
Introduction to Robotics 

Professor Balaraman Ravindiran 

Department of Computer Science 

Indian Institute of Technology, Madras 

Lecture - 31 

Tutorial - 1: Probability Basics 

(Refer Slide Time: 00:14) 

 

Hello and welcome to the first tutorial in the Introduction to Machine Learning course. My 

name is Priytosh, I am one of the teaching assistants for this course. In this tutorial, we will 

be looking at some of the basics of probability theory. 

Before we start, let us discuss the objectives of this tutorial. The aim here is not to teach the 

concepts of probability theory in any great detail, instead, we will just be providing a high-

level overview of the concepts that will be encountered later on in the course. 

The idea here is that for those of you who have done a course in probability theory or are 

otherwise familiar with the content, this tutorial should act as a refresher. For others who may 

find some of the concepts unfamiliar, we recommend that you go back and prepare those 

concepts from, say, an introductory textbook or any other resource, so that when you 

encounter those concepts later on in the course, you should be comfortable with them. 
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Okay. To start this tutorial, we will look at the definitions of some of the fundamental 

concepts. The first one to consider is that of the sample space. The set of all possible 

outcomes of an experiment is called the sample space and is denoted by capital Omega. 

Individual elements are denoted by small omega and our termed elementary outcomes. 

Let us consider some examples. In the first example, the experiment consists of rolling an 

ordinary die. The sample space here is a set of numbers between 1 and 6. Each individual 

element here represents one of the six possible outcomes of rolling a die. Note that in this 

example, the sample space is finite. 

In the second example, the experiment consists of tossing a coin repeatedly until a specified 

condition is observed. Here, we are looking to observe five consecutive heads before 

terminating the experiment. The sample space here is countably infinite. 

We, the individual elements are represented using the sequences of their Hs and Ts, where H 

and T stand for heads and tails respectively. In the final example, the experiment consists of 

measuring the speed of a vehicle within finite precision. Assuming that the vehicle speeds 

can be negative, the sample space is clearly the set of real numbers. Here, we observe that the 

sample space can be uncountable. 
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The next concept we look at is that of an event. An event is any collection of possible 

outcomes of an experiment; that is, any subset of the sample space. The reason why events 

are important to us is because, in general, when we conduct an experiment, we are not really 

that interested in the elementary outcomes. Rather, we are more interested in some subsets of 

the elementary outcomes. 

For example, on rolling a die, we might be interested in observing whether the outcome was 

even or odd. So, for example, on a specific roll of a die, we, let us say we observed that the 

outcome was odd. In the scenario, whether the outcome was actually a 1 or a 3 or a 5 is not as 

important to us as the fact that it was odd. 
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Since we are considering sets in terms of sample spaces and events, we will quickly go 

through the basic set theory notations. As usual, capital letters indicate sets, and small letters 

indicate set elements. 

We first look at the subset relation. For all x, if x element of A, implies x element of B, then 

we say that A is a subset of B, or A is contained in B. Two sets A and B are set to be equal if 

both, A subset of B and B subset of A holds. The union of two sets, A and B, gives rise to a 

new set, which contains elements of both A and B. Similarly, the intersection of two sets 

gives rise to a new set, which contains of only those elements, which are common to both A 

and B. 

Finally, the complement of a set A is essentially the set, which contains all elements in the 

universal set, except for the elements present in A. In our case, the universal set is essentially 

the sample space. 
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This slide list out the different properties of set operations, such as commutativity, 

associativity, and distributivity, which you should all be familiar with. It also list out the 

DeMorgan’s Laws, which can be very useful. 

According to the DeMorgan’s Laws, the complement of the set A union B is equals to A 

complement intersection B complement. Similarly, the complement of the set A intersection 

B is equals to A complement union B complement. The DeMorgan’s Laws presented here are 

for two sets, they can easily be extended for more than two sets. 
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Coming back to the events, two events A and B are set to be disjoint or mutually exclusive if 

the intersection of the two sets is empty. Extending this concept to multiple sets, we say that a 

sequence of events, A1, A2, A3, and so on are pairwise disjoint. If Ai intersection Aj is 

equals to null, for all i not equals to j. 

In the example below, if each of the letters represents an event, then the sequence of events A 

through E are pairwise disjoint since the intersection of any pair is empty. 
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If events A1, A2, A3, so on are pairwise disjoint and the union of the sequence of events 

gives rise to the sample space, then the collection A1, A2, and so on is set to form a partition 

of the sample space Omega. This is illustrated in the figure below. 
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Next, we come to the concept of a sigma-algebra. Given a sample space, Omega, a sigma-

algebra is a collection F of subsets of the sample space with the following properties. The 

null set is an element of F. If A is an element of F then A complement is also an element of F. 

If Ai is an element of F for every i belonging to the natural numbers, then union i equals to 1 

to infinity Ai is also an element of F. A set A that belongs to F is called an F measurable set. 

This is what we naturally understand as an event. So going back to the third property, what 

this essentially says is that, if there are a number of events which belong in the sigma-algebra, 

then the countable union of these events also belongs in sigma-algebra. 

Let is considered an example. Consider a Omega equals 1, 2, 3. This is our sample space. 

With this sample space, we can construct a number of different sigma-algebras. Here, the first 

sigma-algebra F1 is essentially the power set of the sample space. All possible events are 

present in the first sigma-algebra. 

However, if we look at F2, in this case, there are only two events; the null set or the sample 

space itself. You should verify that for both F1 and F2, all three properties listed above are 

satisfied. Now that we know what a sigma-algebra is, let us try and understand how this 

concept is useful. 
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First of all, for any Omega, countable, or uncountable, the power set is always a sigma-

algebra. For example, for the sample space comprising of two elements H comma T, a 

feasible sigma-algebra is the power set. This is not the only feasible sigma-algebra as we 

have seen in the previous example, but always the power set will give you a feasible sigma-

algebra. 

However, if Omega is uncountable, then probabilities cannot be assigned to every subset of 

the power set. This is the crucial point, which is why we need the concept of sigma-algebras. 

So just to recap, if the sample space is finite or countable, then we can kind of ignore the 

concept of sigma-algebra because, in such a scenario, we can consider all possible events, 

that is the power set of the sample space, and meaningfully apply probabilities to each of 

these events. 

However, this cannot be done when the sample space is uncountable. That is if Omega is 

uncountable, then probabilities cannot be assigned to every subset of 2 to the Omega. This is 

where the concept of sigma-algebra shows it use. 

When we have an experiment in which the sample space is uncountable, for example, let us 

say the sample space is the set of real numbers. In such a scenario, we have to identify the 

events which are of importance to us and use this along with the three properties listed in the 

previous slide to construct a sigma-algebra and probabilities will then be assigned to the 

collection of sets in the sigma-algebra. 
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Next, we look at the important concepts of probability measure and probability space. A 

probability measure P on a specific samples space Omega and sigma-algebra F is a function 

from F to the close interval 0 comma 1 and satisfies the following properties. 

Probability of the null set equals to 0, probability of Omega equals to 1, and if A1, A2, and so 

on is a collection of pairwise disjoint members of F, then probability of the union of all such 

members is equal to the sum of their individual probabilities. Note that this holds because the 

sequence A1, A2 is pairwise disjoint. 

The triple, Omega F P, comprising a samples space Omega, a sigma-algebra F, which are 

subsets of Omega and a probability measure P defined on Omega comma F. This is called a 

probability space. 

For every probability problem that we come across, there exist a probability space comprising 

of the triple, Omega F P. Even though we may not always explicitly take into consideration 

this probability space when new solve the problem, it should always remain in the back of 

our heads. 
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Let us now look at an example where we do consider the probability space involved in the 

problem. Consider a simple experiment of rolling an ordinary die in which we want to 

identify whether the outcome results a prime number or not. 

The first thing to consider is the sample space. As there are only six possible outcomes in our 

experiment, the sample space here is consists of the numbers between 1 to 6. Next, we look at 

the sigma and algebra. Note that, since the sample space is finite, you might as well consider 

all possible events. That is the power set of the sample space. 

However, note that the problem dictates that we are only interested in two possible events, 

that is whether a number, whether the outcome is prime or not. Thus restricting ourselves to 

these two events we can construct a simpler sigma-algebra. 

Here, we have two events which correspond to the events we are interested in, and the 

remaining two events follow from the properties, which the sigma-algebra has to follow. 

Please verify that the sigma-algebra listed here does actually satisfy the three properties that 

we had discussed above. 

The final component is the probability measure. The probability measure assigns a value 

between 0 and 1 that is the probability value to each of the components of the sigma-algebra. 

Here, the values listed assumes that the die is fair in the sense that the probability of each face 

is equals to 1 by 6. 
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Having covered some of the very basics of probability, in the next few slides, we will look at 

some rules which allow us to estimate probability values. The first thing we will look at is 

known as the Bonferroni’s Inequality. According to this inequality, probability of A 

intersection B is greater than equals to probability of A plus probability of B minus 1, the 

general form of this inequality is also listed. 

What this inequality allows us to do is to give a lower bound on the intersection probability. 

This is useful when the intersection probability is hard to calculate. However, if you notice 

the right-hand side of the inequality, you should observe that this result is only meaningful 

when the individual probabilities are sufficiently large. For example, if the probability of A 

and the probability of B, both these values are very small, then this minus 1 term dominates 

and the result does not make much sense. 
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According to the Boole’s Inequality, for any sets, A1, A2, and so on the probability of the 

union of these sets is always less than equals to the sum of their individual probabilities. 

Clearly, this gives us a useful upper bound for the probability of the union of events. Notice 

that this equality will only hold when these sets are pairwise disjoint. 
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Next, we look at conditional probability. Given two events A and B, if probability of B is 

greater than 0, then the conditional probability that A occurs, given that B occurs is defined to 

be probability of A given B is equals to probability of A intersection B by probability of B. 

Essentially, since event B has occurred, it becomes a new sample space. And now, the 

probability of A is accordingly modified. Conditional probabilities are very useful when 



reasoning in the sense that once we have observed some event, our beliefs or predictions of 

related events can be updated or improved. 
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Let us try working out a problem in which conditional probabilities are used. A fair coin is 

tossed twice, what is the probability that both tosses result in heads, given that at least one of 

the tosses resulted in a heads. Go ahead and pause the video here and try working out the 

problem yourself. 

From the question, it is clear that there are four elementary outcomes. Both tosses resulted in 

heads, both came up tails, the first came up heads while the second toss came of tails, and the 

other way round. So means, we are assuming that the coin is fair, each of the elementary 

outcomes have the same probability of occurrence, equals 1 by 4. 

Now, we are interested in the probability that both tosses come up heads, given that at least 

one resulted in a heads. Applying the conditional probability formula, we have probability of 

A given B equals to probability of A intersection B divided by probability of B. Simplifying 

the intersection in the numerator, we get the next step. 

Now, we can apply the probability values of the elementary outcomes to get the result of 1 by 

3. Note that in the denominator, each of these events is mutually exclusive. Thus the 

probability of the union of these three events is equals to the summation of the individual 

probabilities. 



As an exercise try solve the same problem with the modification that we observed only the 

first toss coming up heads. That is, we want the probability that both tosses result in heads 

given that the first toss resulted in a heads. Does this change the problem? 
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Next, we come to a very important theorem called the Bayes’ Theorem or the Bayes’ Rule. 

We start with the equation for the conditional probability. Probability of A given B is equal to 

probability of A intersection B by probability of B. 

Rearranging, we have probability of A intersection B equals to probability of A given B into 

probability of B. Now, instead of starting from, with probability of A given B, if we have 

started with probability of B given A, we would have got probability of A intersection B 

equals to probability of B given A into probability of A. 

These two right-hand sides can be equated to get probability of A given B is equal to, into 

probability of B is equals to probability of B given A into probability of A. Now, taking this 

probability of B to the right-hand side, we get probability of given B is equal to probability of 

B given A into probability of A by probability of B. This is what is known as the Bayes’ 

Rule. 

Note that, what it essentially says is, if I want to find the probability of A, given that B 

happened, I can use the information of probability of B given A along with the knowledge of 

probability of A and probability of B to get this value. As we will see, this is a very important 

formula. 
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Here, we again present the Bayes’ Rule in an expanded form, where A1, A2, and so on form 

a partition of the sample space. As mentioned, Bayes’ Rule is important in that it allows us to 

compute the condition of probability of A given B from the inverse conditional probability of 

B given A. 
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Let us look at a problem in which the Bayes’ Rule is applicable. To answer a multiple-choice, 

question, a student may either know the answer or may guess it. Assume that with probability 

p, the student knows the answer to a question and with probability q, the student guesses the 

right answer to a question she does not know. What is the probability that for a question the 



student answers correctly, she actually knew the answer to the question? Again, pause the 

video here and try solving the problem yourself. 

Okay. Let us first assume that K is the event that the student knows the question and that C be 

the event that the student answers the question correctly. Now, from the question, we can 

gather the following information. 

The probability that the student knows the question is p, hence the probably that the student 

does not know the question is equals to 1 minus p. The probability that the student answers 

the question correctly, given that she knows the question is equals to 1 because if she knows 

the question, she will definitely answer it correctly. Finally, the probability that the student 

answers the question correctly, given that she makes a guess, that is, she does not know the 

question is q. 

We are interested in the probability of the student knowing the question, given that she has 

answered it correctly. Applying Bayes’ Rule, we have probability of K given C is equal to 

probability C given K into probability of K by probability of C. The probability of answering 

the question correctly can be expanded in the denominator to consider the two situations, 

probability of answer the question correctly, given that the student knows the question, and 

probability of answering the question correctly given that the student does not know the 

question. 

Now, using the values which we have gathered from the question, we can arrive at the answer 

p by p plus q into1 minus p. Note here that the Bayes’ Rule is essential to solve this problem 

because while, from the question itself, we have a handle on this value probability of C given 

K, there is no direct way to arrive at the value of probability of K given C. 
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Two events A and B are said to be independent if probability of A intersection B is equals to 

probability of A into probability of B. More generally, a family of events Ai, where i is an 

element of the integers is called independent if probability of some subset of the events Ai is 

equal to the product of the probability of those events. 

Essentially, what we are trying to say here is that, if you have a family of events Ai, then the 

independence condition holds only if, for any subset of those events, this condition holds. 

From this, it should be clear that pairwise independence does not imply independence, that is, 

pairwise independence is a weaker condition. 
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Extending the notion of independence of events, we can also consider conditional 

independence. Let A, B, and C be three events with probability of C strictly greater than 0. 

The events A and B are called conditionally independent given C if probability of A 

intersection B given C equals to probability of A given C into probability of B given C. This 

condition is very similar in form to the previous condition or independence of events. 

Equivalently, the events A and B are conditionally independent given C if probability of A 

given B intersection C equals to probability of A given C. This latter condition is quite 

informative. 

What it says is that the probability of A calculated after knowing the occurrence of event C is 

same as the probability of A calculated after having knowledge of occurrence of both events 

B and C, thus observing the occurrence or non-occurrence of B does not provide any extra 

information. And thus, we can conclude that the events A and B are conditionally 

independent given C. Let us considered an example. 

Assume that admission into the M.Tech program at IIT Madras and IIT Bombay is based 

solely on candidate’s GATE score, then probability of admission into IIT Madras given 

knowledge of the candidate’s admission status in IIT Bombay, as well as the candidate’s 

GATE score is equal equivalent to the probability calculated simply knowing the candidate’s 

GATE score. 

Thus, knowing the status of the candidate’s admission into IIT Bombay does not provide any 

extra information. Hence, since the condition is satisfied, we can say that admission into the 

program at IIT Madras and admission into the program at IIT Bombay are independent 

events, given knowledge of the candidate’s GATE score. 


