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Lecture 32 DFS in Directed Graph  

Namaskara, in this lecture I am going to discuss about the depth first search done on 

directed graph, depth first search in directed graph. The skeletal structure is same. much 

same like undirected one the difference comes in dealing with non-tree edges. In the case 

of undirected graph there is only one kind of non-tree edge called the back edge, they 

always go from a descendant to an ancestor, however for the directed graph the non-tree 

edges can fall into 3 different categories, there are 3 types of non-tree edges. Let us say 

we have the depth first search done in a directed graph and assume that we have got the 

trees. Something like this and you know that when the DFS is done from wherever you 

have started, all the vertices that are reachable, that is if there is a path, then that will 

occur in the DFS tree with that node as a root but if not all the vertices are reachable. 

In order to explore the graph you have to make a fresh start from one of the vertices that 

you have not reached or not visited and that fresh start may give rise to another kind of a 

tree, it is in the same graph except that you made the second starting point and then you 

have proceeded with this and in this way you may have several DFS trees starting at 

different vertices. It is a same graph okay.  

 

The non-tree edges can be of 3 different categories. One of the non-tree edges could be 

something like this and this is called the forward edge, I have written F, in near that edge 

,it is a non-tree edge, it is not part of the tree, it goes from a visited node to another 

visited node, right therefore it is a non tree edge. From a visited to an unvisited node 



when an edge goes that will be a tree edge, from a visited node to an unvisited node when 

you go that defines a tree edge. 

From a visited node to another visited node when an edge goes those edges are non-tree 

edges. So here is an edge, it is a non-tree edge, this is called the forward edge. I am going 

to draw another one this way it is called backward edge or back edge, I have labeled that 

as B and then there can be certain edges like this, they are called cross edges they go 

across. okay for example this is an example of a crossing edge or a cross edge. So the 

non-tree edges are of three kinds forward edge, forward edges go from ancestor to 

descendant, backward edge they go from descendant to ancestor, it is going back but it is 

going to an ancestor. So this will go from descendant to  ancestor okay that is why this is 

back edge. The third kind cross edge the cross edge connect 2 vertices that are not related 

by ancestor descendancy type okay they are in different branches. they are in completely 

different subtrees. The subtrees at these end vertices are disjoint one is not going to 

include the other okay that is the reason why such edges are called cross edges. So in the 

picture you can see that these cross edges they  they are not related by ancestor 

descendant. 

 So if an edge e equal to uv if u is ancestor and v is a descendant u is an ancestor and v is 

a descendant this is forward edge. And if u is descendant and v is ancestor, so this is 

forward edge and this is backward edge or back edge.  

 

If u and v are not related, they are in the different subtrees or one is not the ancestor of 

other, this is in the same subtree but you can see that these two vertices. They are neither 

ancestor nor descendant. Any edge connecting these type of vertices they are called cross 

edges. 

So we need to recognize when a non-tree edge would be a back edge or a forward edge 

and so on. The nodes that are active during a DFS, when a node, see if you look into the 

entire span of DFS, the timestamp starts from 1 and for every entry and for every exit the 

time is incremented by 1. Therefore the time is going to take consecutive integer values 1 

to 2n consecutive integers and these values are assigned to the vertices as a discovery 

time and finish time. So if you take a vertex u, u.d is the discovery time, u.f is the finish 

time. The depth first search enters u, explores everything and then exits, finish time. 



 

 So u.d, u.f defines a time interval, an integer interval. This is the period in which u is 

active, so DFS happens from 1 to 2n various vertices are active. In various sub intervals u 

may be active from here to here, v may be active from here to here and another vertex 

may be active from here to there and so on. Various vertices are active in various time 

intervals, so before it is active it is unvisited, it is not visited and its color will be white. 

When it is active, the color will be gray, once it is finished, it will be black, the vertex 

will have a color attribute set to black, so white, gray and black. 

 So if you look into the execution, a vertex will remain white until it is visited. The 

moment it is visited, it is set to gray in the first step and you can see when it is set to 

black, when all the neighbors are visited, when the entire visit related to that vertex is 

over, it is set to black. After that, that vertex will never be visited again. It is finished. So 

once it, after this point of time,  So this is discovery point, this is the finish point ,after 

that it will remain black, this true for every vertex. 

 

These intervals the time intervals related to the vertices they have some very interesting 

properties either they are disjoint or one is contained in the other it is going to be like 

this. or like this one is going to be contained in or other or it is disjoint. It will never be 

like this kind of there would not be any overlapping intervals, one is going to contain the 

other or they are going to be disjoint, take any two vertices every vertex has got an 

interval associated with this, the interval is defined by its discovery time and finish time 

and those intervals are either disjoint or one containing other but they will never overlap 

like this okay. When one is contained in the other, let us say this is the interval of u and 

this is the interval for v, v is a descendant of u descendant means u is discovered first 

then the exploration continues, backtrack, then the exploration continues and backtrack 



So somewhere here v will be there, so v is going to be discovered after u is discovered 

,then it backtracks and then it continues and then it is finished. 

 So u.d will be less than v.d because this is discovered earlier, v is discovered later and v 

is finished earlier and u is finished later, so u dot d is less than therefore this is u dot d 

this is v dot d, this is v dot f, this is u dot f, you can see that it is like this 

 

If this is the case then v is descendant of u. The ancestor would flip just the same relation 

it will be still contained in another right because if v is a descendant of u, u is an ancestor 

of v. So ancestors intervals will be bigger descendants interval will be smaller okay. If 

two vertices have no ancestor descendant relation then there will be disjoint like this if 

this is u and this is v, u will be in one part v will be in another part one will not be an 

ancestor or descendant because if it is an ancestor or descendant one interval completely 

goes into another interval it is not like that. 

 v and u are not related by ancestor descendant relation that means they are going to 

remain disjoint it will never overlap like this. So these are all some basic properties of the 

intervals associated with the vertex. You do the time stamping, the time stamping 

naturally gives rise to an interval associated with a vertex and when you have the 

information related to that interval ,you can say whether one is an ancestor or one is a 

descendant whether an edge is a back edge or a forward edge, because back edge and 

forward edge are only between ancestor and descendants okay. So you can see that if u is 

an ancestor of v, u is finished after v is finished. So u will be gray when v is finished it is 

still live, v is finished and then go back and then it may continue at u. 

 Therefore you have very interesting basic properties that are allowing us to characterize 

and recognize when an edge is a back edge, when an edge is a forward edge and when an 

edge is a cross edge and so on. So the control point for non-tree edges now split into three 

further options. It is a non-tree edge alright. If it is a cross edge what you have to do if it 



is a back edge what you have to do they may be different, in that case you have to put 

them in the appropriate control points. So we will give now a more elaborate version of 

the depth first search of a directed graph with the conditions for non-tree edges of each 

category explicitly mentioned okay, the pseudo code is here.  

This is called the driver code DFSG for each u belong to vertex set of G, u.color equal to 

white  u dot p the parent is null there is no parent each vertex is not even connected time 

is 0 we set it to 0 it is a global variable for each u in v, if  u dot color equal to white then 

DFS Gu. So you start from a vertex u if it reaches all other vertices everything will be 

colored black. So this for loop, for each u you start with one u if that accounts for all 

other vertices  there is no further trigger of DFS Gu is possible, if there are still some 

vertices that are white a fresh DFS will start and a tree from that node as a root will get 

built up okay. 

 

 So this is the  DFS Gu how are we going to do DFSGu. Suppose you start from a vertex 

u what do you do, first time stamp update the time stamp u.d this is a discovery time, this 

is the first time you are entering u.d  is time and u.color equal to gray, it has become 

active because just you have entered into this, for each v belonging to adjacency list of u. 

If v dot color equal to white, it is an unvisited vertex, then this is a tree edge, v dot p 

equal to u, this means uv is a tree edge and  DFS Gv, if v dot color is not white so else uv 

is a non-tree edge. 



 

 If it is a non-tree edge we have further things to look at so it is not white therefore it 

could be gray or it could be black the color of V could be grey or black therefore in the  

uv is a non-tree edge, if v.color equal to grey. because color of v is not white therefore it 

could be gray or it could be black. If v dot color equal to gray that means uv is a back 

edge okay. When you come to this statement, well you can write like this or you can put 

even an else statement here it does not matter, so if v.f is less than u.d, then uv  is a cross 

edge, because v is already finished and u has started later, that means v is in some other 

part of the tree and then it is not in the branch or it is not in the path from root to v at all, 

it is already done okay. Therefore u dot v is a cross edge, else  it is a forward edge, you 

can write simply like this else forward edge, either it is a back edge or a cross edge or a 

forward edge. You can write down the condition for any two and put in the else class the 

third one there are only three types okay.  



 

Therefore if you want to add a computation that is to be done with respect to a back edge 

those computational steps are to be included here, if you want to consider doing 

something only when you find a cross edge those computations are to be done when in 

this part, in this after this if statement, it is a skeleton fitting the appropriate computations 

where it is to be carried out. The logic involved in the solution of the problem will tell 

you what are the things to be done and where those codes are to be fitted here okay it will 

determine that.  

So all that I have done is that I have, this an elaboration of control point related to non-

tree edges. We have seen a canonical example of using this kind of a skeleton to solve cut 

vertex problem for undirected graph. We have already seen, how to solve the cut vertex 

problem for undirected graph. For directed graph, we are going to take a look at an 

algorithm for finding strongly connected component of a directed graph. We will see an 

interesting solution for this, there are several algorithms for this, we will take a closer 

look at an algorithm in which the computation to be done to determine the strong 

components  are characterized in terms of the non tree edge related computations. Now, 

we know when, we know how to recognize a particular kind of a non tree edge and the 

computation to be done there must be fitted there, once you do that you have an 

algorithm for finding the strongly connected components. We will take a closer look at 

one such algorithm in our next class, thank you. 


