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Namaskara, We will continue our discussions on depth first search. Depth first search is a 

systematic exploration of a graph. Graph is a complex discrete structure and systematic 

exploration requires careful maneuvering of moving around the graph. We say visiting of 

the vertices and edges for our exploration. Initially no vertex is visited, no edge is visited, 

it is unexplored okay. So you start from some vertex okay, so here is the vanilla version 

where you can see you start from some vertex u, if it has a neighbor that is not visited you 

go there and continue the visit. 

So you recursively you are proceeding, so you start from a vertex u and go to a neighbor 

v and from there you go to another neighbor v dash and in this way the exploration keeps 

building a path. okay,  

 

when you are not able to proceed any further, that is suppose you are in a vertex such that 

it has no unvisited neighbors, all its neighbors are already visited, in that case you cannot 

proceed any further from here okay. Since you cannot proceed any further, you 

backtrack, that is all handled by a recursion. So in your exploration process if you go 

from one visited vertex to another unvisited vertex it defines tree edge. 

If you go from a visited vertex to another visited vertex by an edge that is going to define 

a non-tree edge. So an edge takes you from one vertex to another vertex. From visited to 

unvisited it is tree edge, from visited to visited it is a non-tree edge. Now, the nodes of 

the graph could be in one of the three states during a depth first search, it might not been 

explored so far, that is not yet visited. All unvisited nodes will have the color white, in 



our program we have an attribute called the color and if the color of a node is white then 

that means that node is not yet been visited. 

Once a node is visited, you take one of the unvisited neighbor for example if it is u, you 

take one of the unvisited neighbor and proceed further and come back and take another 

unvisited neighbor and explore come back and so on. So whenever you are coming back 

to u and then take another option u is still alive we are still not finished with u it has still 

some unvisited neighbor. So as long as you have an unvisited neighbor you will be active 

or alive and you will use that unvisited neighbor to continue with your exploration, that 

period is called active period and during that active period we will have the color 

attribute set to grey. When you set something black, it is a done with if all neighbors of u 

are visited then the exploration at u is completed. The exploration should continue 

elsewhere. So what you do is that you backtrack to a vertex from which it has come and 

then continue your exploration from there. So at this point this is finished, you have a 

black color associated with you okay. So there are three colors we use to indicate the 

status of a node. Now a tree edge will have the following form you would have come 

from one vertex to another vertex, this is v, this is let us say from u you had come to v, u 

is called the parent of v. 

 

The notation we use is, u equal to p of v, we can use another notation v dot p, v dot p 

stands for parent of v okay, this is another notation. Corman is using this kind of 

annotation which is typically used when you treat the items as objects. We have already 

discussed that we will have two timestamps discovery time and finish time when exactly 

a vertex v. is considered or explored for the first time and when all the explorations are 

over when it is a done with. So there are two timestamps v.d and v.f associated with. 

So here is the full version in pseudocode, depth first search of a graph for each vertex u, u 

dot color is white and u dot p is nil, the parent is not there for a vertex and initially all 

vertices are unexplored, so you have u dot color is white. We have to keep track of the 

time at which a particular vertex is entered or visited and when a particular vertex is done 

with or finished. In order to keep track of that information we set a variable time and 



keep updating the clock that ticks every time an event of interest occurs, so initially time 

is 0 and then for each u if u dot color equal to white you trigger a depth first search from 

that vertex okay. So what happens when you trigger a depth first search from a vertex? 

Time is time plus 1, u dot d is time the discovery time stamp is done here,, u dot color is 

grey, It has become active so far it was white, now it has become active u dot color is 

grey and for each v that is adjacent to u, if v dot color equal to white you go there to start 

exploring from there. 

 So from u you are going to v. you are here this is a neighbor you had gone from there 

and then continuing from v therefore it is like this that means parent of v is u alright that 

is what is set here. Parent of v equal to u is set here because of this situation and you are 

continuing recursively when the for loop terminates what does it mean all adjacent 

neighbors have been explored. So from u all explorations are done, okay therefore time 

equal to time plus 1, finish time and then u dot color is black, you can see that once the 

for loop is completed we are indicating the fact that it is done with. 

 

So we time stamp it and record that in u dot f finish time and u dot color is made black. 

So this is the basic depth of search we call this as depth of search skeleton. The reason is 

we can add flush at various parts and make a complete solution for a problem okay. 

 So we are going to add more computational steps at various control points. It is a 

skeleton we will understand the skeleton and figure out what kind of computation can be 

inserted at which point alright. So here is the extended view of computation with the 



depth first search, it is the same thing except that I have added where we can possibly 

enhance the DFS by adding more computational steps and what kind of computational 

steps can be added there, that also we are looking at. Time equal to time plus 1, u dot d is 

time, discovery time is set, this is the first time u is visited and this number 1 here 

indicated, that is a control point 1, at control point 1 you do whatever you have to do, 

suppose your graph algorithm a computational step requires that to do certain things 

when you enter a node for the first time, all those computations are to be placed here. So 

at control point 1 add all the steps that are processing, when u is encountered for the first 

time it is like the pre-order computation. 

 Now you set u dot color equal to gray because u has become active, the depth first search 

has arrived at u until the depth first search is staying with its neighbors and it will be 

gray. Now look at for each v which is an adjacent of u, this is a control point 2 include 

the computations to be done for every edge. If you want to do certain computation for all 

edges those computation and the logic related is to be fitted here this is control point 2. 

The current edge is uv. v is a neighbor of u, therefore the edge is uv and whatever you 

want to do for the edge uv is to be put here. 

 If v dot color equal to white, then uv is a tree edge because from one visited to unvisited 

you have gone. So the current edge is a tree edge this is control point number 3. At 

control point number 3 we include the computations to be done related to tree edges. We 

record the fact that it is a tree edge by setting v dot p equal to u and then we continue 

with the DFS G of v recursively we are computing at v and once that GFS v is done We 

have to include the computation to be done while backing from v to u you have done with 

v DFS v is done with and you are backtracking to u right. So there is a vertex u and from 

vertex u you have come to v, at v you have finished the exploration and you are coming 

back. 

 So that you find another neighbor and so on. So when you come back, this is where the 

control comes back DFS v is over so include the computation to be done while backing 

from v to u. So control point 4 is where you are going to add, it is not a tree edge v is 

visited, if v is unvisited you are going to do all of them. If v is visited, then if v equal to u 

dot p then uv is the second copy of the tree edge, in an undirected graph every edge will 

figure in two lists, okay one version will be, if you take an edge uv, v is a neighbor of u, u 

is a neighbor of v it is an undirected graph. 

 So, this edge will figure in two places, it will be in the adjacency list of u and it will be in 

the adjacency list of v. So, in one copy you have already made a tree edge, for the other 

copy this will be the parent. p of v, v is tree edge then v p of v is the second copy. p of v v 

is a tree edge vp of v is the second copy. So when you see that it is referring to the parent 

it is the second copy of the tree edge, otherwise it is a back edge, it is taking to an 

ancestor right. 



So, whatever is to be done for back edge, you have to do here else uv is a back edge it 

takes to an ancestor already visited but it is like an ancestor. So all computation related to 

back edge is to be attached here control point number 5 okay, now all visit is complete 

time stamp, so u dot f is time and whatever you have done and you are leaving that no all 

computation related to, whatever you need to do while leaving u is to be done at this 

point. So you have a depth first search skeleton and in that skeleton there are various 

control points where you can add computational steps that would correspond to the way 

in which the control is positioned there okay. 

 If the control, at that control point you are exploring a back edge, back edge related 

computation is to be done there and so on. So there are 6 control points and we have also 

seen the properties of those control points. We need to add steps in those control points 

and then arrive at the complete solution to the problem. So the depth first search would 

do only exploration but in addition to the exploration we can build useful information 

about various nodes and vertices. We can add certain computational steps so that during 

the depth first search itself we solve certain problems. 

 We are going to see a canonical example of this and that will be in for finding the cut 

vertices. 


