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Greetings welcome to today’s class. So, we have been looking at frequency response

methods in the previous class we looked at stability margins, what was called as relative

stability  right,  and  how  to  essentially  characterize  system  performance  using  gain

margins, phase margins and so on right.
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So, in that connection, you know like today we will essentially learn how to design a

controller, which is called as a lead compensator using frequency response methods ok

so, that is going to be the object of today’s class.

So, we will considered this standard feedback loop that we have been dealing with in this

particular  course.  So,  we  consider  unity  negative  feedback.  This  implies  that  the

feedback path transfer function H of s is going to be 1, so that is the implication. C of s is

the controller transfer function and P of s is the plant transfer function.



So, now what does a lead compensator do right. So, typically what a lead compensator

does is that, it adds a sufficient amount of phase lead to reduce the excessive phase lag if

any; you know that is associated with the uncompensated system right.

So, excessive phase lag associated with the uncompensated system. See typically you

know like we can have a plant, you know like which does not have a significantly high

phase margin for example. Then what happens is it the lead compensator adds phase to

the system or the plan, and ensures that the phase margins are essentially driven to a

level which is acceptable right.

So, that  is  what a lead compensator  does? And by and large a  usually  improves  the

transient response, we are going to see how, but it  may also amplify high frequency

signals ok, so since some cases.

So, it can amplify high frequency components in the output. So, that may be a an issue

particularly if you have noise for example, high frequency noise for example. We will

see how these points can be addressed right as we go long.
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So, let us look at the structure of the lead compensator. So, typically the transfer function

of a lead compensator takes a form C of s is equal to K c alpha times T s plus 1 divided

by alpha times T s plus 1.



So, this can be rewritten as K c times S plus 1 by T divided by S plus 1 by alpha t ok. So,

that is the structure of the lead compensator. So, here alpha is a, what to say positives

real number between 0 and 1 and of course, T is greater than 0 and K c is also greater

than 0.

So, immediately we can observe that, the lead compensator introduces an open loop pole

and open loop 0. So, one can immediately observe that the lead compensator introduces

an open loop 0 at minus 1 over t and an open loop pole at minus 1 over alpha T ok.

So, that is what happens in a lead compensator. So, it introduces an open loop zero at

minus 1 by T and an open loop pole at minus 1 by alpha T ok. So, now, let us analyze the

sinusoidal transfer function associated with this lead compensators. So, essentially we

substitute S equals j omega and see what happens right. So, then C of j omega becomes

K c alpha times 1 plus j times T omega divided by 1 plus j alpha T omega.

So, this can be rewritten as K c alpha divided by 1 plus alpha square. Of course, we need

to do it carefully; this will become K c alpha. Of course, what I am doing is an, let me

explain what I am doing here. So, I am just multiplying and dividing by the conjugates.

So, if I multiply and divide by 1 minus j alpha T omega, what we are going to get is, the

following.

K c alpha times 1 plus alpha T square omega square divided by 1 plus alpha square t

square omega square plus j times K c alpha T omega times 1 minus alpha divided by 1

plus alpha square T square omega square ok, so that is what we will get ok.

So, that is the real component and the imaginary component of the sinusoidal transfer

function associated with the controller transfer function of a lead compensator.
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So, before we look in to this, you know like from the. I would say from the function C of

j omega we can immediately observe that the magnitude of a C of j omega is nothing, but

K c alpha times square root of T squared omega square plus 1 divided by square root of

alpha square T square omega square plus 1.

And the phase of C of j omega is going to be tan inverse of T omega minus tan inverse of

alpha T omega ok. So, that is what will happen to the a phase of this transfer function C

of j omega ok.

So, we can immediately observe that the phase of C of j omega is always going to be

greater than or equal to 0 for all omega right, so that is something which we can observe

right. So, for all frequencies you know the phase is going to be non negative right. So,

that is something which we can immediately observe.

And also if you look at the structure of the transfer function, we can immediately see that

the corner frequencies of the transfer function corresponding to a lead compensator are at

1 by T and 1 by alpha T ok.

So,  those  are  the  two  corner  frequencies  associated  with  the  lead  compensator.  So,

anyway  we  will  use  these  corner  frequencies  in  plotting  the  bode  diagram  right,

corresponding to this transfer function. So, now, if we look at the, what to say real and

imaginary component of C of j omega, we can immediately notice that the value of C of j

omega at  omega equals  0  is  just  K c alpha right,  because the  imaginary  component



vanishes. And as omega tends to infinity once again, the imaginary component vanishes

and C of j infinity just K c.

So,  we  can  immediately  observe  that  these  the  transfer  function  C  of  j  omega  is,

sinusoidal transfer function C of j omega starts on the positive real axis for omega equals

0 and ends on the positive real axis at as omega tends to infinity right. So, that is an

observation we can readily make from this particular equation right.

Now, this is something which I am going to leave as homework ok, one can easily show

that. So, if you take the real component, which is K c alpha times 1 plus alpha T square

omega square divided by 1 plus alpha square T square omega square minus K c by 2

times 1 plus alpha whole square, plus the imaginary components square K c alpha T

omega times 1 minus alpha divided by 1 plus alpha square T square omega square whole

square, that is going to be equal to K c by 2 t times 1 minus alpha the whole square.

So, that is something which we can show, you know like, so I am going to leave this as a

home work exercise, pretty straight forward ok. So, one can easily show that this is true

right; that is we subtract a K c by 2 times 1 1 plus alpha from the real components square

it  and  then  take  the  imaginary  components  square  it  and  then  add  that  to  resulting

quantities, we will get K c by 2 times 1 minus alpha whole square right.

So, this  immediately tells  us that the locus of the sinusoidal transfer function C of j

omega is going to be in the form of semi circle which is going to essentially have its

center at on the positive real axis at K c by 2 times 1 plus alpha and having a radius of K

c by 2 times 1 minus alpha right so, that is the essentially an equation of a circle right.
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So, we can immediately observe that the locus of c of j omega is a semi circle of radius

K c by 2 times 1 minus alpha ; that is centered at K c by 2 1 plus alpha comma 0. So, that

is what happens in the case of the locus of C of j omega.

So, that’s, that is the, what to say structure or a shape of the particular transfer function

that  we are considering ok. So, let  us let  us plot  the Nyquist  plot for this  particular

transfer function. So, if we plot the Nyquist plot ok.
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Let me consider the real and the imaginary axis ok. So, we can immediately observe the

one thing right, from the real and the imaginary components of C of j omega, we can

readily observe that for all omega between 0 and infinity right, the real part is always

going to be positive and the imaginary part is also going to be positive, you know like

except other limiting values of 0 and infinity right.

So, as a result the Nyquist plot of this particular, function is going to be in the, first

quadrant right, in the complex plane. So, let us call this complex plane as the C of s

plane. 

So, in the C of s plane , we can immediately see that, the value of the sinusoidal transfer

function is that K c alpha right, and it goes to K c as omega tends to infinity and, the

center of the circle is going to be at the middle. It is a K c by 2 times 1 plus alpha and,

what is going to happen is that the, the, locus of this curve, the Nyquist plot is going to

be a semicircle ok so, that is what is happening.

So, this is, the Nyquist plot for this particular, transfer function. So, this is where it will

start as omega equal 0 and this is where it goes to as omega tends to infinity right. So, let

me write it here ok. So, this is the place, where it starts at omega equals 0.

Now,, we can immediately see you observe one thing right. So, if I want to figure out, of

course, we can immediately see that, the radius of this, semi circle is going to be K c by

2 times 1 minus alpha right.

So, that is already some, which is known and we can immediately observe, from this

Nyquist plot that, the phase of this particular, sinusoidal transfer function is always going

to be a non negative right. Of course, this 0 at omega equals 0 and omega tending to

infinity  for all  other frequencies,  it  is positive right and, the,  maximum phase angle,

which  can  be  obtained  from this  particular,  transfer  function  can  be  figured  out  by

drawing a tangent, from the origin right to this semi circle 

 And if we look at,, this particular, line segment that is going to be the radius of the, the

length of the line segment is going to be the radius of this, particular semi circle right.



So, now, let us, call this angle as phi m ok. So, let me, let me write it here. So, this is phi

m. So, what is phi m? Phi m is going to be the maximum phase lead provided by the lead

compensator at a frequency, which we denote by omega m.

So, ok, what is omega m? Omega m is this particular frequency, you know like where

ever it provides the maximum phase you know like, that is essentially omega m ok. So,

phi m is the maximum, phase angle right. So, we can immediately observe that , we can

immediately note that, it is pretty straight forward to calculate phi m. We see that sign of

phi m is going to be equal to K c by 2 times 1 minus alpha divided by K c by 2 times 1

plus alpha.

So, this will essentially give me 1 minus alpha divided by 1 plus alpha right. So, that is

what I am going to get for, phi m right now.
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We can also observe that tan phi m, which is going to be the opposite divided by the

adjacent side and the length of this adjacent side is going to be K c times square root of

alpha right.

So, because this is a right angled triangle, you can use the, Pythagoras theorem to figure

out the, length of this,, what is the line segment from the origin to the point, where the

tangent touches the semi circle, that is going to be K c times square root of alpha.



So, as a result tan phi m is going to be equal to K c by 2 times 1 minus alpha divided by

K c times square root of alpha.

So, this will give us 1 minus alpha divided by 2 times square root of alpha ok, so that is

what we will get for tan phi m. Now, as a next step, let us find omega m. So, what is

omega m? Omega m is the frequency at which we get the maximum, phase angle right.

So, for that you know, we just, need to essentially go to the expression for the phase of

the sinusoidal transfer function C of j  omega, please recall  that,  the phase of C of j

omega is going to be tan inverse of T omega minus tan inverse of alpha T omega ok.

So, this implies that phi m is going to be equal to tan inverse of T omega m minus tan

inverse of alpha T omega m, because we get the maximum phase angle of phi m, when

the frequency is, omega m right. So, that is what we are using.

So, this will immediately tell us that T omega m minus alpha T omega m divided by 1

plus alpha T square omega m square is going to be equal to tan phi m, which is nothing,

but 1 minus alpha divided by 2 times square root of alpha right.

So, we just are reusing the trigonometric, identity for expression, you know like, which

essentially relates tan inverse of, a minus tan inverse of b right. So, that is what we are,

essentially, used right that trigonometric formula has been used.

So,  with  this  expression,  we  can  immediately  observe  that  we  can  get  a  quadratic

equation and omega m square as follows. So, omega m square times 1 minus alpha

times, alpha t square right minus omega m times 2 t square root of alpha times 1 minus

alpha plus 1 minus alpha that is going to be equal to 0 ok.

So, that is the equation we are going to get for, omega m ok. So, one could solve this

equation.



(Refer Slide Time: 20:03)

So, solve this equation, to obtain omega m as square root 1 divided by square root of

alpha times T ok. So, this is something which I am going to, once again, leave, leave you

as a, homework exercise right.

So, we see that the maximum, phase is obtained at a frequency of 1 divided by square

root of alpha times T right. Now, if you recall,  what were the two corner frequencies

right.  The two corner frequencies,  where 1 by T and 1 by alpha T. So, you we can

immediately observe that omega m is the geometric mean of the two corner frequencies

right.

So, that is something, which we can, observe, from this expression. So, we can observe

that omega m is the geometric mean of 1 by T and 1 divided by alpha T ok. So, that is

something which we can, immediately, find out right from this expression.


