
Course: Introduction to Graph Algorithms 

Professor: C Pandu Rangan 

Department: Computer Science and Engineering 

Institute: IISc 

Week: 04 

Lecture 16 Dijkstra Algorithm 

Namaskara in this session we are going to take a look at one of the most elegant and most 

beautiful algorithms designed for shortest path problem, based on several interesting and 

subtle ideas. This is another special case where it is possible for us to solve the Bellman 

equation somewhat directly okay but the way in which we are going to handle the 

building of the solution is rather subtle okay. So this is Dijkstra's algorithm. So Dijkstra's 

algorithm for single source shortest path problem. So we have G which has a vertex set v, 

edge set E, weight function w, source s. 

𝐺(𝑣, 𝐸, 𝑤, 𝑠) 

One of the observations that is helpful in the building up of the intuition behind the 

algorithm is the following. If you look at the shortest path tree from s to v in the shortest 

path tree. You have a path and this path this path in the shortest path tree (SPT) is a 

shortest path  from s to v, this is true for every vertex let us say u, w, t,  

 

The same path the portion of the path from s to u is a shortest path from s to u, for the 

same path the portion of the path from s to w is a shortest path from s to w. In other 

words the shortest path from s to v contains the shortest path to s to u shortest path from s 

to, therefore if we plan to identify the vertices for which the shortest path is to be 

determined in the increasing order of  their delta values, okay. Then we see that there is a 

natural way in which we can proceed. 

So for example the delta t the shortest path distance here this will be delta w and this will 

be delta u and that will be less than delta v  



 

Because we are going to work on a special class of graphs of course graph is arbitrary 

special kind of weight function where all weights are positive.  

 

It is a very practical case since all weights are positive if these are the shortest path 

distances then delta t is delta w is less than delta u is less than delta v, okay because all 

edge weights are positive.  

 

In other words we can see that if we know the shortest path distances for vertices whose 

shortest path weight values that is a delta t delta w delta these are all smaller than delta v. 

Then it is possible to probably find the vertex v and it is delta okay if we know  all the 

vertices with the smaller delta values and their delta values then with a kind of an 

extension we should be able to obtain delta v. So, if we could somehow proceed in an 

order in the increasing order of the delta values the circular dependencies in the Bellman 

equation can be avoided and we should be able to smoothly construct the shortest paths 

and identify the shortest paths for vertices and we can complete our process. 

We have to find out shortest path distance for n minus 1 vertices. There are n minus 1 

vertices for which the shortest paths and their weights, the delta values are to be found. In 

the case of DAG there is a topological order and we were able to systematically use the 

delta value of the vertices which are before the given vertex in the topological order we 

could use that here. We do not have that kind of possibility here because we want to do, 

we want to find delta values in their increasing order. Also if you look at the Bellman 

equation delta v is equal to minimum of uv such that delta u plus weight of uv, so if the 

weight here all the weights are positive. 

𝛿(𝑣) = Min
(𝑢,𝑣)

{𝛿(𝑢) + 𝑤(𝑢, 𝑣)} 

Therefore the vertices with larger delta values are useless they may be neighbors to v but 

their weights, their delta values are not useful at all because we have to find a minimum, 

hence for v, we need only the delta values of u, delta u where delta u is less than delta v 

okay.  



𝛿(𝑢) < 𝛿(𝑣) 

We require only such vertices under delta values. Even if we have the vertices with larger 

delta values they are not going to play any role in determining delta v. Therefore, for 

every vertex v we would like to have the delta values that are smaller than the delta value 

of the given vertex. So if I am trying to take, if I am trying to find the delta for v I must 

have the delta value of all vertices with a smaller delta values. 

But then how can I determine this order it is not possible for me to determine this order 

because it is the delta value that I have to compute. In topological sort, the topological 

ordering is independent of the  shortest path weights, so I can work on the graph find a 

topological sort in a DAG and use it to go in a systematic way, in an order and then I 

could solve the single source shortest path problem. But here the order I have in my mind 

is depending on the values that I am yet to find. Therefore, the situation is a bit tricky and 

let us see how Dijkstra has resolved it okay. So we go incrementally. 

This algorithm is going to have n minus 1 stages or phases or n minus 1 iterations you 

can say. In each iteration we identify one vertex whose delta value is determined, that is 

the shortest path weight is determined. We fix for one vertex in each iteration that is the 

reason why we have n minus 1 iteration because cardinality of v is n we know delta s 

equal to 0 we want to find delta v. for v not equal to s for all these vertices.  

|𝑣| = 𝑛, 𝛿(𝑠) = 0 

𝛿(𝑣) =?    𝑣 ≠ 𝑠 

So there are n minus 1 vertices for which we have to find the delta v values okay. 

So we will do n minus 1 iteration in each iteration we are going to find or determine the 

delta value of one vertex okay. We do the following we maintain two sets S, V minus S, 

S is set of all vertices for which delta values are known that is shortest path weights are 

known. Such vertices are maintained in a set S, this is not known. The other vertices I do 

not know the shortest path weights for these vertices, therefore, I will work in V minus S 

and find out one vertex for which the shortest path distance can be determined  and then 

obviously I move that out to S because for that vertex I have found out the shortest path 

weight, so move that to S. So in each iteration one vertex will move from V minus S to S, 

so the high level plan is find v in V minus S for which delta v is computed unknown. 

So you do some computation and for after that computation for one vertex you will know 

it is a delta v value. that vertex since the delta v is known our property is that S is set of 

all vertices for which a delta is known move v to S. So initially S, V minus S, s will have 

only the source vertex, V minus S will have V minus  source vertex s, all vertices other 



than the source vertex that is because I know delta s equal to 0. Since delta s equal to 0 

this is known I start with this configuration this is my configuration  starting point.  

𝑆 = {𝑠}, and 𝑉 − 𝑆 = 𝑉 − {𝑠} 

𝛿(𝑠) = 0 

How do I find what should I do with vertices in V minus s so that I identify this v, after 

identifying the v, I can move that V to S. 

So S will become larger and larger in each iteration it will be larger by 1 vertex. so after n 

minus 1 iteration all vertices will be moved here V minus S will be empty and the job is 

done for all vertices I have found out the shortest path okay. In order to determine a 

vertex for which the delta v is to be computed I have to maintain some information with 

respect to each vertex in V minus s okay. So for each vertex v in V minus  S we maintain  

some info that helps to determine a vertex. for which the shortest path weight can be 

computed using this information I should be able to do that. 

𝑣 ∈ 𝑉 − 𝑆 

So what information is to be maintained for each vertex, so this is where the intuition 

which I have discussed before you can see that the vertex the shortest path  from S to V 

goes through the vertices and if I know the shortest paths for all of them okay then as an 

extension of that vertex the last vertex I can determine the shortest path for V as well. So 

we plan in the following manner okay call a path from s to v in V minus S, a special path 

if all vertices other than v is, all vertices are in S, it is called a special path, a special path 

may or may not exist. For example if this is the vertices in S and this is a vertex V if a 

path is like this  this is a special path  

 

Because other than the vertex v all vertices in the path are in S this is S this is V  minus  S 

this is a special path okay if there is a vertex for which a path from S to let us say u if it is 

like this is a path but this is not a special path because it has got several vertices in V 

minus S also in that path it should not be like that. A special path is a path okay which is 

passing only through the vertices of S which means it is passing only through the vertices 

for which the shortest path weights are known,  like the path pv in the shortest path tree, 

it is one such path that is what we are aiming to build. There are several vertices for some 

the special path may be there for some special path may not be there and for some of 



them more than one special path might be there and what we are going to maintain is the 

weight of the shortest special path okay. 

 

So let dv  be the weight of shortest special path from s to v. this is for each v belonging to 

V minus S we maintain this information. How we generate this information we will see 

but assume that I have d of v the weight of the shortest special path from S to V is 

available these numbers assume that these numbers are  available and not only this for 

every, if there is a shortest special path I also maintain the previous vertex in S for V 

because the special path will pass through vertices in S and then it comes to V minus S. 

the last edge is called crossing edge why it is called the crossing edge that edge goes from 

S to V minus S the special path is going to be like this. then in one jump it will come to v 

this is s, s is in S, v is in V minus S, so from S to V minus S with one crossing edge it 

will reach that is the property of special path not all paths special paths okay. 

 

This vertex this vertex in s that is called the previous p of v is the vertex in S that is 

previous to v, that is previous to v. This vertex let us say if this is v dash if this is v dash 

then p of v equal to that v dash in this picture okay.  

𝑝(𝑣) = 𝑣́ 

v dash is here and so for each vertex we maintain just 2 pieces of information d of v and p 

of v, we are still to explain how these things are computed. Let us assume that this is 

available for the time being right that is we are in one intermediate stage where for some 

vertices the shortest path distance is known they are all in S. s is there and few other 

vertices are there and for V minus S for every vertex v you have dv is available and pv is 

available for every vertex the corresponding values are available okay these two are 

available. 



 

The first claim is, find the vertex v find a vertex v in V  minus S with minimum d value. 

that means d of v is less than or equal to d of v dash for all v dash belonging to V minus  

S okay. 

𝑑[𝑣] ≤ 𝑑[𝑣́] ∀ 𝑣́ ∈ 𝑉 − 𝑆 

Yeah you can even use the notation u because v dash is used here let me not confuse that. 

𝑑[𝑣] ≤ 𝑑[𝑢] ∀ 𝑢 ∈ 𝑉 − 𝑆 

So look at V minus S vertices each vertex has got a dv value find that vertex which has 

got a minimum dv value. So what is the property? The property is that  the dv will be less 

than or equal to du for any u if it is u this has got du and pu and so on  

 

Any vertex its d value will be larger this is just finding the minimum okay. The size of V 

minus S is maximum n minus 1 in fact V minus S will shrink in every iteration we are 

going to identify a vertex in V minus S for which the delta value is known once the delta 

value is known we move to S. because S is collecting all the vertices for which the delta 

values are known therefore we will move that out that means V minus S will shrink by 1 

S will grow by 1. in each iteration V minus S will keep becoming smaller S will keep 

becoming larger by one vertex okay. So find a vertex v with the minimum this is easy to 

do just to scan the vertices in V minus S under d values find a minimum our claim is d of 

v is equal to delta v. okay  

𝑑[𝑣] = 𝛿(𝑣) 

That means I have identified a vertex for which delta v is known therefore because of this 

move v to S. what is the next thing you have to do simply move v to S. 

Let us focus on the algorithmic aspect up to this stage yes some more things to do but let 

us see why for this particular vertex the delta v is actually dv okay, so the proof is a very 



elegant proof and the proof is by contradiction. okay so let us look at a picture S, V minus 

S, I have a vertex v assume that this v has the minimum d value okay so from S I have a 

path okay this path you call it as P okay let P be  the special path from s to v with weight 

of P equal to this is a special path its weight This is a path from s to v and this paths 

weight is dv. My claim is this is the shortest path. We claim P is a shortest path. We 

claim that P is a shortest path. 

𝑤(𝑃) = 𝑑[𝑣] 

Suppose this is not the shortest path. Let us consider a shortest path from s to v if not let 

Q be a shortest path from s to v okay. P is not the shortest path and Q is a shortest path 

and weight of Q will be less than weight of P which is equal to d of v.  

𝑤[𝑄] = 𝑤[𝑃] = 𝑑[𝑣] 

So how will the Q look like it would not be a special path why it would not be a special 

path because d of v is the minimum weight special path this is a path whose cost is 

smaller than this therefore that would not be a special path and Q is like this it may have 

some vertices then it may go out and it may come again and all it does not matter. So this 

is how Q may look like okay  

 

The Q is starting from s it goes and then reaches because the path has to reach v it must 

have one crossing edge it cannot be the path Q cannot be completely contained in S that 

is not possible. 

 Because v is in V minus S the Q has to cross it has to go out of S at some point it may 

come again and it may go that does not matter but it has to go out at least once. right it 

must have one crossing edge at least. Let u u dash, u u dash be the let u dash u be the first 

crossing edge in Q. Q must have one crossing edge let u dash u be the first crossing edge. 

Now I am going to write Q from s to v as Q from s to u  plus Q from s to u plus Q from u 

to v. 

𝑄[𝑠, 𝑣] = 𝑄[𝑠, 𝑢] + 𝑄[𝑠, 𝑣] 



 I am breaking the path into two parts I am breaking at u at this vertex u I am breaking the 

path Q from s to u Q from u to v, I write like this. This is a special path ,why this is a 

special path this is the first crossing edge before that all the edges are in S that means all 

the vertices are in S therefore the part of Q from s to u is a special path that may not be 

the minimum weight special path but that is a special path this is a special path from s to 

u okay. So weight of Q s to v is same as weight of Q from s to u plus weight of Q from s 

to v.  

𝑤(𝑄[𝑠, 𝑣]) = 𝑤(𝑄[𝑠, 𝑢]) + 𝑤(𝑄[𝑠, 𝑣]) 

It is a path that is split into two parts this part any path will have positive weight because 

all edge weights are positive therefore this will be strictly greater than wQsu  

𝑤(𝑄[𝑠, 𝑣]) = 𝑤(𝑄[𝑠, 𝑢]) + 𝑤(𝑄[𝑠, 𝑣]) 

> 𝑤(𝑄[𝑠, 𝑢]) 

≥ 𝑑[𝑢] 

because I am dropping a positive term this part I have dropped so I have cut off. this part 

will have a smaller weight than the whole the whole path will have a bigger weight one 

part will have a smaller weight. 

And this is greater than or equal to d of u because what du has is the minimum weight 

special path right weight of minimum weight special path the shortest special path. this is 

some special path su is some special path, du is the weight of the shortest special path 

therefore that will be smaller than this one. But what about v, v has a property that that 

has got the smallest d value among  all vertices in V  minus  S, u is in V  minus  S, v is in 

V  minus  S okay this is by the property of v, d of v is equal to weight of P okay this that 

means weight of Q. is greater than weight of P  

𝑤(𝑄[𝑠, 𝑣]) = 𝑤(𝑄[𝑠, 𝑢]) + 𝑤(𝑄[𝑠, 𝑣]) 

> 𝑤(𝑄[𝑠, 𝑢]) 

≥ 𝑑[𝑢] 

= 𝑤(𝑃) 

𝑤(𝑄) > 𝑤(𝑃) 

This is a contradiction. Because we have assumed that Q is the shortest path look at here 

weight of Q is less than weight of P. We have assumed that P is not the shortest path and 

Q is the shortest path therefore it is shorter than P that is what we have started with. But 

now we have got it this is a contradiction, this is a contradiction to the property of Q, 



because we have assumed that Q is the shortest path and is a contradiction which we have 

already assumed. Hence such a Q cannot exist hence P is the shortest path. it is not only a 

shortest special path, it is also shortest path in the entire graph. Thus dv is in fact delta v 

hence we can move v from V minus S to S. 

𝑑[𝑣] = 𝛿(𝑣) 

Okay we have discussed one major and important part of the algorithm we will continue 

our discussions on the other aspect of this algorithm in our next session thank you. 


