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Lecture – 11 

BIBO Stability 

Part – 1 

 

Let us solve some problems and make some observations and do a general derivation as 

far as BIBO stability is concerned. Let us start with problem number 5. 

 (Refer Slide Time: 01:27) 

  

From the previous discussion, we know that the plant transfer function is  

𝑃(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠2 + 1
. 

System poles at ±𝑗, they are purely imaginary poles. And we saw that when it was 

subjected to a unit step input, the output was bounded in magnitude. 

Now, let us subject it to a cosine input of a very specific angular frequency 1 rad/s. 

In general cos 𝜔𝑡 means 𝜔  is the angular frequency in radians per second. cos 𝑡 means 

𝜔 = 1 rad/s. If 𝑢(𝑡) = cos 𝑡, then 𝑈(𝑠) =
𝑠

𝑠2+1
. 



𝑌(𝑠) = 𝑃(𝑠)𝑈(𝑠) =
1

𝑠2 + 1

𝑠

𝑠2 + 1
=

𝑠

(𝑠2 + 1)2
 

Now, we use a property of Laplace transform, the complex differentiation theorem.  

𝐿[𝑡𝑓(𝑡)] = −
𝑑𝐹(𝑠)

𝑑𝑠
 

Let us take 𝑓(𝑡) = sin 𝑡,  

𝐹(𝑠) =
1

𝑠2 + 1
 

−
𝑑𝐹(𝑠)

𝑑𝑠
=

2𝑠

(𝑠2 + 1)2
, 

𝑦(𝑡) =
1

2
𝑡 sin 𝑡 

We can observe that, as 𝑡 → ∞, 𝑦(𝑡) → ∞. 
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Now, let us solve problem number 6. We already know that the plant transfer function is 

𝑃(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
=

1

𝑠2+𝑠
=

1

𝑠(𝑠+1)
.   

𝑢(𝑡) = cos 𝑡, then 𝑈(𝑠) =
𝑠

𝑠2+1
. 



𝑌(𝑠) = 𝑃(𝑠)𝑈(𝑠) =
𝑠

𝑠(𝑠 + 1)(𝑠2 + 1)
=

1

(𝑠 + 1)(𝑠2 + 1)
=

𝐴

𝑠 + 1
+

𝐵𝑠 + 𝐶

𝑠2 + 1
 

Here the cancellation of 𝑠 in the numerator and denominator was a mathematical 

operation which came in due to the specific nature of the input that we have, but in 

general we have a more subtle idea which is called as pole zero cancellation. We will 

discuss that when we go deeper into control system design. 

Solving the partial fractions, we get 𝐴 =
1

2
, 𝐵 = −

1

2
 and 𝐶 =

1

2
. 

𝑌(𝑠) =
1

2

1

𝑠 + 1
−

1

2

𝑠

𝑠2 + 1
+

1

2

1

𝑠2 + 1
. 

Taking inverse Laplace, we have 

𝑦(𝑡) =
1

2
𝑒−𝑡 −

1

2
cos 𝑡 +

1

2
sin 𝑡. 

We can observe that, as 𝑡 → ∞, 𝑦(𝑡) is bounded.  

Earlier we saw that, for the same system when we give the unit step response, 𝑦(𝑡) → ∞. 

Now we gave another bounded input cos 𝑡, we are getting a bounded output. Let us 

construct a simple table. 

System Poles Input Output 

S1 

�̈�(𝑡) + 𝑦(𝑡) = 𝑢(𝑡) 

±𝑗 1 Bounded as 𝑡 → ∞ 

cos 𝑡 Unbounded as 𝑡 → ∞ 

S2 

�̈�(𝑡) + �̇�(𝑡) = 𝑢(𝑡) 

0,-1 1 Unbounded as 𝑡 → ∞ 

cos 𝑡 Bounded as 𝑡 → ∞ 



It so turns out that if we use the definition of BIBO stability which states that a system is 

BIBO stable if its output is bounded for all possible bounded inputs, we should brand 

these two systems as unstable. 
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But, for the first system (S1) the output is unbounded, only if we give a sin 𝑡 or cos 𝑡 as 

the input. For unit step input or any other bounded input like a sin or a cosine of any 

angular frequency other than 1 rad/s, we can show that the output is going to be bounded. 

It so turns out that only when the input becomes a sinusoid whose angular frequency is 

equal to the magnitude of the poles on the imaginary axis, the output becomes 

unbounded. For S1 the magnitude of poles on imaginary axis is 1. Some people will call 

this class of systems as marginally stable or critically stable; that is the output is bounded 

for all possible bounded inputs except one set. In strict parlance the system is unstable if 

we use the definition as it is. We do not want to design such systems in practice. If we 

encounter such systems we want to stabilize them.  

If we have a mass spring damper system where there is no damper, we just have a mass 

and the spring, the equation of motion will become 𝑀�̈� + 𝑘𝑥 = 𝑓, the moment we give a 

step input, the output will become unbounded. 

Now, on the other hand if you look at system S2, it has a pole at the origin. If we have a 

non-repeating pole at the origin you give a step input, the output is unbounded. But for 

all other sinusoidal inputs, the output is bounded. That is the property of S2. We can see 



that the output is unbounded only for one set of inputs. This result is true only if we have 

for non repeating poles on the imaginary axis.  

If you have a repeating pole on the imaginary axis. For example. 

𝑃(𝑠) =
1

𝑠2(𝑠 + 1)
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The poles are at 0,0,-1, with the repeating poles this system is unstable. 

Similarly, if you have another system where the transfer function is 

𝑃(𝑠) =
1

(𝑠2 + 1)2
 

The poles are +𝑗, +𝑗, −𝑗, −𝑗, this is unstable. The above concept of marginal stability or 

critical stability applies, only if we have non repeating poles on the imaginary axis. 

1. For BIBO stability, all poles of the plant transfer function must lie in the LHP or 

in other words have negative real parts.  

2. If there exists even one pole of the plant transfer function in the right half plane, 

that is have has a positive real part, then the plant or the system is not BIBO 

stable. 



3. If there are repeating poles of the plant transfer function on the imaginary axis (j 

omega axis) with all remaining poles in the LHP, then system is not BIBO stable. 

4. If there are non repeating poles of the plant transfer function on the imaginary 

axis with all remaining poles in the LHP then the system is unstable or critically 

stable.  

 Most textbook we will say it is critically or marginally stable, but if we strictly apply the 

definition of BIBO stability it is unstable. If we are strict to that extent we should call 

this as unstable, but if we can say the output is bounded only for one small group of 

bounded inputs so we call it as critically stable or marginally stable. 

That is basically some perspectives of how to interpret system stability when you have 

poles, non-repeating poles on the imaginary axis, including the origin. 

In condition number 1, if we have a system, we find the transfer function and figure out 

that all poles of the system transfer function lie in the left half complex plane, is the 

system BIBO stable? And answer is yes and we shall prove it later. 


