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So, we will get started. So, we are looking at bode diagrams, right and we looked at the

bode plots of a few individual factors. The last factors that we are going to look at, our

last set of factors that we are going to look at are is essentially second order factors,

right. So, we know that by and large we can write a second order transfer function in this

manner, right.

So, I am just considering the structure which we are already familiar with, ok. So, that is

what I am doing.

(Refer Slide Time: 00:48)

So, omega n squared divided by S squared plus 2 zeta omega S plus omega n squared,

right. So, that is a typical transfer function of a second order system that we have been

considering in this  course.  So,  now the question is  that like how do I  plot  the bode

diagram of this particular factor, ok. So, let us start doing that today.



So,  this  can  be rewritten  as  1 divided by I  just  divided by omega n square in  both

numerator and denominator. So, essentially I will get it as S by omega n whole square

plus 2 zeta by omega n S plus 1, right. So, that is what will happen, correct. So, if I

divide both numerator and denominator by omega n squared, so immediately what is

going to happen is that like if I calculate G of j omega, so what would I get? I would get

1 divided by 1 minus omega by omega n whole square plus 2 zeta omega by omega n j,

right. So, that is what I will have, ok.

So, 2 zeta omega by omega n, right. So, that is what we will have as the sinusoidal

transfer function. So, once I have this, what can I how can I write the magnitude of this

particular factor? So, I can say this is going to be 1 divided by square root of the real

path square. So, the real path square is going to be 1 minus omega by omega n whole

square and this I have 2 square. That is a real part. Then, I take the square of the real part

plus the imaginary part squared so 2 zeta omega by omega n whole square, right.

So, that  is  what I  do,  ok.  So, then what  will  be the phase of the sinusoidal  transfer

function? That is going to be minus tan inverse of 2 zeta omega by omega n divided by 1

minus omega by omega n whole square, right. So, that is what we get as the phase, right

of this particular factor, right. It is pretty straightforward algebra, ok.

So, now let us look at the magnitude will once again we will follow the same process as

we did in the previous class with the first order factor. So, let us look at the magnitude of

this factor and then, let us try to figure out what are the asymptotes for this particular

factor, right. So, we can immediately see that the magnitude of this particular factor in

decibels is going to be minus 20 log to the base 10 square root of 1 minus omega by

omega n whole square square plus 2 zeta omega by omega n square, ok.

So, that is what will happen, ok. So, this is going to be in decibels, right. So, what will

happen as omega is very small. What do you think will happen to this magnitude when

omega is very small when compared to omega n let us say. So, the magnitude of G of j

omega you can immediately see that will tend to 0 decibels as omega is much smaller

than omega n. Why am I taking omega n? It is because we have omega divided by omega

n, right as a term, right.



So,  I  have  to  compare  the  frequency  in  relation  to  omega  n,  right.  So,  when  the

frequency of interest becomes much less than omega n which is the natural frequency of

the system, we can see that  omega by omega n becomes  very small.  So,  obviously,

omega by omega n whole squared also will be pretty small, right. So, in the square root

term, I will effectively end up with 1. So, I am essentially going to take log of 1, so that I

will get zero decibels, right. So, that is what is going to happen when I have omega much

lower than omega n and what is  going to happen when omega is  much greater  than

omega n, ok. So, let me erase this and say when omega is much less than, ok. What do

you think happens when omega is much greater than omega n?

Obviously, omega by omega n is now going to be much greater than 1, ok. So, now

within this first term if you look at it, you have 1 minus omega by omega n square. So,

that will effectively become minus omega by omega n squared, but you are squaring it.

So, the first term is going to be like omega by omega n to the power 4, right.

The second term is 2 zeta omega by omega n whole square. Now, which term is going to

dominate? First term, right that is omega n by omega by omega n to the power 4. So,

now when you take the square root of omega by omega n to the power 4, what do we

get? We get omega by omega n whole square, right. So, then if I take the logarithm of

that, what will I get?

Student: 40 log.

I am going to get minus 40 log to the base 10 omega divided by omega n. Is it clear?

How? Of course, this is in decibels, right. So, is it clear how we got minus 40 log omega

by omega n because I am sorry what is it?

So, you can see that the first term tends to omega by omega n to the power 4, the second

term is like omega by omega n whole square. Just think that omega by omega n is 10

power 3. So, the first term is going to be like 10 power 12, right. The second term is

going to be like 10 power 6. So, the first term is obviously dominate, right. You take the

square root, you are going to get omega by omega n squared.

So, log of omega by omega n squared is 2 log omega by omega n. So, there is already a

minus 20, you multiply it by 2, you get minus 40, right. So, that is why the magnitude



tends to minus 40 log to the base 10 omega by omega n decibels when omega is much

greater than omega n. So, obviously we already know that this one is going to be the low

frequency asymptote, right and this one is going to be the high frequency asymptote just

like what we did yesterday, right.

So, this is going to be the high frequency asymptote, ok.

(Refer Slide Time: 08:26)

So, that is what we will have here. Now, once again a set of questions there like the first

one is, where do the two asymptotes intersect? Where do you think the two asymptotes

intersect each other? Omega equals omega n. We can immediately figure out the answer

as omega equals omega n. Why? It is because you see that when you substitute omega

equals omega n in the high frequency asymptote, you get zero decibels, right.

So, essentially zero decibel line is the low frequency asymptote. So, essentially the two

asymptotes intersect at omega equals omega n, right. So, consequently omega equals

omega n is the corner frequency, right for this particular factor, right the second order

term, ok. The natural frequency is the corner frequency, ok. Is it clear because that is the

frequency at which the two asymptotes intersect?

So, the second question that we need to ask ourselves is that what is the slope of the high

frequency asymptote? What do you think is a slope? So, the high frequency asymptote is

minus 40 log to the base 10 omega by omega n, right. So, how do we figure out the



slope? Let us say you go one decade further right from omega. So, instead of omega, you

substitute ten times omega. What do we get? So, immediately we see that minus 40 log

to the base 10, 10 times omega by omega n that is going to be equal to what? Of course,

in decibels that is going to be equal to minus 40 decibels, all right minus 40 log of log to

the base 10 of omega by omega n in decibels, right. So, what is the slope?

So, slope of the high frequency asymptote is going to be minus 40 decibels per decade,

right. So, is equal to minus 40 decibels per decade, ok. That is what matters. So, please

note that here the slope is going to be slope of the high frequency asymptote is minus 40

decibels per decade. So, as frequency increases, the magnitude decreases like minus 40

decibels per decade, ok. That is important, ok.

Now, another question which we are going to ask ourselves is that when is the magnitude

of G of j omega a maximum or at what frequency ok? So, in other words, you know like

at what frequency is the magnitude of G of j omega a maximum, right? So, that is a

question we are going to ask ourselves. So, let us try to answer that.

(Refer Slide Time: 11:57)

So, what is the magnitude of G of j omega. It is going to be 1 divided by square root of 1

minus omega squared by omega n square whole square plus 2 zeta omega by omega n

whole squared, right. So, this is the magnitude, right.



So, now when is this going to be a maximum? Of course, how can I find out at what

frequency this is going to be a maximum i differentiate equated to zero and then, like

take the second derivative figure out where it is, the second derivative is negative for a

maximum right, but here I can use a simpler method because this in the numerator is 1,

right. So, I will have a maximum where the denominator is going to be a minimum. I can

even what you say remove the square root, right.

So,  at  whatever  frequency  the  term within  the  square  root  in  the  denominator  is  a

minimum, that is the frequency at which the magnitude of G of j omega is going to be

maximum, right. So, let us say we call f of omega some f of omega as 1 minus omega

squared by omega n square whole square plus 2 zeta omega by omega n whole square.

Now, if we take the derivative, the first derivative of f of omega with respect to omega,

what do we get? We get two times 1 minus omega squared by omega n squared times 2

omega divided by omega n square, right. So, first I just then I have a minus sign, right.

So, when I take the derivative of the term within the square, right I will get a minus sign,

right. So, let me put this minus sign here, and then, what will I have here? I will have

essentially 2 times 2 zeta by omega n, correct. Then, what will I have? I will have 2 zeta

by omega n, correct. So, this should be equal to 0, ok.

So, now if I process this, what will I get for omega? Can you calculate and tell me? So,

you can see that I immediately have this omega n squared cancelling off with this omega

n. Let us say this 2, this 2 cancelling off these 2, right. So, what will I have? I will have

minus 1 by omega squared divided by omega n squared. Obviously, omega is non-zero,

right. So, of course I can have two solutions, ok. We will come to that shortly you know

like. So, plus 2 zeta times omega is equal to 0, right.

So, this has two solutions, right. I just simplified this and wrote it. So, obviously you

know like omega is 0 is one particular solution, right. It can be 0, right or the term within

the square bracket is 0. That will imply that 2 zeta is going to be equal to 1 minus omega

squared by omega n square, ok. Sorry this should be 2 zeta squared, right correct. I think

I missed a zeta here, right. So, 2 zeta square. So, this will tell me that omega can also be

omega n times square root of 1 minus 2 zeta squared, ok. Correct? I am just rearranging

the terms and doing some simple algebra.



Now, when will this solution be a real number because we are dealing with frequencies,

right. See I want a positive real number, right. When will this solution exist? This exists

only when 1 minus 2 zeta squared is greater than 0 or in other words, zeta should be less

than 1 over root 2, right 0.70 so on, right. 1 over root 2 is 0.70 approximately, right.

Student: (Refer time: 17:46).

Sorry.

Student: (Refer time: 17:47).

But, anyway zeta is a positive number, ok. Of course, when we started off, I have to say

that zeta and omega n are a positive parameter. You are right in general, but since we are

essentially dealing with systems where zeta and omega are not positive, this is what I

have, right.

(Refer Slide Time: 17:13)

.

So, this frequency omega r is called as the. Have you encountered this frequency before?

This is what is called as a resonant frequency, and of course, it exists only when zeta is

greater than 0 and less than 1 over root 2, otherwise it does, for zeta greater than 1 over

root 2 omega tending to 0 will give you the maximum value that is the 0 decibel value,

but for zeta between 0 and 1 over root 2, you know like you have the resonant frequency



basically giving you the maximum value of the amplitude or magnitude of the sinusoidal

transfer function for the second order factor, ok.

So,  what  is  this  resonant  frequency?  See  we  had  we  already  defined  a  couple  of

frequencies, right. So, what was natural frequency? See you take a second order system

let us say you remove the damping, right then you give a perturbation, the frequency at

which the undamped system oscillates is what is called as the natural frequency, right

and also, if you look at it, let me write it as an aside if you look at an undamped second

order system.

So, undamped second order system, the plant transfer function is going to be like omega

n squared divided by s squared plus omega n squared. Do you agree? So, that is how we

got,  we have the visualization right of natural  frequency, you give a perturbation,  or

essentially then the frequency at which the output will oscillate is essentially the natural

frequency, but if you also give an input which is essentially let us say sin or cosine of

omega n, let us say you give sin omega n t. What is going to happen to the output? We

are going to get omega n square times omega n divided by s squared plus omega n square

whole square, right. So, once I have this, what will happen? I think we already discussed

these things, right.  What would happen once I have s squared plus omega n squared

whole square? I am going to have t sin t or t cos t, right term.

So, consequently what will happen to the magnitude of Y of t? It will go to infinity, right

as t tends to infinity, right. So, this is another visualization of a natural frequency that is

if you have an undamped second order system and you give an input which essentially

which has a frequency equal to the natural frequency, the output will just explode to

infinity, ok. That is natural frequency, ok. That was the first data what was undamped

natural frequency. Sorry? Sorry, this is the, sorry this is the natural frequency. What is

damped natural frequency?

Damped natural frequency was the frequency at which the damped second order system

oscillator, right when the damping ratio was between 0 and 1 in response to an step input,

right.  So,  we looked at  omega d if  you remember,  right.  So,  there  are  three  natural

frequencies  of  interest.  So,  the  first  one  is  natural  frequency  which  by  definition

corresponds to the undamped system, right.



The second one was the damped natural frequency which essentially corresponds to an

under damped second order system, and the damped natural frequency is omega n times

square  root  of  1  minus  zeta  square,  right.  So,  physically  what  is  say  notion  of  this

damped natural frequency? We have a stable second order system. You give a step input,

the frequency at which the corresponding output would oscillate is what is called as the

damp natural frequency and even if you give a sinusoidal input equal to the damped

natural  frequency, the  system output  would  be  bounded because  you have  an  under

damped stable second order system, ok. No doubt about it.

Now, the third frequency is the resonant frequency omega r. So, what is this omega r,

which is essentially omega n times square root of 1 minus 2 zeta square. This essentially

means  that  I  have  a  stable  under  damped  second  order  system  with  damping  ratio

between 0 and 1 over root 2. If I have such a system, this is the frequency at which the

amplitude of the corresponding sinusoidal transfer function will be maximum, ok. So,

that is the implication, ok.

So, in other words, if you give a sinusoidal input equal to whose frequency is equal to

omega r, you would get the maximum amplification of the input because p the amplitude

of the transfer function is maximum with this frequency. That is what we have seen right.

Isn't it? So, that is the physical meaning of the resonant frequency. Resonant frequency

resonance and resonant frequency still correspond to a stable second order system, but

then it is bad in practice because of the amplification of the oscillations because what is

this physically? What is this magnitude of G of j omega?

If you recall our derivation, the output steady state output was u magnitude of the input

times magnitude of G of j omega. So, the output is also going to be a sinusoid, but the

input amplitude is going to be multiplied by the magnitude of the sinusoidal transfer

function.  So,  imagine  frequency  at  which  the  magnitude  of  the  sinusoidal  transfer

functions of the maximum.

So, the output amplitude which is a sin wave that will also be a maximum there; it is still

bounded mathematically ok, but physically it may create issues, ok. The system is still

stable no doubt about it right, but then resonance can lead to oscillations of reasonably

high magnitude which can cause structural damage, ok. So, one famous example you



know like which is typically given to illustrate this is what is called as Tacoma Narrows

Bridge Collapse, right.

So, you please search online and watch the video Tacoma Aqus Narrows Bridge, ok. So,

you will see that the wind essentially excited the resonant frequency and the entire bridge

swayed,  ok.  Yes,  mathematically  it  is  bounded,  the  amplitude  is  bounded,  but  what

happened the structure field, because of the excessive oscillations, right. So, that is what

happened. So, just watch the video, right.

So, that is the resonant frequency, right. So, that is why I just wanted to do this analysis

to  convey  the  difference  between  natural  frequency,  damped  natural  frequency  and

resonant frequency. I hope the physical meaning is clear for each frequency because this

understanding is extremely critical and we want to analyze second order systems, right.

So, please know that resonant frequency once again is applicable only for those second

order systems where the damping ratio is between 0 and 1 over root 2, ok. I hope this

point is clear, right but we are not done with the derivation yet. As homework, what I

want you to do is that you have to take the second derivative and then, ensure that f of

omega f double prime omega is going to be positive at this frequency, right. That I leave

it for your homework because whenever you do maximization or minimization, you need

to do both steps. I cannot leave it hanging like this, but I am going to leave it to your

homework, ok.

So, as homework evaluate the second derivative, and comment ok. So, that is essentially

your  homework.  Obviously, you will  see  that  at  this  resonant  frequency, the  second

derivative is positive. So, as a result the magnitude of G of j omega will be a maximum,

because magnitude of G of j omega is 1 by f omega, right. So, that is why when f omega

is minimum, magnitude of G of j omega will be a maximum, ok. So, that is what we will

have, ok.

So, please do that and we can easily show that, this is also I am going to leave it as

homework.



(Refer Slide Time: 27:08)

So, the magnitude of G of j omega, the maximum value which is the magnitude of G of j

omega at omega equals omega r is going to be 1 divided by 2 zeta times 1 minus zeta

square, ok. So, this you just need to plug in the value of omega in that expression, ok.

You will easily get it and the phase of G of j omega at omega equals omega r, you will if

you substitute in that equation for the phase, you will get it as minus tan inverse square

root of 1 minus 2 zeta squared divided by zeta. Immediately you see that the maximum

magnitude  and  the  phase  at  the  corresponding  resonant  frequency  depend  on  the

damping ratio, the zeta, ok.

So, that is what we have, ok. You can just substitute and then, very straightforward you

just substitute and then figure out.


