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Ok. So good morning, let us get started right ok. So, yesterday if you recall, we were

looking at the state space representation right. So, we looked at how to rewrite a nth

order ODE as a set of n first order ODEs, and the state space representation had two

equations  in general  right what was called as a state equation,  which is a first  order

vector ODE that provided the time evolution of the state variables. And then we had

what is called as an output equation right, so that related the system output to the state

vector  and the system input  ok.  So, those were the two equations  in  the state  space

representation,  and we essentially did an example,  where we rewrote the mass spring

damper system governing equation in the state space form right.

(Refer Slide Time: 01:18)

And,  then  we  got  an  expression  between  the  transfer  function  and  the  state  space

representation, which was this equation P of S was C dot s I minus A inverse b plus d.

And I left you with two homework’s, homework exercise problems right.



(Refer Slide Time: 01:23)

So, I asked you to first check the relationship for the mass spring damper system and that

is what I just worked out here. So, this is the realization. So, the matrix A, the vector b

and vector c are these for the mass spring damper system. So, these are quantities which

you already derived yesterday. So, if you just work it out, calculate SI minus A and then

like SI minus A inverse,  of course SI minus A inverse is  going to be of course this

multiplied by 1 by determinant of SI minus A right, so that is the inverse ok, so that is

going to be SI minus A inverse and c dot SI minus A inverse b is going to be this. And if

you do the algebra, you will see that you will get the transfer function itself. So, just that

it is just an exercise to verify you know like our check the formula that we derived for

this particular example obviously, it must be true right.

And then like I asked you to calculate the poles of the transfer function and the eigen-

values of the state matrix. So, the poles of the transfer function are these ok. So, these are

the poles of the transfer function minus c plus or minus square root of c squared minus 4

mk divided by 2m. And we can see that the eigen-values of the state matrix also turn out

to be the same ok. So, in fact so to generalize of course, I am not telling the complete

picture,  but  then  like  by  and  large  you  know  like  for  what  are  called  as  minimal

realizations ok. The poles of the transfer function and the eigenvalues of the state matrix

are the same ok.



(Refer Slide Time: 03:15)

Of course, this is true for what are called as minimal realization ok. So, we will see what

this is when we go to advanced courses on controls you know particularly on what is

called as modern control theory or state space theory ok. Yes, please.

Student: Sir, how was (Refer Time: 03:33).

 How did you do that?

Student: (Refer Time: 03:36).

How did I do? What do you want, right.

Student: (Refer Time: 03:45).

Ok.

Student: (Refer Time: 03:51).

Ok. So first thing is that like you have SI minus A inverse to be a 2 by 2 matrix, first

multiply it by the vector b ok, which is a column vector 0 and 1 by m. So, if you multiply

that, you get this 1 by m and S by m right. And, then you have c, which is 1 0 you take

the dot product with that you will get 1 by m. See what is the dot product of 1 by 1 0 and

1 by m s by m? You will get 1 by m; 1 by m there is a m in the numerator you m and m



gets  cancelled  right.  Look at  1  by  m s  squared  plus  c  s  plus  k  ok.  So,  this  is  the

determinant right.

See,  what I  have written here is  the determinant  right.  So,  the of course,  this  is  the

reciprocal of the determinant this is 1 by determinant of SI minus A right. So, so what I

have done is that like determinant of SI minus A is s squared plus c by m s plus k m. This

can be rewritten as just s square plus sorry, m s square plus c s plus k divided by m all

right. So, I am just taking m as LCM. So, when you flip it, you will get m divided by m s

squared plus c s plus k and the m and 1 by m gets cancelled, so that is why you get 1 by

m s square plus c s plus k simple algebra ok.

Student: Sir.

Yeah.

Student: (Refer Time: 05:18).

So, that I am not touching upon here ok. So, essentially as I mentioned you know like

this concept of the set of poles or the plant transfer function being the same as eigen-

values  of  state  matrix  is  true  if  the  realization  is  minimal.  So,  what  is  a  minimal

realization,  I  preemptively  give you the answer, but  then like you will  understand it

better when you go to let us say modern control theory or an advanced course of control

that  deals  with  state  space.  A minimal  realization  is  one  which  is  both  completely

controllable  and completely observable ok.  So, then the question becomes you know

what is completely controllable and completely observable. So, you will see that that is

going to have a cascade effect, so we have to go deeper and deeper right.

So, essentially if you have a non-minimal realization by and large, you know like a the

one would be a subset of the other ok. This two sets will be exactly the same when you

have what is called as a minimal realization. So, here you see that there are two poles of

the transfer function and two eigen-values of the state matrix both are the same, so the

set is the same all right, so that is that is something which we can observe ok, yeah, fine.

So, but why is this important because you will immediately see that the what to say the

concept of stability right you in fact like we will learn what is called as stability about an

equilibrium  state,  when  you  go  to  state  space  based  control.  But,  then  you  can



immediately feel that for a BIBO stability, we wanted all  the poles to be the left  of

complex plane right, if we use the transfer function approach.

So, similarly if I use the state space approach right for asymptotic stability what should I

have I should have all the eigen-values of the state matrix to be in the left half complex

plane, because the set is the same right. So, the task of ensuring asymptotic stability a

false boils down to the location of the poles of the transfer function or the eigen-values

of the state matrix ok, so that is that is that is the equivalence which I wanted to show

you here. Is it clear, what was the purpose behind this particular derivation right.

So, of course, we can go deeper and deeper, but I am not going to do that here because

our course is mainly focused on transfer function based analysis, but I just wanted to

give you an introduction to state space and we would learn more about this in advance

course of controls right ok.

(Refer Slide Time: 08:08)

So, let me now come back to our discussion using the transfer function ok. So, we are

going to discuss what is called as frequency response that is going to be something which

we are going to do for the next few classes, right. We are going to discuss what is called

as frequency response and how that is that can be used for control design ok, so that is

going to be the objective for this particular discussion right.



So, till now you know like if you recall what we have done right, predominantly we have

looked at the step response right. So, we have looked at the step response of dynamic

systems to essentially come up with performance parameters like definitions like time

constant, you know like rise time, settling time, peak overshoot and so on correct. So,

now we are going to analyze what happens when we provide a sinusoidal input to the

system and that is what frequency response deals with ok.

So, the term frequency response deals with the response of the system when a sinusoidal

I am sorry, input is provided to it ok, so that is what we are going to look at. By and large

we are going to look at what to say the steady state response ok, we will say why ok. So,

what we will first consider is that like let us consider a stable this is very important of

course, we can only talk about performance only if we have a stable system to begin with

right there is something which we already discussed right.

So, let us consider a stable LTI causal SISO dynamic system whose transfer function is P

of S ok. So, let us say we consider a plant or a system with a transfer function P of S. So,

what do we have, so we have the system transfer function to be P of S, so we provide an

input U whose Laplace transform is U of s and we get an output Y, so whose Laplace

transform is Y of s right. So, immediately we know that Y of s is going to be equal to P

of s times U of s ok.

So, let us consider u of t to be sum U naught sin omega t ok, so that is like we are

considering a sinusoidal input, so where u of t is sum U naught sin omega t ok. So, the

input has a frequency omega and a magnitude of U naught right. And consequently what

is going to happen to the Laplace transform so we are going to get U of s to be equal to U

naught omega divided by s squared plus omega squared ok. So, that is what we are going

to have right, if I take the Laplace transform of this particular signal U naught is the

magnitude all right, so that is a constant positive real number right. So, on the frequency

of the input is omega so that is what we are going to have for U of s right.

And, so let us say P of s be sum n of s divided by d of s so this I can rewrite as n of s

divided by let us say s plus p 1, s plus p 2, s plus p n ok. But, and what do we know

about all the poles of P of s?

Student: (Refer Time: 12:34)



All poles of a P of s lie in the left of complex plane right. Why, because we are assuming

a stable system to begin with right. So, all poles of P of s lie in the LHP right, so that is

something which we already have presumed right in this particular discussion ok.

(Refer Slide Time: 13:06)

So, let us now you know like process this particular equation. So, this implies a Y of s is

equal to P of s times U of s that is going to be equal to sum n of s divide d by d of s times

U naught omega divided by s square plus omega square correct, so that is something

which we. So, this I can rewrite the as sum a 1 divided by s plus j omega plus a 2 divided

by s minus j omega plus sum n 1 of s divided by d of s ok. So, I am just start doing

partial fraction expansion right. 

See, because what has happened like so the plant transfer function is n of s divided by d

of s then I multiply it with a second order term denominator is s squared plus omega

square. So, what I am doing is that I am writing s squared plus omega squared as s plus j

omega times s minus j omega I can do that right.

So, essentially then we are doing partial fraction expansion. So, I will write for s plus j

omega a 1 b y s plus j omega and then s minus j omega the residue I take it as a 2, so I

get a 2 by s minus j omega plus sum n 1 of s. You know whatever is left behind divided

by d of s d of s is the original denominator polynomial s plus p 1 all the way till s plus p

n ok, so that is my output right, so and that is essentially this ok. So, this is nothing but

please note then this is P of s ok, please remember that ok.



So, if I want to find a 1 and a 2, what should I do now? Let us say I want to find a 1,

what should we do, we multiply both sides by s plus j omega right. So, if I do this, what

will I get, I will get P of s U naught omega divided by s minus j omega that is what will

happen to the left hand side. On the right hand side, I will get a 1 a 2 times s plus j

omega divided by s minus j omega plus sum n 1 of s which is left behind right times s

plus j omega divided by d of s right. So, this is what I will get right, if I multiply both

sides by this one.

So, now what should I do, I should substitute the root right of that factor which is s

equals minus j omega, I can do this. So, then what will I get, I will get P of minus j

omega U naught omega divided by what will happen to the denominator it will be minus

j omega minus j omega I will get minus 2 j omega and that is going to be equal to a 1

right ok. So, this implies that the residue a 1 is going to be equal to U naught divided by

2 j right, omega and omega cancelled now times P of minus j omega ok.

So,  what  is  P of  minus  j  omega  P of  minus  j  omega  is  the  plant  transfer  function

evaluated at s equals minus j omega, obviously that is going to be a complex quantity

right. So, and we know that any complex variable has a magnitude and a phase right. So,

then  there  are  various  representations  of  a  complex  variable  right.  I  can  have  a

representation in terms of real and complex part, I can have a magnitude and a phase

representation also for the same complex variable right.

So, now what we do then, if I have a complex variable P of j omega, I can rewrite this as

the magnitude of P of j omega times e power j phi, where phi is the phase of P of j omega

right. This is one representation of a complex variable. Do you agree? Yeah.

Student: (Refer Time: 17:38) a 1 minus (Refer Time: 17:39).

Yes, I missed it minus thank you, you are right, thank you ok, so yeah, so that is minus u

naught by 2 j p of minus j omega right. So, I get this right. So, this immediately implies

that if I have P of minus j omega what am I going to have that is going to be P of j omega

e power minus j phi ok, so the phase just becomes negative of P of j omega all right, so

that is the representation which we are going to follow all right for the complex valued

function p of j omega ok.



So, once I have this what is going to happen to a 1 this implies in a 1 is going to be

minus U naught divided by 2 j the magnitude of P of j omega e power j phi ok. Please

remember what is phi, phi is the phase of P of j omega, obviously phi depends on omega

right you vary the frequency obviously the phase also varies right so that is what we have

for a 1 ok.

(Refer Slide Time: 19:02)

Now, similarly let us figure out a 2 right. So, let us get the expression for a 2. So, if I

want the expression for a 2, what do I do, I multiply both sides by s minus j omega all

right. So, this implies that I will get P of s U naught omega divided by s plus j omega that

is going to be equal to a 1 plus a 2 sorry a 1 s plus sorry what is going to happen I

multiplied by s minus j omega right. So, I will have a 1 s minus j omega divided by s

plus j omega plus a 2 plus n 1 of s minus j omega divided by d of s all right so that is

what I will have correct. I hope everyone agrees.

Now, what should I do, here I substitute s equals j omega right that is the root of this

particular factor. So, what will I immediately get, I will get P of j omega U naught omega

divided by 2 j omega that is going to be equal to a 2 all right. So, omega and omega will

immediately cancels. So, a 2 is going to be u naught by 2 j P of j omega then I just

represent P of j omega as the magnitude of P of j omega e power j phi right. So, we are

almost done ok. So, we are almost there just a few more steps ok.



Now, let us go back here right. So, our Y of s is going to be a 1 divided by s plus j omega

plus a 2 divided by s minus j omega plus n 1 by d of s right. So, let me write it down. So,

our Y of s is going to be a 1 divided by s plus j omega plus a 2 divided by s minus j

omega plus n 1 of s divided by sum d of s this immediately implies there. If I take the

inverse Laplace transform, what will I get, what will be the inverse Laplace transform of

the first term I will get e a 1 e power minus j omega t right correct. And then I will get

for the second term a 2 e power j omega t right.

And what is going to happen to the next term you know like so essentially let there be k

distinct poles, this is something which we already done right for a nth order system. Let

us say let there be k distinct poles. The inverse Laplace transform of this term is going to

be the following right, so this is something which we have already done, so please go

back and look at that. So, let us say let there be k distinct poles with mu I being the

multiplicity  of  each  pole  we  have  already  figure  out  what  is  the  inverse  Laplace

transform right so this is what we will have all right.

So, the main thing is that like we are going to have the poles as the exponents right. So,

this is something if you recall which we did when we analyze stability, if you recall. And

this is the result where we use to figure out that if my poles lie in the left of complex

plane, the system is going to be BIBO stable right. So, if you recall that is what we did

sometimes some classes back. So, essentially I am just going to get the same structure

right, so that is very important as far as this is concerned.


