
Principles of Engineering System Design
Dr. T. Asokan

Department of Engineering Design
Indian Institute of Technology, Madras

Lecture - 23
Graphical Modelling Techniques

Dear friends, welcome back. Today we will discuss some of the Graphical Modelling

Techniques used in the process of Engineering System Design. These are some of the

qualitative modeling techniques, widely used in industry for the different stages of

design process.

In the last few classes we discussed about the various processes in system design, and we

found that there are many tools to be used at various stages; especially when it comes to

the functional modeling, architecture development, interface development, etcetera. We

need to think of various modeling techniques so that the process becomes much simpler

and then gives a much better idea about the whole process what we are doing.

So, in this lecture and then the coming few lectures I will discuss about some of the very

commonly used methods for modeling of system as well as some of the processes in the

system design.

(Refer Slide Time: 01:16)

The main techniques what we are going to discuss or the modeling techniques the first

one is basically known as the data model. It is the relationship between data entities. So,

we have various entities in the system and there are lots of data exchanges between these

entities. So, we need to model this data relationship, basically the input output

relationships between the entities and we use the data modeling techniques to do this.

The mainly used data model techniques are the entity relationship diagrams and higraph.

We will go through these methods ER diagrams and higraph, but before that let me

explain the other two methods, where we use for modeling the other one is known as

process modeling.

So, the first one was data model which actually gives the relationship between the data

entities and in the process model, we discuss about the modeling of processes basically

the flow of functions in the system. It identifies the processes what processes done and

when it is done and so on. So, here in the process modeling, the focus is on identifying

the flows between the entities. So, especially in the functional modeling, we need to

identify what function is processed by which entity and how this function flow is taking

place. So, in order to do that we use the process model and here we have different

methods; one is known as a data flow or method the other one is known as an N two

diagram these are somewhat similar to the IDEF0 diagram we already discussed, but

these are alternative methods for modeling of the process within the system.

The last one is known as the behavior model. In behavior model we look at the

controlled and activation of various processes in the system. So, how is it controlled and

how the flow is taking place, what kind of control input is needed those things are

actually modelled using the behavior model. Especially the termination of system

functions these are modelled using the behavior model. The methods commonly used are

the FFBD that is the function flow block diagram, then behavior diagrams and petrinets.

So, all these are used to model the control activation termination of system functions at

various stages. So, this is needed to identify, what kind of control action we need to

provide and when actually a particular function terminates and what kind of control

inputs are needed and what kind of processes are taking place parallely.

So, are these can be modelled using the behavior models. So, these are the three

important modeling techniques will be discussing in this lecture. So, we will start with

the data model which is the relationship between data entities. So, we will start with the

ER diagram or the entity relationship diagram.

(Refer Slide Time: 04:02)

The entity relationship diagrams, which models the data structures or relationships

between data entities. So, here the relationship between the data entities are modelled

using the entity relationship diagram and an entity is defined as a class of real similar

items like people, computer, books etcetera. So, these entities we model the relationship

between this entities using the entity relationship diagram and how do we create ERD.

So, here these created basically the entity relationship diagram are created by identifying

the entities. So, we identify all the entities in the system, and then we identify the

significant events.

So, what are the significant events taking place and then analyze the nature of

interactions and then draw the entity relationship diagram. So, as I mentioned it is

basically explains the relationship between the entities. So, in order to draw the data flow

diagram, we need to identify the entities and the relationship between the entities. And

once we identify this interaction between the entities we can actually draw the entity

relationship diagram. I will explain some of the methods used for entity relationship

diagram to draw the diagram. So, let us go to the board and then see how the entities are

related or represented and how the relationships are explained using entity relationship

diagram.

So, in entity relationship diagram, all the entities are represented using a square block.

So, all the entities are represented using a square block.

(Refer Slide Time: 05:37)

So, this is the entity and the relationship between two entities. So, we have another entity

over here, the relationship between these two entities are represented using a diamond

shaped box. So, this is the relationship and it is connected like this. So, if you have more

relationships, you can actually draw more diamond shaped boxes to represent the

relationship. So, this is the basic entity relationship structure. So, here as you can see we

can have many entities and many kind of relationships. So, the entities are normally

represented using the square blocks and the relationship is represented using diamond

shaped boxes. Another way of doing this is basically you can instead of having the

diamond boxes we can actually have directed the relationships, where we simply show

an arrow a directed arrow to represent the relationship.

So, this is entity 1 this is entity 2 and we can have the relationships written over here R1

R2 R3 the relationship. So, in this case if you are using the diamond shaped box to

represent the relationship, then we do not use the arrows, but when we are not using the

relationship we will use arrows to represent the directional relationship. For example, we

take a case of a customer making deposits, how do we represent the relationship between

the customer and the money. So, customer is an entity here is a very simple example. So,

we take the customer and money at two entities. So, as we mentioned an entity can be

anything it is a man machine material or any other thing, which can actually be

represented.

So, this is one entity and this is another entity and when a customer makes a deposit. So,

we can actually write down the relationship like this. So, here actually customer deposit

money. So, that can be one relationship customer can deposit money and the other one is

customer withdraws money maybe another relationship of course, you can have many

this kind of relationships and transfer money. So, these are the three relationship we can

identify customer deposit money customer withdraws money customer transfers money.

So, this actually shows that these are the kind of relationship a customer can have with

money and that actually represented using a graphical methods. So, it is model of a

qualitative modeling technique where we represent the relationship between the

customer and the money or between different entities.

We can have different relationship depending on the scenarios, we can actually identify

many other scenarios like customer wants to make a print out of the account or the

account statement, then the entities will be different here the customer will be the entity

here the entity instead of money will be having a different entity. And the same

relationship can be represented using the directional arrows also. So, instead of the

diamond boxes you will be having the directional arrows.

(Refer Slide Time: 09:38)

So, these are the two entities. So, this is another way of representing the same ER

diagram customer money and here you will be having the deposit at the relationship

deposit and transfer or withdraw.

So, we can represent the relationship is either using this methods or using this method in

both cases, you will see that there is a relationship here the arrows are shown here in this

case, but in this case arrows are not shown. This is the way how the entity relationship

diagram is drawn. These are very simple cases then there is methods were used for a long

time to represent the relationships. And here you can actually have different kinds of

relationship also you can have a one-to-one relationship between entities or you can have

a one to many relationship or you can have a many to many relationship between the

entities. So, that also can be represented using the entity relationship diagram. So, here

you can see if you have two entities like a office manager and office.

Suppose these are the two entities then we can have a relationship here, office manager

manages the office or heads the office. So, this is the relationship between the entities.

So, this is entity 1 office manager and this office is the entity 2. So, here you can have a

relationship office manager heads office. So, normally we will have a one-to-one

relationship for this. So, it is one office manager heads one office. So, that is the one-to-

one relationship in entity relationship diagram. So, in some cases like you can have again

an office or we can have take another example for the same one-to-one diagram one-to-

one relationship is vehicle registration number of vehicle this is again an example for

one-to-one relationship.

So, registration number assigned to vehicles. So, here you can see that one registration

number is assigned to one vehicle. So, again this is a one-to-one relationship. So, the

relationship where is only one entity, related to one entity that is represented by one-to-

one relationship. And if you have one to many relationship then we will be representing

in a different way the entity relationship diagram will be almost the same except that we

will be having a relationship shown with the numbers over there. So, one to many is

normal represented as 1 to M and this will be sometimes at the present N to M as many

to many that is N entities related to M entities.

So, here you can take an example for the one to many relationships. So, if you have a

department suppose we have concerning a department in an engineering college. So, we

can see that department employs sorry. So, this is again entity say department employees

staff. So, here you can see that one department will employ many staff. So, this is a 1 to

M relationship similarly we can have one person you can have a person owns vehicles.

So, you can have that person as an entity owns as a relationship and vehicles has other

entity. So, here again the relationship is that one person can on many vehicles. If it is

only one vehicle then it would be one person owns one vehicle, but in this case one

person can on many vehicles.

So, the relationship will be a 1 to M relationship in the entity relationship diagram that is

the 1 to M relationship. The same way you can actually have a many to many

relationship also, in many to many relationship you will be having many entities over

here interacting with many other entities through the a single relationship. So, if you take

this as an example we can see here.

(Refer Slide Time: 15:10)

You take the example of reservation system or the students registering to a two courses;

the students are an entity then courses. So, you can see that there are M students can

register for N courses. So, this is registration for courses; so registration as an entity I as

a relationship. So, M students register for N course that is M to N relationship. If you

take a single student then it will be 1 to M relationship one student registering for N

courses then it will be like a 1 to M relationship.

So, in this case when you take M students they register for N courses. So, M students

register for N courses in a say a many to many relationships. So, these are known as

many to many relationships. Similarly you can see the ticket booking of by passengers.

So, passengers reserve seats. So, flights or trains, you can see again this will be an M to

N relationship, you have M passengers reserving seats for N flights; so again M to N

relationship.

So, if you take a single passenger, then it will be a N to N relationship otherwise it will

be M to N relationship. So, you can see here the ER diagrams can represent various

scenarios, basically the relationship between various entities are shown here and in this

entity relationship we can actually represent the entities as rectangular boxes and

relationship as diamond shaped boxes, and then can have this relationship either using a

diamond box relationship or you can have a directed arrows. So, when you are using

directed arrows, we do not use the boxes over here we describe the relationship asR1,

R2, R3whatever may be the relationship.

So, these are some of the examples for the ER diagram simple ER diagrams and in ER

diagram you can have one-to-one relationship or one to many relationship or N to M

relationship. So, any relationship can be represented using the ER diagram and we saw

some of the examples where you can have a one-to-one relationship or 1 to N

relationship or N to M relationship. So, these are the simple ER diagrams, now if I

combined these relationships 1 to N and N to M relationship I can show you a simple

example how do we actually combined these things to make a scenario. So, take the

example of a salesman basically nowadays you can see lot of salesmen come directly to

the houses and do a direct selling. So, if you take an example of a salesman.

(Refer Slide Time: 18:29)

So, if you consider a salesman as an entity. So, a salesman will actually serve the

customers or the when I visits the homes or the shops were of whatever maybe the

situation. So, he serves customers, we can take customer as another entity. So, here you

can see this is a 1 to M relationship one salesman will serve M customers one salesman

can serve many customers. Therefore, this will be a 1 to M relationship and then one

customer will make base many orders. So, a customer places. So, again he can see that

one customer now we are taking only one customer here, one customer places M orders.

So, he is again a 1 to M relationship, because the customer can make many orders and

many orders. So, the once the salesman is taking the order. So, he will be taking order

from many people. So, finally, he will be getting many orders with many items.

So, he will actually list all the orders, this is the relationship the orders are listed together.

So, he will be getting list with the many products; so the products that of final product

relationship, the list will be having many products. So, he will be having N list or I am

using N for to say the many relationship. So, N list with M products; this is again a many

to many relationship. So, from multiple customers will be getting orders and there will

be N list with M products and this will be to the store. So, this list will go to the stores or.

So, here this is the warehouse entity. So, all these list will go to the warehouse. So, you

will be having when one warehouse where the items are stored.

So, you will be having one warehouse with M product and when the order placed a place

order. For the M products now order will be placed to one warehouse. So, this is the

relationship from the salesman, one salesman serves many customers. So, a 1 to M

relationship for the salesman to customer and then one customer places many orders

many orders are listed in to the M products. So, M products are listed in this M to M

relationship between the order and the products there are N list and M products and these

M products are ordered to the one warehouse. So, one warehouse will be serving all the

customers and then again you can see that one warehouse sends the product to the

customer, individual customers. So, supply again products. So, you can see one

warehouse supplying N products.

So, this is the way how the flow is represented the relationship not represented using ER

diagrams of course, this is a very simple example, I have taken a very simple example to

show the utility of the ER diagram to represent the data flow in a system. We can

actually extend these two complex systems also. So, we will see some of the complex ER

diagrams how the simple ER diagrams can be actually replaced with the complex ER

diagram. So, some of the things will be simplifying instead of showing all the

relationship in the diamond boxes, we will try to represent them using directed arrows

and when we do this you will be getting the complex ER diagrams, which can actually

represent many complex relationship between the entities. Now let us look at one of the

complex ER diagram.

In complex ER diagram what we try to do is to represent the subclass relationship class

or subclass relationship.

(Refer Slide Time: 23:19)

Class subclass relationships are represented using at M called is a relationship. So, a

subset is represented as is a subset of other one. So, this is how we actually represent the

subclasses in complex ER diagrams. We will take an example of system design itself we

know that system design is a complex process. So, the system designs itself there are

various entities in the system design. So, we will try to identify the relationship between

this entity is using a complex ER diagram. Now here you can start with the various

entities. So, here the entities are represented the using oval shape instead of the square

boxes because again this is complex one. So, you need to have many entities. So, we will

try to simplify it. So, the ORD will give you the requirement. So, the relationship

between ORD and the requirement is represented by this.

So, this is the requirement. So, the relation between ORD and requirement is that, ORD

the documents the requirement. So, this is an entity ORD is an entity requirement is an

entity and the relationship is given by the document. So, ORD documents the

requirements and then that is another entities, you can write it as a trade of requirement.

Now, we can see that trade off requirement is a requirement. So, the relationship is given

like this between these two entities, the tradeoff requirement is a subclass of the

requirement and this subclass is represented by a relationship known as is a relationship.

So, you can see trade off requirement is a requirement and ORD documents are the

requirements.

Similarly, you can have many sub classes for the requirement because this is just one of

the requirement you can actually have here in the relationship for the system wide

requirement as another entity again this is a relationship. So, here system wide

requirement is a requirement similarly there are test requirements, this is again is a

relationship. So, test requirement is a requirement, then you have the input output

requirements is a requirement. So, these are all the subclass of requirements trade off

requirement system wide requirement test requirement input output requirement and then

the state wide requirement again you can write the relationship.

So, here if you have some other requirement like decide software requirement. So, in

some cases you may be having a specific requirement of software. So, the decide

software requirement will be another requirement, but then again it is a part of state wide

requirement. So, we can write it as the decide software requirement is a system wide

requirement, it is a subclass of the system wide requirements.

Now again you can actually have another relationship can be identified here between the

test requirement and the system wide requirement. So, the test requirement can be traced

to the. So, this is the relationship between these two entity. So, this is a test requirement

is an entity system wide requirement is an entity. So, we can have a relationship between

test requirement and system wide requirement traced to; that is the test requirement can

be traced to the system wide requirement.

Similarly, the test requirement can be traced to the input output requirement also.

Basically the test requirement comes from all these systematic requirement input output

requirement and all other requirements. So, we can always have a relationship this is

traced to the input output requirement. And then we can have another entity here that is

the derived input output requirements. So, derived input output requirement then we

have a in a relationship it is a subclass of input output requirement.

So, derived input output requirement is a input output requirement or it is traced coming

from this say subclass of this requirement therefore, you can actually write it as a is a

relationship. So, the subclasses are represented I say using their relationship is a

relationship, and the other cases we have used the trace to relationship or whatever may

be the relationship will be represented as trace to or documents like that. And again in

this you can see that the system wide requirements.

So, you have the main system here. So, this is the system as an entity. So, the system

wide requirements can be traced to the system. So, again he had say sorry this is system

wide requirements are traced to the system. So, this is a trace to relationship and then the

system performs the functions. So, we know that there are many functions in the system

and the system basically tries to or system is basically designed to perform this function.

So, the system performs the functions, that the relationship is here perform. The systems

perform the functions and of course are these can be traced to the functions. So, here this

is relationship is raised to. So, again the input output requirement can be traced to the

functions, derived input output requirement can be traced to the functions.

Basically, we know that the functions are there to provide these requirements or we that

is why we can actually trace these to the functions. Then again we know that there are

functional decompositions, they are actually different functions are identified this is a

functional decomposition. So, this actually contains all the functions the functional

decomposition will contain all the function. So, the relationship here is that it contains

the functions. So, that is a relationship between these entities. So, all those shown in this

circle or the oval shape or the entities and the relationship are expressed using the

directed arrows.

Now, the system will be having many components to provide the function. So, this is the

physical architecture we are talking about the components and the subsystems, and then

components will be having we can actually have the relationship between system and

component a system is built from the components. So, we can have the relationships here

the system is built from components, the relationship is built from. So, here you can see

the components actually form a system. So, system is built from components, and we

have the smallest item in the physical architecture which is known as the configuration

items and we know that configuration item is a subset of components. So, this is a

relationship.

So, configuration item is a component. So, this is a subclass or configuration item is a

subclass of component, that is why we have a is a relationship here. And then we have

the physical architecture something similar to the functional architecture, we have the

physical architecture and again we have the relationship components are part of the

physical architecture. So, it actually physical architecture contains the components of

course; it can be components or the subsystems. So, we write the relationship as physical

architecture contains the components and then we have the interfaces as another entity;

here the interface is basically used to connect the components.

So, we say that components. So, the arrow should be in this direction. So, the

relationship is connected and then again you can have interfaces with between systems or

system connects with the external systems. So, we can have a interfaces connecting the

system also. So, relationship between interface and system again is connected and of

course, interface will perform many functions. Therefore, there is a relationship interface

performs functions and again there will be interface items that basically the physical

elements of interface items. So, this actually interface contains items the configuration

items it can be components or the software or any other configuration item which is used

to form the interface these are the items and the functions are produced by this items for

the interface. So, this is actually functions are transformed by the interfaces.

So, that is the relation between items and transforms; and then we have the external

systems as another entity external system another entity, and which actually performs the

any functions and here again interface is connected to the interface. So, the interface

connects the external systems. So, the external systems again the interfaces are used for

connecting this. So, you have the external interface external system connected by the

interface and again there are external system perform the decompositions and then you

have this last item is the functional architecture which actually documents the functional

decomposition. So, that is the relationship here is documents. So, this is the complex ER

diagram for system design.

As we can see here as now the system design is a complex process there are many

entities involved in the system design and therefore, we need to represent them using the

relationships what we are trying to do is to identify all the entities and then try to see

what kind of relationships are existing between these entities and as I mentioned there

are different kind of relationship between the entities. So, we try to identify the

relationship as well as the class or subclass relationship and the subclass relationship is

represented using a is a relationship. And all other relationships are not using directed

arrows as we can here if you take the system as the main entity you can have there are

different relationship between the entity system as well as the requirements.

So, you have there are different requirements the input output requirement derived

requirement all can be traced to the functions of the system because the system needs to

perform the functions and therefore, we have many requirements identified from there

and apart from the function the system has got some system wide requirement especially

in terms of technology and other requirements, that is where the system wide

requirement can be traced to the system, similarly there are requirements for desired

software or hardware. So, that can actually be considered as a subclass of the system

wide requirement.

Therefore, you are getting an is a relationship as part of the relationship between these

entities; and ORD is the document. So, originating requirement document we identify or

we prepare and the system design, when we are ready with all the system requirements

and other identified functions and needs. So, the ORD basically documents all the

requirements and again you can see these are all the requirement, which are the all these

are subclass of the requirement that is why the relationship between these entities and the

requirement is a relationship because it is a subclass of this entity.

Similarly, the trade of requirement again is a subclass of the requirement that is why we

can actually have the relationship as is a relationship. So, we can identify which are the

subclasses just by looking at the diagram, we can see that all these are the subclass of

these particular entity requirements. Similarly if you look at here you can see the

relationships, the components, the interface and the functions. So, how they are related to

each other and they what is the entity relationship between physical architecture in the

components, similar to the configuration items as you can see components is a subclass

the configuration item is a subclass of components that is why there is an is a

relationship. And similarly interface has got many connections with the other entities. So,

if you take interface as one entity and the functions as one entity, you can see that

interface perform some of the functions what is identified in the function for the system.

Similarly, the interface connects the system as well as it connects the external system

also. So, the relationship between that these two entities or the system and the external

system is through the interface entity. So, the interface connects the system as well as it

connects the external system and it performs many of the functions of the external

system also.

And again this is the physical configuration items for the interface. So, it contains the

items, and there is items are transferred to function the functions are transformed through

the items. So, actually they perform the functions for the system. So, like this you can

have any complex system represented using the entity relationships diagram. So, that is

the advantage of using entity relationship diagram for representing the data flow in

system design.

First we can see here this is a complex diagram and it is bit difficult to represent all the

entities using this method therefore, there is another method called high graph.

(Refer Slide Time: 40:05)

So, this is actually an extension of the complex ER diagram. So, this is known as

higraph.

(Refer Slide Time: 40:10)

Which is widely used nowadays for representing the a complex relationship between

entities. So, the higraphs are generalization of complex ER diagrams, here then entity is

considered to be a collection of many small elements or a collection of multiple elements

which are known as blobs. So, one important terms you use here is the blob. So, here a

single entity is considered to be a collection of small elements in the system.

So, that is the blob multiple elements are bind together in a blob. So, here we represent

the higraph using a and one entity will be representing many elements. So, if you take

this as an entity one entity. So, we will represent the entity with many collections of

elements called blobs. So, these are known as the blobs. So, one entity or a collection of

many things can be considered as a single entity. So, as you can see here there are many

entities. So, some of these entities can be combined together to make a single entity and

this collection of the small elements will be known as blobs. For example, if you take the

entity here as the requirements. So, instead of this entity if I consider the requirement,

here you can see requirement is one entity which actually consists of many subclasses.

So, probably we can actually represent all the subclass into a single entity, and then

represent requirement as a single entity showing all these subclasses. So, that is the blob.

So, here instead of this entity I can actually write requirement as a an entity here. So,

requirement as an entity and then I can have many requirements over here because I can

have originating requirements as well as derived requirements and in originating

requirement itself I can have. So, this is the originating requirement and this is the

derived requirement and here we can see that the originating in derived requirements are

here these are the derived requirements and the originating requirements are here.

So, we can actually represent all of them into a single entity, and here we can see this is

the input output requirement and this is the system wide requirement then trade off

requirement and then test requirements. So, now, what we have done is that we have

combined all these elements. So, many elements have been combined here to form a

single entity and this combination of the elements on known as the blobs. So, we have

many blobs combined into a single entity and we are getting a single entity is represented

by this. In the higraph we try to simplify the complex ER diagram using this kind of

blobs and entities. So, here you can see input output requirement has got originating

requirement as well as derived requirement.

So, both are represented using the same diagram. So, this input output is common for

both originating as well as for derived similarly system wide requirement can be

originating requirement or derived requirement, trade off requirement can be originating

or derived similarly test also originating or derived. So, all these requirements are

combined into a single block and this is known as the one entity in the higraph. So, that

is the difference between higraph and the complex ER diagram we represent some of the

is a relationship. So, most of this is a relationship can be combined to this one to

represent the entity. So, these are known as blobs and this is the entity. Now if you make

a the similar diagram of the system partial system diagram can be shown using this here

we can write the relationship; so the derived requirements.

So, these are the test requirements can be. So, this is suppose this is a test requirement

and the test requirement can be traced to this one. So, we can actually write this

relationship as traced to; similarly the input output requirement can be traced to we can

write the arrows to the functions. So, this is another entity. So, this can be traced to

functions and then the functions are performed by this is the system this is the

relationship is performed by the functions are performed by the system and then the

system wide requirements are traced to the system.

So, now you have the system wide requirement since can be traced to system and the

system is built from this is built from components. So, components can be another entity

with many blobs. So, we put it as components. So, again you can have it as a entity with

many blobs. So, this is a built from. So, a similar entity can be identified for this also

components and then this can be traced to the system wide requirement. So, the require

and all the requirements can agree ability again be traced to this one components also. Of

course, these two requirements, the originating requirement and can be traced to the

derived requirements this is a relationship traced to and we can say that all the

requirements are defined on a particular date or time.

So, defined and again this can be a block with many data like date time etcetera. This is

defined on that particular date that is the relationship. So, this is actually a partial higraph

partial higraph for systems. What we are trying to do is to reduce the complexity of the

ER diagram the complex ER diagram is simplified to a another diagram called higraph

where we try to see all the subclass relationship and all the subclass relationships are

combined to a single entity and this single entity will be having multiple blobs to

represent the subclasses in the system and then we can actually have many entities like

that and the relationship between the entities can be represented in the same way as the

ER diagram. So, this is the higraph which is very commonly used for representing the

relationship between entities.

So, to summarize whatever we discussed today, we discussed about the qualitative

modeling techniques graphical modeling techniques for engineering system design. As

we know there are many entities in the system and there are relationships between these

entities and therefore, we need to represent these relationships using graphical methods.

So, that it is easy for us to understand the relationship and it will help us in the design of

the system. And various methods are used the data model is one method which actually

represent the relationship between entities and in data model we have simple ER

diagrams where actually the relations between two entities can be represented as a one-

to-one relationship or one to many or many to many relationship.

And then we have complex ER diagrams where we try to represent the subclasses using a

relationship called is a relationship and all other relationships are directed or directly

represented using directed arrows with the corresponding functions. You know to

simplify the complex ER diagram what we are doing is to combine some of those

subclasses, the is a relationship in the complex ER diagram is combined to make blobs

and many blobs are combined to form a single entity. And we can have multiple entities

like that in a complex ER diagram and the relationships can be represented using in a

higraph. So, the three methods we learned today are the ER diagram the complex ER

diagram and the higraph.

So, these are the basic methods for data modeling used for system engineering. The other

two methods are process modeling as well as the behavior modeling these two we will

discuss in the next class.

Till we meet goodbye to all of you.

