there is a noise term which is given 

by epsilon t. Let me repeat it again. 

So the dynamics is linear, in the sense that xt is given by xt minus 1 times some coefficients, at 

without basically constant plus ut, which is the action that you take at time t, times some other 

set of coefficients. So xt, this whole expression is linear in both xt minus 1 and in ut, and to take 



care of the stochasticity, we actually assumed there is an additive noise denoted by epsilon t, and 

this additive noise is assumed to be 0 mean and with the variance Rt. It is assumed to be a 

Gaussian with 0 mean and the variance of Rt. 

So this is what this notation is. So epsilon t is assumed to be a Gaussian random variable, a 

Gaussian noise random variable with 0 mean and a covariance of Rt. So this essentially means 

that if you keep on repeating this transition many, many times, I may go to from xt minus 1, I 

apply ut and I end up at xt. So the noise would average out. 

So I will basically have 0 noise and then the linear model will be the correct prediction, just the 

linear part alone. So without the just this part alone would make the correct prediction in 

expectation. So that is essentially what we are assuming. 

Now, the total state transition property, remember, that is what we are interested in. The total 

state transition probability p of xt given ut and xt minus 1 can now be written as a Gaussian 

variable, whose mean is given by the linear part of the dynamics At xt minus 1 plus Bt ut, and 

the covariance is given by Rt, which is the covariance of the noise. 

So this is fairly straightforward. So I take a Gaussian random variable and I add a deterministic 

fixed quantity to it. So, therefore, the overall distribution of the entire expression is now has a 

mean of that fixed quantity that I added because originally, it was 0 mean and now, and the 

covariance stays the same because there is no noise in the term here. Make sense? 

And of course, I can, I can write it out in in a little bit more scary form, but this is the actually the 

multivariate Gaussian distribution written out with the mean, At xt minus 1, and plus Bt ut and 

the covariance of Rt. It is rather straightforward. So do not get scared with this expression. 

So just to recap, we are assuming that the motion model follows a linear dynamics. So there is xt 

minus 1 and there is ut. And the expression for xt is basically linear in both, xt minus 1 and in ut 

plus an additive Gaussian noise, which is 0 mean and with a covariance of Rt. So I hope, I hope 

that is clear to people. 
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And so, what are the other assumptions we make? The second assumption we make is that the 

measurement probability, the measurement model should also be linear in its arguments. So what 

is the argument of the measurement model? Remember, the measurement model, we are looking 

at the probability of zt, which is the measurement at time t, given the state is xt. 

So that translates to, in a linear model that translates to this expression. So zt equal some set of 

coefficients Ct times xt plus a noise model delta t. We had like epsilon t earlier. Now, we will 

use a noise model that is given by delta t. And so, delta t is again, a 0 mean, Gaussian, with the 



covariance denoted by Qt. So earlier, when I was specifying the motion model earlier, let us go 

back. 

When I would have specified the motion model, I would have needed to give you this 

distribution. So and how did we do it when we did the example? So for every value that ut and xt 

minus, minus 1 could take, we specified the probability for every value that xt could take. If you 

remember the sample example that we looked at, for every value that xt minus 1, and ut could 

take, and for every value that xt could take, we specified a probability. 

But now, our job is slightly simpler. So we do not have to run over all possible values of this. If I 

want to specify the state transition probability, all I need to specify are Rt, At, and Bt. So I have 

to specify At, I have to specify Bt, and I have to specify Rt to specify the full transition model. 

Likewise, for the measurement model, I have to specify Ct, which is the linear coefficients for 

the measurement model. As well as Qt, which is a covariance matrix of the noise that I add in the 

measurement model. 

So the overall measurement probability again is given by a Gaussian, where the mean is given by 

Ct xt, and the covariance, which is given by Qt, just similar arguments as we had in the previous 

slide. 

So makes sense? Because I am adding a 0 mean Gaussian variable with Qt as a standard 

deviation to fixed quantity, so the overall probability distribution has a mean of Ct and xt, Ct xt, 

and a covariance of Qt. And again, I can write it out in the, the full multivariate Gaussian 

expression, which is basically this. 

Then what is the third assumption that I am making? I said I am making 3 assumption, so the 

third assumption I am making is that the initial belief distribution I started with, which is bel x 

naught, if I remember. So that is something that I started with the initial distribution. 

And earlier, so we had actually thought of it as something uniform. In the numeric example we 

looked at, we had bel x naught equal to open as 0.5 bel x naught equal to close as 0.5. Again, the 

belief was just a set of numbers. But here, to make sure that our entire computation is tractable, 

we assume that the belief distribution is also given by a normal distribution, just like the noise 



that we had in the two models. And we assume that the mean is mu naught, the covariance 

matrix is Sigma naught. 

And so, basically, that is the expression. So we have n of mu naught Sigma naught, and 

therefore, bel x naught, which was the distribution, belief distribution at time 0 is essentially 

given by a covariance matrix with mean mu 0 and variance, covariance Sigma 0. And therefore, 

we can we can see what is going to happen. So bel x naught has mean mu 0 and Sigma 0. So bel 

x1 would have a mean of mu 1 and Sigma 1. 

Remember that the measurement model and the motion model, the transition models do not 

change, they are given to you a priori. So you are using that and then, you are only refining your 

belief over time. What will change are the actions of the measurements you take, but the model 

themselves would stay fixed, or the distributions themselves would stay fixed. 

So your, At, Bt, and Ct, and your Rt and Qt do not change. But on the other hand, the belief 

keeps changing at every time step because that is what you are updating in order to estimate the 

state in order to localize yourself as we will see later. 

So your belief distribution will keep getting updated. So bel x naught is given by mu naught and 

Sigma naught and bel x1 would be given by mu 1 and Sigma 1, bel x2 would be given by mu 2 

and Sigma 2, and so on, so forth. And your entire base filter algorithm will now reduce to an 

algorithm where you update mu t and Sigma t given mu t minus 1 and Sigma t minus 1 and ut 

and zt. Is that clear? 

So your belief distribution now is the one that gets updated. Therefore, your mu naught and 

Sigma naught will keep getting updated. And so, you will maintain your belief just by updating 

these true values. 

So just to recap, your system dynamics is defined by multiple quantities. You have At, you have 

Bt, you have Ct, then you have Rt, and you have Qt. So these are the quantities that need to be 

defined for specifying your system model. That is both the transition probability and the 

measurement probability. 

And for representing your belief, you need two quantities, which is mu and Sigma. So you start 

off with some basic assumption mu naught, and Sigma naught. It could be a very, very flat 



Gaussian distribution if you will, without a very significant concentration at the mean. The 

Sigma, Sigma naught can actually spread out the probability distribution as much as you want 

but the more informed your prior distribution is, the more quickly you are going to converge to 

something meaningful. 

And at every time step, you use your system parameters and your current action and 

measurements in order to update your belief distribution as to where you are in the state. And 

hopefully, as you keep moving around, your belief becomes more and more concentrated around 

the actual state. So, and we will see how this operates in a bit. 
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So like we said, so we are going to estimate belief xt, based on belief xt minus 1, ut, and zt. So 

very similar to the base filter algorithm. So these are the steps of the Kalman Filter algorithm. 

And steps 2 and 3 are actually updating bel bar. Steps 2 and 3 are updating bel bar. Steps 4, 5, 

and 6 are updating bel xt. So 2 and 3 update bel bar xt; 4, 5, and 6 are for computing bel xt. 

So I am not going to get into the complete derivation of the Kalman Filter here, it is a little 

cumbersome. And so, what we would do is give you some material to read up if you are 

interested in looking at the derivation. Alternatively, I mean, so this is something that you could 

just, you know, take on faith. And then say, yeah, this looks like the right expression, but I am 

not going to let you do that. So I will give you some material, so you can look it up yourself. But 



so essentially, the point here is that this is more additional reading for you to look at how the 

derivation comes up. 

So the idea here is that, so mu bar and Sigma bar are going to represent my bel bar. And if you 

look at it, it kind of makes sense. Intuitively, it makes sense. So what is my mu t hat is? So I am 

going to take my old mu t minus 1, which is I have that because I know bel xt minus 1. So bel xt 

minus 1 is represented by these two entities, mu t minus 1 and Sigma t minus 1. So I know my 

mu t minus 1, which is essentially my previous position; my expected position in the previous 

time step. 

So I am going to assume that, hey, look, I am going to take mu t minus 1 and I am going to apply 

ut to that. I am taking mu t minus 1, which is my previous position, I am applying ut to that and 

this is the linear part of my model. This is the linear part of the model if you remember that. So 

you had A times xt minus 1 plus B times ut, gives you xt plus 1; plus there was this noise term 

epsilon t, that was giving you ut plus 1. 

So now, what we are going to do is that epsilon t is essentially given you given to you by Rt. So 

what is that epsilon t going to do? It is going to basically make you more confused about where 

you are. So your initial confusion was Sigma t minus 1, your initial confusion about where you 

were was Sigma t minus 1 and Rt is the additional noise that you are adding. Rt is additional 

noise you are adding, that is a covariance matrix for the, the transition. So that is additional noise 

in the transition. 

So your Sigma t bar basically is a function of your original noise where you were. Your original 

uncertainty about your belief that you are at mu t minus 1 plus the mu noise that is introduced by 

the motion. So the mu t bar and Sigma t bar together gives you a bel bar of xt. 

Now, that is basically your motion model or the prediction. The belief, belief after you do the 

prediction. And then, that is your prediction update and now, this is your correction update or 

your measurement update. And essentially, so this quantity here is called the Kalman gain, as we 

will note in the next slide as well, this quantity is called the Kalman gain. 

And so, your mu t bar, which is where you assume you are, is corrected by the measurement that 

you make. So the zt is the actual measurement you make and Ct mu t bar is the prediction, the 

measurement, the linear part of the measurement model that you have, remember? So Ct mu t bar 



is okay if I was really at mu t bar. And so, this is the measurement I should have made if there 

was no noise, but zt is actual measurement I make. So that difference is basically going to 

change what my mean is. 

And likewise, I have a complex function here that also tells me how much noise I will have to 

add based on the actual noise that is expected in the measurements. So that gives me my mu 

Sigma t. So this part of the derivation is a little, not too hard; there is just a little involved. And I 

encourage you to just follow it offline. 

So at the end of both these updates, so this is the prediction update, and that is the measurement 

update. So there is a prediction update and then, you have the measurement update. And after 

that, you get the new belief state, which is given to you by mu t Sigma t. 
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So this is exactly what we were saying earlier. So lines 2 to 3 are the prediction step. And lines 4, 

5, and 6 are the measurement update. And Kt that we compute in line 4, as you saw earlier is 

called the Kalman gain. So the Kt is called the Kalman gain; 2 to 3 are the measurement updates, 

I am sorry, 2 to 3 are the prediction updates. And 4, 5, and 6 are the measurement updates. So I 

hope that that is clear. 

So the Kalman Filter makes very strong assumptions. It assumes, A, that the dynamics are all 

linear, the main component of the dynamics is linear. The motion model is linear, the 

measurement model is linear. So this is a very strong assumption that it makes. And the second 

assumption it makes is that the noise or the probability distribution that you are seeing for both 

the motion model and the measurement model, the noise model is as Gaussian. And it also 

assumes that the belief is a Gaussian distribution. 

So basically, there are 3 things. So the linearity assumption, and the Gaussian assumption on all 

the 3 models that you use. So this makes the life a little easier. So you could basically, I mean if 

you think about it, these updates are actually just simple matrix multiplications, you can very 

easily implement it on your favorite tool like MATLAB or whatever is it that you have. 

This a simple matrix multiplication and inverse operation, so you can implement it very 

efficiently. And you do not have to worry about the computational difficulty that I was pointing 

out in looking at the normalizing factor. And it is also nice in a way because everything is 



Gaussian, you are guaranteed that at every state your Bayesian, your, at every state, your belief 

distribution as well is Gaussian. 

If you start off with a Gaussian belief, it will stay a Gaussian distribution because your dynamics 

and your measurement model both have Gaussian noise. So this is the reason we make this 

strong assumption because it makes computation so simple. 

And the reason Kalman Filters are very popular, Kalman Filters and they are a family of filtering 

algorithms are very popular is because these assumptions do work in practice. And or slightly, 

slightly stronger versions of this work in practice. And so, let us look at how the whole Kalman 

Filter thing would look like. 
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So let us take a simple one-dimensional localization scenario. So I have a robot that is moving on 

the horizontal axis, moving in x-coordinate. I am interested only in looking at what is the 

displacement of the robot along the x-coordinate. So I am just looking at this, I am not, I am 

going to assume that the robot does not move in any other direction. I am not worried about the 

effectors of the robot or anything. 

So my state is only the displacement along this line just to make things a little easy and easier to 

visualize and to draw as well. And I also assume that the robot has a GPS sensor that can 

basically query its location and the sensor has some amount of noise obviously, especially, if the 



robot is indoor, the sensor is going to have a lot of noise. But for the time being, let us assume 

that we have a GPS sensor that gives you a rough idea of what the location is. 

And we are also going to assume whatever we had looked at earlier that the motion model is 

linear. So in terms of the velocity with which the robot moves and the original location, so we 

can write a linear model as to what its new location should be. And we are also going to assume 

that the measurement model is linear with Gaussian noise. 
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So this is how the Kalman Filter is going to look like. So I am going to start off with some initial 

beliefs. So let us look at one diagram at a time. So let us, let us look at this one; that is the first, 

this the initial belief. Let us look at the initial belief alone. 

So I have, this is the belief that I am starting off with. So what does this mean? This means that 

that is my mu t, that is my mu t and I have some kind of a Sigma t that represents the current 

belief, current noise in the belief, or kind of uncertainty in the belief that I add this x mu t. So 

that would be my mu t and I will have a Sigma t here. 

Now, what do I do is I actually make a measurement. So this is my first thing to do, I make a 

measurement. So the measurement tells me, hey, look, this is where you are likely to be. So the 

measurement’s mean is here, the measurement’s mean is here and the noise in the measurement 

is this much. So this is basically what my measurement model tells me. 



Now, once I incorporate this uncertainty into my location, you can think of it as I do not move at 

all. So my belief does not change because I did not make any movement. So no, no, no, no-op; so 

my belief, my location does not change. So my bel bar is the same as my bel; bel xt minus 1 is 

the same as bel bar xt because I did no movement when and then now I do a measurement. 

So given that this is the noise associated with the measurement update that I have made, now I 

basically, incorporate my original noise, which is this, which is my, remember, now this is now 

my bel bar of xt plus my measurement. Now of these together, so give me that as my belief state. 

So that is my belief right after this. 

Now, what I do is I move to the right. So basically I say that I am moving to the right here. Now, 

after I move to the right, I have to now apply my movement model. So I know what my action is, 

my action was move to the right, I apply my movement model. Now, my movement model also 

has some kind of noise in it. 

So what happens is, even though I was so certain about where I started out, this is where I started 

out, this is my bel xt now. This is my bel xt. Now, my bel bar xt plus 1 becomes a lot more 

noisier but at least you can see that the mean has shifted to where it should be, so this was where 

the original mean was. This is where the original mean was, now that it has shifted here and that 

is the effect of the linear part of the model and the fact that the variance is now increased, the 

variance is increased is because of the noise in the movement model. 

Now, at once I have this, this is my bel bar, I make a measurement and the measurement gives 

me a mean that is somewhere here. That is what the measurement model tells me and that is the 

noise around the measurement model. So putting these together and that is my final belief at xt 

plus 1. 

So I started at t minus 1 with the belief of that, then that was also because I did not move that 

was my belief, bel bar of xt, xt. And then, I make a measurement, I integrate that and I get my 

bel xt. Then I make a movement here, which a movement was go to the right, that kind of shifts 

my mu t minus 1 to mu t bar and also kind of spreads out the probability mass because of the 

uncertainty in the movement. 

And then, I make a new measurement, so that is a new measurement that I make and that tells me 

this is the more likely location. So I combine the bel bar and the measurement and finally, get my 



bel xt plus 1. So that is how the Kalman Filter will look, will work. So every, every point of 

time, you can see that all the intermediate computations that we do are all Gaussians or all 

normal distributions. So that makes it easier for us to do the computation. 

So far, we looked at the simple Kalman Filter algorithm, which assumes everything is Gaussian, 

but as we know that, you know, the fact that the movement model and the measurement model 

are both linear is a very strong assumption. So we look at ways of getting around that, one, by 

looking at a slightly different version of the Kalman Filter and then, by looking at other more 

complex filters as well in the next few lectures. 


