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 Namaskara we continue our discussions on Dijkstra's algorithm. In Dijkstra's algorithm 

we solve the single source shortest path problem by determining the shortest path weight 

in incremental order. So, we will do n minus 1 iterations and find the shortest path 

weights of n minus 1 vertices in each iteration we find one vertex for which the shortest 

path weight is determined. So, we will maintain 2 sets S and another set V minus S, so S 

is the set of all vertices for which delta value are known, this is not, delta value are not 

known.  

 

So, we will work with the vertices in V minus S, identify a vertex for which the delta is 

known then move that to so determine a vertex v in V minus S such that delta v is known. 

or delta v is computed since for v, delta v is known, we have to move v to S okay this is 

what we repeatedly do. 

 

So how do we determine the vertex in V minus S, we keep for every vertex in, for every 

v belonging to V minus S, we maintain 2 pieces of information. The first one is d of v 

which is the weight of shortest special path, what we mean by special path is a path from 

S to V with all vertices other than v are in S okay. So, if this is S there may be several 



vertices and then this is v, is a special path okay. So the special path ends with a crossing 

edge, crossing edge is an edge going from S to V minus S and this is previous of v, this is 

the last edge so we always say the last edge in the form of the vertex and it is a previous 

vertex so pv equal to u where uv is the last edge of the shortest special path.  

 

So, these two pieces of information we maintain use this to determine the v. So, how do 

we determine v we have seen in the previous session that if v is a vertex  in V  minus  S 

such that dv is less than or equal to du for all u belonging to V  minus  S  

𝑑[𝑣] ≤ 𝑑[𝑢] ∀ 𝑢 ∈ 𝑉 − 𝑆 

That is v is a vertex with minimum d value, v is a vertex with minimum d value. Every 

vertex has got a d value associated with it. The value associated with these minimum 

among all the vertices in V minus S okay. In this case we have shown that let me write, 

then dv is in fact delta v  

𝑑[𝑣] = 𝛿(𝑣) 

That means this implies delta v is known for v which implies we move v to S. Now what 

is to be done? Look at the definition of the special path, definition of a special path is that 

it is a path which is going through only the vertices of S and then reach. Now S has 

become larger, we have one more vertex added to S, therefore d values are to be updated 

okay. Since S has been updated to S union v you have moved we need to update du 

values for u in V  minus  S okay. 

𝑆 ∪ {𝑣} 

𝑢 ∈ 𝑉 − 𝑆 

 The following observation is helpful in identifying for what vertices we have to do the 

updating and how we do the updating. Okay, so it is a very common sense and simple 

observation once this is done we are done with the details of the algorithm. We will put 

all the things together and then the final version of the algorithm can be drafted. So what 



has happened now, let us draw two pictures this is S and this is V minus S and there are 

several vertices u is here there is a v and then we have moved v over here. So s and v has 

been moved here okay this is small s this is the set S. 

Now you take  Let us consider 2 vertices one is u another is u dash okay, so assume that 

you have u adjacent to v and u dash is not adjacent to v okay, so let us draw u in a more 

comfortable way this is V minus S this is v this is u this is u dash and there are other 

vertices v to u you have an edge and you have moved v. this is u and this is u dash and 

there are other vertices. So after moving v this is the scenario okay. Now d of u and d of u 

dash what is the meaning of d of u dash it is a minimum weight among all these special 

pathweights. By moving v no new special paths are created for u dash the same set of 

special paths continue to be there here. Because adding v is not creating any special path 

for u dash okay. However for u a new special path is created that is because v has come 

here now s to v you have a path special path you have moved v also here so that path has 

become a special path to u now okay.  

 

Therefore now I have to update d of u I do not have to worry about d of u dash I do not 

have to worry about d of u dash but I have to examine d of u because for u some new 

special paths have come into picture, I have a minimum among the old set of special 

paths. A new special path has come maybe this is a shorter than the other one, how do we 

know what is the length of or what is the weight of this new special path it is dv because 

this is the path and plus weight of vu, dv plus weight of u  

𝑑[𝑣] + 𝑤[𝑣, 𝑢] 

This is the weight of new special path to u this is the weight of a new special path u 

whether this new special path is updating the minimum, how do we check, if d of u is 

greater than d of v plus weight of uv then  the new special path is the minimum special 

path it has got a smaller weight  

𝑑[𝑢] > 𝑑[𝑣] + 𝑤[𝑢, 𝑣] 



Then d of u is updated to d of v. plus wuv and now this is the updated shortest special 

path the previous vertex so previous of u equal to v. 

𝑑[𝑢] = 𝑑[𝑣] + 𝑤[𝑢, 𝑣] 

𝑝[𝑢] = 𝑣 

So you can see that this is the previous vertex to u in this picture u is attached with v 

earlier  somebody else some other path was defining the minimum and that might be the 

previous vertex. Now this path is defining the minimum special path or shortest special 

path therefore the previous of v is u, right. This I have to do only for neighbors of v. if a 

vertex is not even a neighbor of v I do not have to worry about them for those vertices the 

du dash value remains same du dash where u dash does not belong to adjacency of v does 

not change. and if u is in the adjacency of v it may change if this is the condition, if it is 

defining a new therefore what is the updating code. for all u in adjacency of v only for 

this vertices I will consider for every vertex adjacent to v that is in V minus S so for all u 

in if u belongs to V minus S and this condition  d of u is greater than d of v plus weight of 

v u. 

𝑢 ∈ 𝑉 − 𝑆 and 𝑑[𝑢] > 𝑑[𝑣] + 𝑤[𝑢, 𝑣] 

 If this is the case then d of u is equal to d of v plus weight of v u and p of u equal to v. 

𝑑[𝑢] = 𝑑[𝑣] + 𝑤[𝑢, 𝑣] 

𝑝[𝑢] = 𝑣 

That is all is the updating to be done. So let us see all these things are done assuming a d 

value is available. So how will the d values look like initially we have to initiate the d 

values properly. Let us start with the following simple initial configuration. Okay. we 

will have in S only the vertex s and then here all the vertices V minus s okay consider a 

vertex v here. 

 

 What is a special path to v? Special path is starting from s it will go through all the 

vertices of S and then with a crossing edge it will reach v that is a special path right. 

There is no other vertex in S therefore the special path is nothing but the edge there is 

only one special path. its weight is so the edge sv is special path to v from s this is the 



only one. So weight of the minimum weight of special path is d of v is nothing but weight 

of sv. 

𝑑[𝑣] = 𝑤[𝑠, 𝑣] 

Suppose there is a vertex u that is not adjacent to s from s to u there may be paths but 

there are no special paths because there is no edge connecting s to u because special path 

means all vertices must be in this set, to u from s there may be paths but there are no 

special paths. u does not belong to adjacency of s then no special path exists at this point 

from s because S has no other vertices. 

Therefore special path means it should be an edge when a special path does not exist we 

always set infinity okay 

𝑑[𝑣] = ∞ 

Therefore this is the initial configuration. The initial configuration is  d of v equal to 

weight of sv if v belong to adjacency of s this is equal to infinity if the vertex is not in 

adjacency of s okay I will write it cleanly. is equal to infinity if v does not belong to 

adjacency of s. This is the way you initialize and d of s is 0,  

𝑑[𝑣] = 𝑤[𝑠, 𝑣] if 𝑣 ∈ Adj (𝑠) 

= ∞ if 𝑣 ∈ Adj (𝑠) 

𝑑[𝑠] = 0 

So d array is initialized like this and what about the previous array. previous of s not only 

s okay previous of s is undefined, previous of v equal to s if  

v belongs to adjacency of s because you have a special path okay look at this situation. 

previous of v is s in this picture you can see that previous of v is s. Previous of u if it is 

not adjacent it is not defined there is no path and is undefined if v does not belong to 

adjacency of s. 

𝑝[𝑠] =⊥ (undefined) 

𝑝[𝑣] = 𝑠 if 𝑣 ∈ Adj (𝑠) 

=⊥ if 𝑣 ∉ Adj (𝑠) 

So this is how you initialize  d array and P array okay. How are you going to represent 

the partition the split S, V minus S because we have to often check and we have to move 

from one set to another okay we represent S V minus S by a Boolean array.  Let us say in 



S, In Sv equal to 1 if v is in S because In Sv equal to 0, this is 0 if v is not in S okay it is a 

boolean array it is a flag indicating it is in S or not. okay. 

In − 𝑆[𝑣] = 1 if 𝑣 ∈ 𝑆 

In − 𝑆[𝑣] = 0 if 𝑣 ∉ 𝑆 

Therefore this implies, In S of v equal to 0 for v in V minus S 

In − 𝑆[𝑣] = 0 for 𝑣 ∈ 𝑉 − 𝑆  

Because V minus S means these are the sets that are not in S therefore, if you want to 

check whether vertex is in V minus S you have to look into this Boolean array you just 

see whether In S of v is 0 if that is the case that vertex is in V minus S. Okay, so how do 

you move a vertex from V minus S to S? How do you move? How do you implement that 

movement? Okay, in picture we are drawing around and other things but how 

computationally the computer program has to do it mathematically, so it is very simple. If  

it is in V minus S, In SV will be 0, okay. So set in SV equal to 1, so earlier it will be 0 

because it was in V minus S. Now it has been moved means it is in S. 

 How do you know that? How will the program know that a vertex is in S? This Boolean 

array value will be set to 1. That is all. This implements moving of a vertex from V minus 

S to S, okay. So, Dijkshtra G equal to V E w s given this as an input it has to produce for 

each V the delta v okay the delta v will be available in an array called d okay. in the end 

dv will be equal to delta v as output and pv is the previous vertex  to v in the shortest path 

in other words pvv is a Bellman edge okay.  

𝑑[𝑣] = 𝛿[𝑣] 

Initialize d array and p array. We have seen how that is done okay.  

𝑑[ ] and 𝑝[ ], 𝑆, 𝑉 − 𝑆 

Two find a vertex v in V minus S such that d of v is less than or equal to d of u for all u in 

V  minus  S.  

𝑑[𝑣] ≤ 𝑑[𝑢] ∀ 𝑢 ∈ 𝑉 − 𝑆 

So for each vertex in V minus S you look at the d value and find the minimum there will 

be some vertex for which the minimum value so by scanning the d array only for the 

elements of V minus S we can find the vertex v with minimum d value, third step is move 

V to S. move V to S okay. You have to initialize d, p and here itself let me specify S, V 

minus S. 



You have to initialize S V minus S how do you initialize S V minus S you put only the 

source vertex s the source which is a part of the input put that in S all other vertices in V 

minus S okay but  how do we actually do that we have a Boolean array for that. So let us 

see how this is okay let me see whether I have space in the previous page okay. So 

initializing, initialize S V  minus  S as the singleton s and V  minus  s. In S of s equal to 1 

because this one is included in S and In S of v equal to 0 if v is not equal to s for all other 

vertices. you set In Sv equal to 0 for s you set In S s as 1 this represents the partition, this 

represents the initial partition. 

(𝑆, 𝑉 − 𝑆) → {𝑠}, {𝑉 − {𝑠}} 

In − 𝑆[𝑠] = 1 

In − 𝑆[𝑣] = 0 if 𝑣 ≠ 𝑠 

For the initial partition you know how to initialize d you know how to initialize p these 

are all the ways in which you have to initialize d and v for okay. So initialize d, p, s, V 

minus S after that find a vertex in v such that d of v is less than or equal to move v to s 

we have seen how moving of v is to be implemented. The fourth and final step is update 

d value  and p value for every u in V  minus  S we have to update this. Although in the 

pseudo code I have written update d of u and p of u for every vertex you do not have to 

really touch those vertices that are not adjacent to v because only v has moved to s. So 

this step is expanded like this we expand step 4 as follows okay. 

If u belongs to adjacency of v and d of u is greater than d of v plus weight of v u then you 

update d of u d of u equal to d of v plus weight of vu and p of u equal to v.  

𝑑[𝑢] = 𝑑[𝑣] + 𝑤[𝑢, 𝑣] 

𝑝[𝑢] = 𝑣 

Therefore, fourth step is executed only for the neighbors of. V adjacency of V okay. So 

this completes the specification of Dijkstra 's algorithm the complete specification of the 

Dijkstra's algorithm is here we have put. all the ideas that we have developed in bits and 

pieces and integrated them and given in this pseudo code. 

So this is what you have to do after initializing you have to do 2, 3 and 4 repeatedly. So, 

we have to do 2, 3 and 4 repeatedly that is not mentioned here I will mention now. So, 

basically we will do like this, I will create a space here, this is a single phase.  

One initialize the partition S V  minus  S based on this the d array and p array then while  

S is not equal to V,v is the vertex set while S is not equal to V you repeat 2, 3 and 4 okay, 

so you can perhaps call this as step 2 it is easy to visualize that way. you call this while 

loop as step 2 and finding this vertex as within the while loop 2a moving this as 2b 



because this is all in the while loop and update d is 2c we expand step 2c  as follows okay 

just we are fitting in 2c as follows. 

So this will be in the while loop after the while loop the third step return d array and p 

array. okay so we will write like this return d of v and p of v for all v belonging to V this 

output that we want comment d of v is in fact delta v and pvv is the Bellman edge. 

Complete pseudocode for Dijkstra’s Algorithm 

Dijkstra (𝐺(𝑣, 𝐸, 𝑤, 𝑠))  

1. Initialize (𝑆, 𝑉 − 𝑆), 𝑑[ ], 𝑝[ ] 

2. While 𝑆 ≠ 𝑉 

2.a find a vertex 𝑣 in 𝑉 − 𝑆 

such that 𝑑[𝑣] ≤ 𝑑[𝑢]∀ 𝑢 ∈  𝑉 − 𝑆. 

2.b move 𝑣 to 𝑆 

2.c update 𝑑[𝑢] 𝑝[𝑢] for each 𝑢 ∈  𝑉 − 𝑆 

If 𝑢 ∈ 𝐴𝑑𝑗 [𝑣] and (𝑑[𝑢] > 𝑑[𝑣] + 𝑤(𝑣, 𝑢)) 

Then 

𝑑[𝑢] = 𝑑[𝑣] + 𝑤(𝑣, 𝑢) 

𝑝(𝑢) = 𝑣 

     return (𝑑[𝑣],  𝑝[𝑣],  ∀𝑣 ∈ 𝑉) 

So this you can use to actually construct the shortest path okay. So this completes the 

description of  Dijkstra 's algorithm. We will now take a quick look at the complexity of 

this method okay. 

S initially had only one vertex and you are moving one vertex in each iteration therefore 

the while loop of step 2 will be executed n minus 1 times, what is n cardinality of v equal 

to n initially S has got only one vertex s and in each iteration of the while loop you are 

adding one vertex to S. you are finishing when s equal to v that is when all vertices are 

included in v that is for all vertices when I know the shortest path weight I complete. So n 

minus 1 vertices are to be added therefore n minus 1 iterations are to be done therefore 

while loop will be executed n minus 1 times okay. In each time you are finding the 

minimum  element in 2a what is the cost of 2a you have to go through all vertices in V 

minus S and find the minimum, initially V minus S has got n minus 1 elements then n 



minus 2 elements then n minus 3 elements and so on. total sum of cost of 2a across all 

iterations is n minus 1 plus n minus 2 which is order n square. 

(𝑛 − 1) + (𝑛 − 2) + ⋯ + 1 = 𝑂(𝑛2) 

Total sum of or total cost of 2b across all  iterations is n minus 1 because in each iteration 

look at 2b, 2b is moving V to S, moving V to S is done by setting the Boolean flag to 1 

that is one step right. Therefore, 2b when you implement n minus 1 times the total cost 

will be n minus 1, what about 2c? In 2c you are doing work proportional to the degree of  

or out degree of v okay so total cost of 2c across all iterations is equal to sum of out 

degree of v, v belongs to V minus s  

= ∑ outdegree (𝑣)

𝑣∈𝑉−{𝑠}

 

Okay you know that the out degree sum is nothing but m right number of edges total 

number of edges recall from our introduction that the out degree sum is exactly equal to 

the total number of edges that implies the total cost of 2c across all iterations is order m, 

therefore the complexity of Dijkstra's algorithm  is order n square plus m.  

𝑂(𝑛2 + 𝑚) 

This is a very simple implementation, very direct implementation. We did not employ 

any sophisticated data structures. We just used arrays to maintain the information that we 

want to use and searched in the array to find the minimum v and updated the array by 

changing the values. 

Okay, all these things are done in a very simple manner, this simple implementation has a 

complexity order n square plus m. There are some interesting data structures that we can 

employ and improve the complexity of this algorithm, the algorithm is same but instead 

of maintaining the information of the vertices in V minus S in a simple array instead of 

maintaining in a simple array. If we use heap or Fibonacci heaps it is possible to improve 

the complexity significantly and that is what we are going to look at in the discussions 

related to this in the next session, thank you. 


