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So, in the previous class, we looked at Lead Compensation, and we did an example as far

as  the  design of  the  lead compensator  is  concerned.  In  today’s class,  I  am going to

introduce  you to  lag  compensation  ok,  when  it  is  used,  you  know like  what  is  the

structure of a lag compensator and what are its features right. And then we will also look

at what effects does it have on the entire system, and we will also learn what is called as

lag lead compensator ok. So, I am just going to explain the concepts to you with respect

to Lag Compensation and Lead Lag Compensation.

(Refer Slide Time: 00:56)

So, let us look at lag compensation. So, once again we consider unity negative feedback

ok. So, the same structure that  we adopted when we discussed lead compensation is

taken here right.

So,  the  question  becomes  when  do  we  use  a  lag  compensator  right.  So,  a  lag

compensator is typically used to attenuate or essentially reduce right. So, the magnitude

of  high  frequency  components  of  the  systems  response  ok,  so  that  is  what  a  lag



compensator  typically  components  ok,  high  frequency  components  of  the  systems

response that is the role of a lag compensator.

So,  it  what  it  essentially  does  is  that  is  it  essentially  reduces  or  attenuates  the  high

frequency components of the systems response. As the name indicates it introduces a

phase lag, but by and large when you use a lag compensator, we are not unduly worried

about the phase margins. So, we the base system itself, will have enough phase margin

that the addition of a phase lag. See phase lag means, it is negative phase angle right, so

obviously, you know like our phase margins are going to decrease a little bit, but we are

not unduly worried about that right, so that is when you can apply a lag compensator.

But, then like we essentially want to attenuate the high frequency components, you know

then we use a lag compensator and design the entire close loop feedback system.

So, let us look at the structure of a lag compensator, the controller transfer function, or

the transfer function corresponding to a lag compensator is the following. So, let us look

at the structure. So, this is given by C of s is equal to K c beta times T s plus 1 divided by

beta T s plus 1 ok, so that is the transfer function corresponding to a lag compensator. So,

this can be rewritten as K c times s plus 1 over T divided by s plus 1 over beta T, and

here of course, beta is greater than 1 T is greater than 0, of course, we take K c also to be

greater than 0 ok, so that is the structure of a lag compensator.

(Refer Slide Time: 04:01)



So, immediately we can see that this introduces an open loop pole at minus 1 over beta T

and an open loop 0 at minus 1 over capital T right. So, we can immediately observe that

there  is  an open loop pole,  and an open pole 0 that  is  being introduced by this  lag

compensator.

So and what  about  the  2 corner  frequencies?  So,  what  are  the  2 corner  frequencies

corresponding to this lag compensator? So, once again there are going to be 1 by T, and 1

by beta T ok. So, those are the two corner frequencies corresponding to the numerator

term, and the denominator term respectively ok, so that is what happens with the lag

compensator right.

So, now let us look at the sinusoidal transform function for this lag compensators. So, C

of j omega will be K c beta times 1 plus j T omega divided by 1 plus j beta T omega ok,

so that  is what will  what is  the sinusoidal  transfer function corresponding to the lag

compensator  ok.  So,  if  we  multiply  and  divided  by  the  conjugate  term  of  the

denominator, so what we will get is the following, we will get K c beta times 1 plus beta

times T square omega square divided by 1 plus beta square T square omega square minus

j times K c beta T omega times beta minus 1 divided by 1 plus beta square T square

omega square ok, so that is what we will have pretty straight forward.

So, these are all like I am sure all of us are familiar with this process by know right. I am

just multiplying and dividing by the conjugate of the denominator right, so that is what

we do right. So, we can immediately note that as omega tends to 0 that transfer function

essentially tends to K c beta, and as omega tends to infinity the transfer function tends to

K c.



(Refer Slide Time: 06:48)

So, you see that at either extremes once again the imaginary component is 0 and so, if

you want to plot the what to say Nyquist plot for this sinusoidal transfer function, so

what  can  you  immediately  observe,  I  as  far  as  the  location  of  the  Nyquist  plot  is

concerned? The complex plane, let us call it as a C s plane. So, what can you observe

regarding the location of this Nyquist plot?

So, if  you look at  the real component and the imaginary component  right,  so for all

omega you can immediately see that the real component is going to be positive right.

What about the imaginary component? Of course, leaving aside the two limiting values

of 0, and infinity it is going to be negative, or in general it is going to be non-positive

right. So, which quadrant we are going to have this Nyquist plot in? The fourth quadrant

right, so in this complex plane that is where the Nyquist plot for this factor would lie in

right.

So, you can immediately of course, once again this is the locus is going to be in the form

of a semi-circle. So, once again we can note that if I take the real part ok, and subtract

the center of this particular what to say term, which is going to be K c by 2 times beta

plus 1 whole square, because how do I get the center, because the two limiting values are

K c beta and K c right, you take the mean of the loop right. So, you will get K c b by

2 times beta plus 1 plus I square the imaginary component K c beta T omega beta minus



1 divided by 1 plus beta square T square omega square whole square that is going to be

equal to what do you think should be the radius?

Student: (Refer Time: 08:55).

I am sure by now we are all familiar with the what is happening right. So, what should be

the radius?

Student: 25.

Yeah. You just take the difference and divide by 2 right. So, essentially we are going to

get K c by 2 times.

Student: Beta minus 1.

Beta minus 1.

Student: Whole square.

Whole square right, so that is what we are going to have here. So, if we take the if you

want to draw the Nyquist plot, the center is going to be at K c by 2 times beta plus 1. So,

this is going to be K c beta please note that beta is greater than 1 right, and this is going

to be K c right.

So, what is going to happen is it, the Nyquist plot is going to go something like this ok,

so this is going to be a semicircular path ok and this is where it will start as omega tends

to 0, this is where at it tends as omega tends to infinity right and there radius of this

particular semi-circle is going to be K c by 2 times beta minus 1 ok, so that is what is

going to happen at the Nyquist plot of this particular sinusoidal transfer function.

So, now if we continue, so I am going to leave you with a few exercise problems ok. As

this  pretty  similar  to  what  we did  in  the  lead  compensator  ok.  So,  you can  see the

analogy, you know like as you, or you can see the similarities and differences, once you

do the problems right.

So, let us take you know like the value of K c to be 1, beta to be 10, and T to be 1 ok.

Plot the Bode diagram of C of s of C of j omega right, so that is what is the first exercise.



Of course, I am going to give you the answer, so that like we can discuss some concepts

right.

So, but then like I am sure, by now all of us know how to plot these diagrams. So, if I

plug in these parameters, what is going to happen to C of s? I am going to get please note

that the transfer function for the lag compensator is K c beta times T s plus 1 divided by

beta T s plus 1. So, if I substitute, I am going to get 10 times s plus 1 divided by 10 s plus

1 right, so that is what I will have. So, this I can rewrite as three factors right, 10, s plus

1, and 1 by 10 s plus 1 right, that is what we are going to do.

(Refer Slide Time: 11:54)

We are essentially going to plot the what you say, what you need to do is essentially plot

the magnitude asymptotes, for the log magnitude curves for each of these three factors

and add right, so that will give me their net Bode plot, the log magnitude curve. 

So, I am just going to give you the answers straight away right, so that we discuss it. So,

what is going to happen is the following. So, this will start at 20 decibels right. So, what

is what are the 2 corner frequencies now?

Student: 1 by 10.

It is going to be 0.1 and 1 right, 1 by T and 1 by beta T. So, you will get the 2 corner

frequencies as 0.1, and 1; 1 by beta T, obviously, is less than 1 capital T right, because



beta  is  greater  than  1 right.  So,  given the  values,  you know like  we get  the  corner

frequencies as 0.1 and 1.

So, what is going to happen is that, due to this contribution of 10, initially we will have

20 decibels, still I reach 0.1 right, correct. Then what is going to happen, I am going to

essentially  have a down slope at  minus 20 decibels per decade,  till  I  reach the other

corner frequency, after which I will go for a horizontal line, in the log magnitude curve

right, so that that is what is going to be the magnitude plot. I am just only drawing the

asymptotes right, so that is what we are doing.

So, I hope it is clear, how we got it right, because after the second corner frequency, we

add a what to say asymptote with a positive slope of 20 decibels per decade that cancels

out the minus 20 decibels per decade that  is why we get a straight line,  beyond the

omega equals 1 right, so that is what we have.

Now, you can immediately see that from this particular bode plot, you can immediately

observe  that  this  by  enlarge  acts  like  a  low  pass  filter  right.  So,  it  is  essentially

attenuating the high frequency components relative to the low frequency components

correct, so that is the characteristic of a lag compensator right.

So,  essentially  of  course,  once  again  you know like  plotting  the  what  to  say, phase

diagram is something I leave it to you as an exercise ok, plot the phase plot for this

particular  transfer  function.  But,  immediately  you  from  this  particular  what  to  say

magnitude plot, we can immediately see that the what to say the lead compensator acts

like a low pass filter that is first observation. Then what else can we observe?

Of course, there are two things right, if I leave it the way it is, what is going to happen,

the low frequency gains are going to be increased right. Please note that, if I keep this as

C of s, I multiply with the plan transfer function. What am I doing? At low frequencies, I

am adding 20 decibels right. 20 decibels means, you know like I am multiplying the gain

by 100, please remember sorry not by 100, 10 right, by a factor of 10. See 20 decibels in

the log magnitude curve means the factor is 10 right, so that is what is the low frequency

gain of this particular controller transfer function, correct. So, if I do this, what can you

tell about the steady state errors?

Student: Decrease.



They will decrease, because the steady state what to say, the low frequency gains will

increase, then you remember Kpe, Kve, and all those parameters will increase, which

will reduce the steady state errors. So, you see that the low frequency gain increases this

implies that lower steady state error that is another feature.

But  on the other  hand, if  I  do not  want this,  and then like if  I  want  essentially, see

increasing the low frequency gain means,  you know like I  am also I  the cost of the

system also increases right. But, then if I want to really attenuate the high frequency

components,  what  is  what  should  I  do?  I  should  push  down this  curve  right  by  20

decibels, because look at this here, the high frequency component are only are left as

they are, it is not really an attenuation.

Of course,  comparatively  it  is  an attenuation,  but  in  a  on a  absolute  scale,  the  high

frequency gains pass through as they are right, the way, this bode diagram is drawn. But,

if I really want to attenuate their high frequency components, what will I do, I will just

push down this bode diagram by let us say, 20 decibels for example, right.

Then what is going to happen, the modified bode diagram may look something like this

ok,  it  may shift  down,  and go like  this  right.  If  I  want  to  really  attenuate  the  high

frequency components. So, if I do this, what is going to happen to the gain cross over

frequency, and the cut off frequency? So, you immediately see that the gain cross over

frequency would it decrease or increase?

Student: Decrease.

It will decrease right, because what is a gain cross over frequency, it is a frequency at

which the magnitude of open loop transfer function is 1 right, now I am pushing it down

right.  So,  I  multiplying  the  plant  transfer  function  by  a  transfer  function,  whose

magnitude characteristics essentially are becoming lower right at this in this frequency

range right, lower than 1 in this frequency range.

So, essentially what will happen is that, obviously, I will choose the corner frequencies in

a frequency range of interest that is what you will do when you do your case studies ok.

These are not arbitrarily chosen, the values of beta T and all depend on the plan that you

are given. So, the corner frequencies are chosen in a sense way that it will be in a range

or region around the original gain cross over frequency of the system that you are given.



So, now what will happen? The gain cross over frequency was a combined system was a

compensative system will decrease. So, what will that mean? This will mean reduced

bandwidth right. So, of course, reduced phase margin of course, for this mainly what we

are concerned about is reduced bandwidth also.

So, of course,  that  is  that  is  expected right,  because a low pass filter  is supposed to

attenuate the high frequency components. But, the flip side is that when you try to do

that, the bandwidth decreases, if the bandwidth decreases, the systems response becomes

a little bit slower right, so that is some that is a that is a price we need to pay right, if we

want this feature right.  Please remember what happened in the lead compensator, we

essentially increased the gain cross over frequency, the bandwidth increased right. But,

what was the price that we paid in the lead compensator? It acted as a.

Student: High pass.

 High pass filter right.

So, consequently, if  I what to say if I wanted to adjust the magnitude curve without

amplifying  the high  frequency components  too  much,  the  steady state  characteristics

where effected. So, but here, you know like it is a tradeoff right, you can see that the

bode plot is  just  the other way around right.  So,  here we want to attenuate the high

frequency components, the flip side is that the what to say, the bandwidth decreases ok,

so that that is a limitation with the what to say, lack compensator ok.



(Refer Slide Time: 20:59)

Ah So, the if you want to combine, the advantages of both a lack compensator, and a lead

compensator  right,  while  addressing  their  limitation,  you  know  like  people  use

sometimes people use what is called as a lag lead compensator. So, what is this lag lead

compensator right?

Please  recall  that,  if  we  use  a  lead  compensator,  a  lead  compensator  improves  this

stability margins that is it improves the phase margins, and so on right. So, those are

called  as  this  stability  margins  ok.  So,  typically  a  lead  compensator  is  designed  to

improve this stability margins, but may decrease a steady state accuracy that is what we

just discussed right, so that is a what to say an outcome, which is not desired right from a

lead compensator. So, this may reduce the steady state accuracy.

On  the  other  hand,  a  lag  compensator  right  so,  attenuates  the  high  frequency

components,  but  decreases  the bandwidth right,  so that  is  that  is  something,  we just

observed. So, it can lead to system with lower bandwidth or reduced bandwidth right.

So, hence sometimes you know like people use a lag lead compensator right. So, just

essentially  do  the  combine  the  benefits  of  both  these  compensators  depends  on  the

scenario right. So, I am just going to give you the structure, and then like discuss it, and I

will leave the Nyquist plot, and bode plot of the lag lead compensator as a home work

problem right.



So, let us look at what is the controller transfer functions. So, the transfer function of a

lag lead compensator is ok. So, what is how is the controller transfer function written, C

of s is typically written as K c times s plus 1 by T 1 divided by s plus gamma by T 1, let

me complete writing it, then we will discuss it ok. So, then multiply it by s plus 1 by T 2

divided by s plus 1 divided by beta T 2 ok, so that is the transfer function.

(Refer Slide Time: 23:48)

So, here gamma is greater than 1, beta is greater than 1, T 1 is greater than 0, T 2 is

greater than 0, of course, typically K c is also greater than 0 right.

So, of course see, when we discuss a lead compensator, we use alpha, alpha was less than

1. Say by conventionally, you know like when we talk about lag lead compensation, you

know like that alpha is replaced by 1 by gamma. So, I am sure, you can observe by now

right. So, alpha was less than 1, consequently gamma is greater than 1 that is the only

change.

So, you can immediately see that this part, so what I will do is that, let me write this K c

factor just outside, so you can immediately observe that this part is the lead compensator,

it provides the phase lead, this is this corresponds to the lag compensator ok, so that is

that is what those that is the split between the two terms.

Of course, you can immediately see that the complexity of the controller increases right,

is not it right, because what you are having is now what to say, two open loop 0’s, and. 



Student: Two open loop.

Two open loop poles being introduced by the controller transfer function right. So, the

design becomes more and more complex right.

So, but then, it combines the advantage. So, some sometimes you know like people may

use it, and frequently we choose gamma to be equal to beta ok, so that is a typical design

choice, which is made right. So, there is the value of gamma and beta are choose to be

the same.

So, immediately you will see the that the spread of the frequency range would be the

same, because here you would see that the corner frequencies are going to be. So, in this

lead compensator, you will immediately see that what are the corner frequencies, it will

be they will be 1 by T 1, and gamma by T 1, so obviously, gamma by T 1 is greater than

1 by T 1.

See previously, we learn them as 1 by T and 1 by alpha T. Since, 1 by alpha is now

gamma, we just have it as gamma by T 1. And for the lag compensator, the range of

frequency is going to be 1 by beta T 2 and 1 by T 2 right and those are the two corner

frequencies, I am just writing the two corner frequencies.

So, if you choose gamma to be equal to beta, what is going to happen is that the range is

going to be pretty much just equal in the logarithm scale right, so that is essentially the

ratios are going to be the same right. As long as, you know like you have you design

what to say T 1 and T 2 carefully, of course, that that is something, which we need to do

carefully right, so that that is another aspect we need to essentially look at.


