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So, to just convey these ideas and also to co-relate what we have learnt, let me take an

example and then we would discuss a few points, ok. So, let me take an example of a

typical mass spring damper system that all of us are familiar with. Let us say I have a

mass, this is a one degree of freedom mechanical system. So, let us say,  I have a mass

m which is connected to a linear spring with spring constant of k and a linear damper

with  a  damping  coefficient  of  c ,  ok. And let  us  say  I apply a  force  )(tf  on this

particular mass and let the displacement of this mass from its equilibrium position be

)(tx .

So the governing equation of motion for this system, derived based on the  Newton’s

second law of motion, is 

)()()()(
...

tftkxtxctxm  .



Of course, in this particular course if I use a dot over a variable, that means, I am taking

it's time derivative. So, )(
.

tx  means it is the first time derivative of )(tx , )(
..

tx  means

it is the second derivative of )(tx  with respect to time and so on, ok.\

So this  is  the governing equation for this  mass  spring damper  system.  As we know,

)(
..

txm  characterizes the inertia effects that occur in the system; )(
.

txc  corresponds to

the viscous dissipation that happens due to the presence of damper; )(tkx  is indicative

of the compliance that is present in the system.

So, these are typically used to visualize this class of mass spring damper systems and

even one would use these analogies to develop models for even other systems from other

domains.  So,  but  let  us  consider  this  example  and  we  immediately  realize  that  the

governing  equation  is  a  second  order  linear  inhomogeneous  ordinary  differential

equation with constant coefficients, ok.
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So,  we can  see  that,  the  order  of  the  system is  2,  because  we have  a  second order

derivative,  in  the  governing  equation.  It  is  linear  as  is  evident  from the  governing

equation, because the equation is linear in )(tx  and )(tf . It is inhomogeneous because

we have a forcing term on the right hand side of this ordinary differential equation. And

the ODE has constant coefficients which is reflective of the system being time invariant.



So, this is essentially an LTI causal single input single output system, ok, the class of

systems that we are essentially looking up. 

So, if we look at the response of the system, we are going to have two components, one

due to the presence of any potential non-zero initial conditions and other due to input

provided. So, for example, I can displace the mass a little bit and then leave it, right. So,

then I am giving a non-zero displacement as an initial condition. This would be called as

the  free  response.  And  then  we  can  also  have  a  system  response,  due  to  the  input

provided. In this case, the force is the input to system.

So in fact, if we want to visualize this using the typical systems perspective, in this case

of the mass spring damper system, the input is the force  )(tf  and the output is the

displacement )(tx . So, in other words, based on the input (force) that is provided I can

have a displacement, right. So, that is what is called as forced response of the system.

The system response can have both components (free and forced response) and this is an

example of a linear time invariant causal SISO system.

On the other hand, let us say, we consider a scenario where the spring constant changes

with time. So, for example, if I keep on operating the system for a long time, the spring

may weaken, right.  So, then the spring constant may change with time,  right. Let us

consider the scenario where the spring constant changes with time, then the governing

equation could be rewritten as, 

)()()()()(
...

tftxtktxctxm 

So, this  )(tk  is a representative to of a time varying spring constant. A time varying

parameter comes in the system model. So, as a result this becomes what is called as a

linear time varying system. So, this is just an example of when we could potentially get a

linear time varying system instead of a linear time invariant system. We can immediately

realize  that  the  governing  equation  in  this  case  is  once  again  a  second  order  linear

inhomogeneous ordinary differential equation but with time varying coefficients. So, we

will have time varying coefficients in the governing equation, ok. So, that is something

which will come into play.
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Now, let us consider another example.  Let us consider a scenario where the spring is

non-linear. This also could be a potential scenario which can be encountered in practice.

So, what do we mean by this. So essentially, in many problems in practice, if we have a

coil spring in some machine element or let us say even in our automotive suspensions,

right. We take a  spring and then, we test  it  by giving force and then plot  the force

displacement characteristics.

So, by and large what may happen is that, we may get a curve which may be non-linear,

if we test it in the entire domain, ok. So, what typically happens is the following. Let’s

say in a two wheeler, you know you would have seen a coil spring which essentially

deflects as the two-wheeler is going.

So, let us say we have the spring in an initial state of compression, right. Let us call this

displacement as ix and by and large we would operate the spring in a region around this

ix . It may so happen that the spring may be operated in a region around this initial state,

you know, most of the time. Then, we can immediately observe that in this region the

spring can be approximated as a linear element.

So, then the question that we can ask ourselves is the following, right. Given this range

of operation of the spring, can I use a linear approximation to model the process? If yes, I



could use a linearized model and then we can go to the class of linear time invariant

systems. But on the other hand, let us say,  I am in an application where the spring is

stretched and compressed over a wide range of displacements, then I may no longer be

able to use a linear model for the spring. Then what is it that I can do?

I am just taking an example, where let us say you know, the governing equation for the

springs response is a quadratic function of the displacement, right. So, what will happen

is that the governing equation for this mass spring damper system will then become 

)()()()( 2
...

tftkxtxctxm 

So, you see that the term )(2 tkx  makes this system non-linear, ok. So, this becomes a

non-linear system. We could immediately observe that this is still a second order ODE,

but now it becomes a non-linear  ODE, right, so, non-linear inhomogeneous  ODE with

constant coefficients. So that is what happens to this governing equation, ok.

So, we are just considering different examples to just learn how the governing equations

would change depending on the scenario just  to  get  a  broad idea about  the class  of

systems that we are studying. So, I hope just through the simple example the difference

between  linear,  non-linear  systems  and  time  invariant,  time  varying  systems  have

become a little bit clear and we just considered a simple example to show how these

attributes are reflected in the governing equations of such systems, ok. So, to conclude

this class, let me just show you some simple examples just simple simulation results to

convey the concepts what we have learnt. 
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So, let us consider the mass spring damper system that we have been looking at. Let us

say,   I consider these following parameters. I consider the mass of the element to be 1

kilogram, the damping coefficient to be 0.5 Ns/m and the spring constant 0.75 N/m, just

take some values to just solve those equations, right. So, let us say that we provide a

force input of 1 Newton at time t=0.

So, if we solve this mass spring damper system, as we have already discussed,   we can

have what is called as the free response of the system, that is we can have non-zero

initial conditions and we have what is called as the free response which is essentially

indicated by this blue curve, right. We can see that the initial displacement is at one and

then it essentially oscillates and then goes to a 0 finally, ok.

On the other hand I can have a zero initial condition and then give an input to the system,

which essentially is what is called as a forced response, right. So, that is the response

term due  to  the  input  that  we  provide  and  that is  denoted  by  the  red  curve  which

essentially goes and settles down at some non-zero final value, ok. So, if we combine

both that is we give non-zero initial condition and the input we will we get the curve

which  is  indicated  black.  So,  we  can  see  that  the  response  is  the  sum  of  both

contributions, that is the free response plus forced response term gives the third response,

right, where we have a response from that mass spring damper system that consists of

both the non-zero initial condition component and the force input component, right.

So, once again please remember, what our system was. For us the mass spring damper

system  was  visualized  as  one  to  which  we  give  the  force  as  the  input  and  the

displacement is output, ok. That is why we are essentially plotting the displacement and

studying  it.  So,  this  is  just  to  show  whatever  we  have  learnt  through  a  graphical

visualization.



(Refer Slide Time: 16:36)

So, let us now look at time variance. Now, let us say instead of having a constant spring

constant of 0.75 N/m, let us say the spring has a varying spring constant, which is of this

form  te 001.075.0   N/m. So, the spring constant is slowly decreasing from the initial

value of 0.75, right. So, if we plot it, of course, we can see that I have just zoomed in into

a range of 0 to 100 seconds.

So, may be around the 75th second we can see that the spring constant has decreased to

around 0.693 N/m, ok. So, that is what has happened. So, and as we just discussed a few

minutes back the governing equation now becomes 

)()()()()(
...

tftxtktxctxm 

So, this makes it as a linear time varying system, ok. So, we can see that the system has

now, become LTV right, due to this time varying spring constant. So, let us see what

effect of this on the system response is.
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So, we consider zero initial conditions and so let us not worry about the free response.

We only look at the force response here. So, what we do is that we are giving an unit step

force input of 1 Newton in one scenario at t=0 which is the response is indicated by the

blue curve and then what we do is that, we then give the same unit step force input at a

time, instant of  75 seconds. So, as we realize from the previous slide, at time t equals 75

seconds the spring constant decreased. So, because this is a time varying parameter in

this particular case, so you could immediately see that the response, which is plotted by

the red curve is different from the blue curve right with this essentially, going against the

definition of time invariance.

So, if you recall the definition of time invariance, if we give the same input at let us say

time t=0 and time t=75, as in this example I should get the same output right, but that is

not the case. Why? Because, we have a time varying system, ok. So we can immediately

see that the red curve is different from the blue curve, right. So, you can see the peak of

these oscillations that has increased in the red curve when compared to the blue curve,

right. So, in, in certain sense,   the responses are becoming, different ok. So, this gives us

an overview of how these factors affect the system response. Through simple examples,

I just wanted to communicate how linearity time invariance and all come into play, ok.



So, we would stop here. So, we have essentially looked at a big picture view of what we

are going to learn in this particular course and defined a few terms in this particular class

and then looked at an example. That’s what we have done here and we also looked at

what is meant by sensor dynamics, actuator dynamics and unity, non unity feedback and

so on. So, in the next class, we would essentially meet and start off with mathematical

preliminaries and we would revise mathematical tools that we would be using in this

particular course, ok.

Thank you for your attention. 


