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Lecture 35 Strong Connected Components Part 3 

Namaskara we have seen a high level description of the strong connected components 

algorithm we will see the way in which it works. We will understand the working details 

of the algorithm by running that algorithm on this example, okay. So what we do is we 

have to find the discovery time and finish time of all these vertices performing a DFS. 

That is what we have to do, so consider this graph, that is given here,  

 

run DFS and find finish time find discovery time and finish time for every vertex v okay. 

So, let us do that so vertex v and discovery time v dot d and v dot f; v, v dot v, v dot f. 

 Let us say we are starting at vertex 1. We assume that the adjacency list has got all the 

vertices, all the neighbors labeled in increasing order. For example, 1 has got only 2 as a 

neighbor, right, outgoing. So that will have, if you look at 4, 4 has got 3 neighbors, 3, 5 

and 6, so adjacency list of 4 will have 3, 5 and 6, listed in that order. If you look at 8, 8 

has got several neighbors 9 and 10, so 8 will have its neighbors 9 and 10 listed in the 

increasing order okay. So, in this way each vertex and their neighbors are listed in 

increasing order, so we are going to do DFS looking at the adjacency list alright. You 

start from 1, v dot discovery time is 1, v dot discovery time is 1. From where, from there 



you have to go to an unvisited neighbor, 2 is the unvisited neighbor, so you will go to 2, 

the next vertex to be visited will be 2 and we will, 1 2 3 4 5 6 7 8,  these are the vertices, 

so from 1 you are going to go to 2, therefore discovery time of 2 will be 1 and that is only 

neighbor it has got from 2 you are going to 4, sorry the discovery time will be 2. 

2, from 2 you are going to 4. So, let us draw also from 1 you had gone to 2, from 2 you 

had gone to 4, the discovery time for 4 will be 3, and from 4, 4’s adjacent neighbors list 

are 3, 5 and 6, first from 4 you will go to 3, 3 is not visited yet, so from 4 you go to 3, so 

discovery time is the next time. So, this is the fourth vertex discovered, as you can see 1, 

2, 4, 3, discovery time of 3 will be 4 and from 3 you will see whether there is any 

unvisited neighbor, 1 is a neighbor but 1 is already visited. So, since all neighbors of 3 

are visited, you are going to exit 3, from 3, actually this will be a 3 to 1, this is a non tree 

edge, that is the only neighbor, that is a non-tree edge and all neighbors of 3 are visited, 

you are done with the 3 therefore you will now finish with the 3 okay. 

 

 

 Oh I am sorry in this example from 4 it had not gone to 3, has gone to 6 my apologies, 

forget this, this is not necessary. Now there is a systematic, way but the way in which this 



example from 4 we had not gone, I just have to mild backtrack from 4 you had gone to 6 

from 4 not to 3. 

From 4 you had gone to 6, 1 to 4, 4 to 6 you had gone, so 6 will have discovery time 4  4 

as a discovery time 3 the next discovered vertex was 6, you can see that it has gone to 6, 

from 4 you had gone to 6, from 6 you had gone to 7. So, the next vertex discovered is 7, 

which is the discovery time will be 5, discovery time for 7 is 5. discovery time of 8 is 6, 

the next vertex discovered is 8, therefore 6 is the discovery time for 8, from 8 you had 

gone to 9, from 8 you had gone to 9. So the discovery time for 9 is 7 and from 9 you had 

gone to 10, therefore discovery time for 10 is 8. From 10 you had gone to 11, therefore 

the discovery time for this the depth first search. 11 from 11 you had gone to 12 therefore 

discovery time for 12 is 10. Now all neighbors of 12 are visited, 12 has got only one 

neighbor namely 10 and 10 is already visited so you will finish 12, finish time of 12 will 

be 11. You backtrack, you had come from this you had gone to 12 you backtrack to 11 

and at 11 you have no other vertex, so at 11 also you will finish, now you finish 11 at 12, 

the finish time of 11 will be 12 and then you backtrack to 10, the finish time of this  10, 

because 10 has got no other neighbors, 10 has got 11, 11 is already visited therefore, no 

other neighbors of 10 are available. So, you from 10 you backtrack to 9, at 9 also you 

have 7, which is already visited 10, that is already visited, all neighbors are visited. So, 

you finish at 9 and you backtrack to 8 and 8 also you have no other, 9 is visited  10 is 

visited all neighbors are visited. Hence you finish at 8, finish time of 8 is 15, you 

backtrack to 7, And at 7 there are again no unvisited neighbors, it will be 16 and you 

come back to 6 and 6 also have no other neighbor, so that will be 17, from 6 you come 

back to 4, right from 6 you come back to 4, this is 4, 4 has got several unvisited 

neighbors, okay, 4 has got, 3 is not visited, 5 is not visited and it is going to take 5 now 

okay from 4 you are going to visit 5 now. from 4, 5 is not visited so from therefore the 

discovery time for 5 is 18 and from 5 there is an unvisited neighbor 3, so discovery time 

for 3 will be 19, okay this just now 3 is discovered, from 3 you try to go to 1 but 1 is 

already visited, so from 5 you had gone to 3, 3 is visited, its visit is complete, so at 3 you 

visit, you finish the visit, therefore finish time is 20, you backtrack to 5, just 5 have any 

other unvisited visit vertex no, so 5 will finish, now 21 you come back to 4 and when you 

come back to 4 is there any unvisited neighbor. Now 4 has got 5, 3, 6 all of them are 

visited so you will finish at 4 also and at 22 and then you are going to backtrack to 2, at 2 

all neighbors are visited therefore you finish at 2, at 23 the next time slot, then you 

backtrack to 1, 1 has no other neighbors so you finish at, these are the finish times. So 

discovery time and finish time of all the 12 vertices are determined  Step 1 just perform 

the DFS on the input graph and identify the vertices that are, this is step 1 okay. 

 Now we have to construct the reverse, okay, each edge is going to be reversed, okay, so 

let us write down the same graph with each edge reversed. So I need a so construct G 

reverse, it is very easy to construct okay for every edge you generate the reverse edge you 



create a adjacency list for reverse graph that is all. So I will draw pictorially here, but in 

algorithm you can very easily do that each edge you just scan through the adjacency list 

just  put the reverse of it in the another fresh adjacency list you are going to create a new 

adjacency list for G of R, construct G of R how do you do that, construct new adjacency 

list for G of R, this is how you will do it in the program but here I will draw the picture. 

Earlier you had an edge from 1 to 2, but that edge reversed will become an edge from 2 to 

1. Earlier you had an edge from 3 to 1, now that will become an edge from 1 to 3. Earlier 

you had an edge from 2 to 4, now that will become an edge from 4 to 3. Then this reverse 

will have this, vertex 5 and 3 to 5 ok. So, 3 to 5 will be, then the 5 to 4 will be the edge 

and 6 to  of the edge 4 to 6 here you will have 6 to 4 instead of edge from 6 to 7 you will 

have the edge from 7 and then 7 to 5, earlier you had an edge from 5 to 7 for example let 

us see,  here you can see that edges from 5 to 7, in the reverse it will be from 7 to 5 you 

can see that here I have drawn from 7 to 5 and now you have 8 to 7 instead of 7 to 8 and 

instead of 8 to 9 you will have 9 to 7, you will have 7 to 9 and then 10, instead of 9 to 10 

you will have 10 to 9, instead of 8 to 10 you will have 10 to 8. So, this is how the  

reverse, and then 10 to 11, now you will have 11 to, this is vertex 11 and 12 to  11 and 10 

to 12 okay. So, this is G reverse every edge I have just reversed it okay. 

 

On G reverse I am going to do depth first search okay. Third step perform DFS on G 

reverse but how are you going to perform DFS, where will you start and how would you 

proceed? You would always start with a vertex with maximum, an unvisited vertex with 

maximum finish time okay. Perform ,how are you going to perform, start always  with an 

unvisited vertex with maximum v.f, so where do you begin with. Now no vertex is 

visited, right no vertex is visited, so which vertex has got the maximum.  So here you see 

the maximum finish time is 24 and that is with vertex 1, therefore max finish time is 24 

and that is for vertex 1. So, start DFS from 1 on G reverse, so start the DFS from 1. So 

when you start the DFS from 1, from 1 where can you go, there is only one neighbor you 

go to 3, okay so from 3 you have several options, you can either go to 4 or you can go to 

5, let us say you had gone to 4. From 4 you can go to 2, that is the only option you have 

right, from 4 you can go to 2, from 2 you can go to  1, that is already visited, so backtrack 



to 4. Now all neighbors of 4 are visited, backtrack to 3 and when you backtrack to 3, now 

from 3 you can go to 5, but from 5 you can go to 4, but that is already visited and there 

are no other neighbors therefore you backtrack to 3, at 3 all neighbors are visited 

therefore backtrack to 1 and 1 is the route that is where you have started okay. So the 

DFS stops at this point, the DFS has stopped this point because DFS has visited all the 

vertices reachable from 1, all the vertices reachable from 1 are already been reached 

therefore the DFS has come at 1 and then it has stopped,  

 

This set of vertices 1 3 4 5 2 is a connected component of original graph right, which you 

can see 1 3 4 5 2 a connected component, strong connected component of G. I worked on 

G reverse and when I worked on G reverse, I started a DFS and the DFS started at 1 and 

it has visited all the vertices that are reachable but then it has not visited all the vertices, I 

have to continue my DFS where do I continue, from which unvisited vertex I should 

continue, here is the logic start always with an unvisited vertex with maximum vf ,so 1, 2, 

3, 4, 5 are all visited among the other vertices which one has got the maximum one. So 

go back let us see the so 1, 2, 3, 4, 5 are already visited okay. Among the remaining 

which one has got the maximum finish time, so all these things are, Yeah, 6 as the 

maximum finish time you can see that these are the finish time of the remaining vertices, 

17 is the maximum finish time. Therefore, I have to start at 6, among the remaining 

vertices 6 has maximum finish time, namely 17, hence continue the DFS on G reverse 

from 6, okay, you should start from 6, 6 has got one neighbor, which is 4, that is already 

visited it does not have any other neighbor, therefore when you start at 6, it is just 

stopping there, that is all, the DFS second, I mean continuation of the DFS is at 6 but 

from 6 the tree does not grow right therefore this is the one and hence this is the second 

tree okay. This is the second tree in the DFS this has got only one vertex therefore this is 

the second component. This is a strong connected component of G, 6 is a strong 

connected that single vertex 1, 2, 3, 4, 5 is a strong connected component, 6 is a strong 

connected component you can see that in the original picture you can see C1 is 1, 2, 3, 4, 

5, C2 has got only 6, that is a connected component okay, let us continue. 



So among the remaining vertices, I have to start, I have to continue my DFS I have to 

continue the DFS until I visit all the vertices I started at 1, I reached all vertices reachable 

from 1, I got stuck again I started from 6, I got stuck there, again I have to continue. I 

have to start from one of the unvisited vertices but then our policy is always start from 

the unvisited vertex with maximum vf, therefore let us look back, even 6 is gone and 

these are the remaining one 16 to this these are the remaining one. The largest one is 16, 

therefore we start from 7, so start from 7, 7 has got 2 neighbors, 6 is already visited, 9 is 

another option so you go from 7 to 9, from 9 you go to 8, from 8 there is only one 

neighbor 7 that is visited, all neighbors are visited backtrack you come to 9 all neighbors 

of 9 visited, you backtrack you come to 7, all neighbors of 7 there is another neighbor 5 

that is also visited. So at 7 also the visit is complete therefore this is another connected 

component 7, 9, 8 is another, is a strong connected component of G. strong component of 

G. So you start from 7, among the remaining vertices, 7 has the maximum finish time, 

start from 7 and you get 7, 9, 8. So everything is visited, among the remaining vertices 7, 

8, 9 is all 10, 11, 12 is there so you start from 10. 

So when you start from 10.  you go to 12 and 12 to 11 and 11 has 10 as a neighbor, that is 

visited and backtrack 12 and this is visited done so 10. The DFS on GR is now complete. 

The DFS on G reverse is now complete, the DFS, the depth first search has generated a 

forest with 4 trees, okay, first tree has got root at 1, how was the tree looking like 1 to 3 

to 4 to 2, 1 to 3 to 4 to 2 and 3 to 5 this is one forest another forest is only 6. another sorry 

another tree is only 6, another is 7, 9, 8, another tree is 10, 12, 11. 

 

So the DFS on G reverse has generated 4 trees each set of vertices will form a connected 

component 1 3 4 2 5 6 7 9 8, 10, 12, 11 each one of them is a strong connected 

component of G and that is what we have seen in the picture right therefore this works. 



 

But we have to prove the correctness of this method right this is how it works, so, on GR  

we are going to work by exploring the vertices in a specific order. Whenever you perform 

DFS if there is still an unvisited vertex, in general, you can choose any unvisited vertex 

and continue your DFS, here we are continuing in a specific way alright. So to 

summarize, perform DFS on G and determine v dot f for all v belonging to V, construct 

G reverse. perform DFS on G reverse and generate the DFS forest. Each tree has vertices 

defining the vertices of strong connected component of G. Generate the DFS forest okay. 

In 3 we always start DFS from a vertex with highest v dot f, from a unvisited vertex. So 

in general DFS, you start from a vertex it will visit few vertices and get stuck if there are 

still some vertices the general DFS puts no constraint, you can continue the DFS from 

any unvisited vertex, but for this particular algorithm we are going to choose that 

unvisited vertex which has got the highest v.f, then do that it is still whenever you are 

stuck and if there are still some more unvisited vertex, we are going to continue our DFS 

from one of the unvisited vertices and then reach all the nodes that are reachable from 

that and so on. So in this way a DFS forest will be generated each tree will have certain 

vertices the DFS forest is generating a partition of the vertex set that partition is nothing 

but this strong connected component partition. 

This example clearly shows the way in which it works. In our next session we will see a 

very simple and elegant proof of correctness of this method, how this works, why it 

should work, you do a DFS and you got a just do DFS you get for every vertex a finish 

time and then the start time. Then you constructed reverse and on the reverse you have 

done a particular way of depth first search and you got it. The complexity is very simple, 

it is linear because you do only 2 DFS and then you construct reverse. Reverse can also 

be constructed in linear time for each edge you have to produce its reverse and get GR. 

 So overall complexity is linear, so in linear time we have an algorithm that is 

determining the connected components of a directed graph, okay, very interesting 

algorithm we will see the proof of correctness in our next session thank you.  

 


