
Secure Computation: Part II
Prof. Ashish Choudhury

Department of Computer Science and Engineering
Indian Institute of Science, Bengaluru

Lecture - 08
Efficient Protocols for Perfectly - Secure Byzantine Agreement: Part II

Hello everyone, welcome to this lecture. So, we will continue our discussion regarding

Efficient Protocols for Perfectly Secure Byzantine Agreement.

(Refer Slide Time: 00:33)

In the last lecture, we had seen a protocol with n > 4t, we will follow the same phase king

based protocol; but now we will see that how that protocol can be modified to even tolerate

up to n/3 number of corruptions. So, the previous protocol that we have discussed in the last

lecture could tolerate only up to t less than n/4 corruptions.

So, it is like saying that if you have say 100 parties, then the previous protocol will work as

long as the maximum number of corruptions is up to 24, ok. Whereas, the protocol that we

are going to discuss in today’s lecture will work even if there are at most 33 corruptions; that

means you can tolerate more number of corrupt participants in the protocol.

Of course, for that you have to do some more communication in the protocol, some more

number of rounds of communication will be involved, ok.



(Refer Slide Time: 01:44)

So, the idea remains the same, as in the previous protocol, we will have t + 1 phases; each

phase will now have three rounds, earlier each phase had 2 rounds, but now in this modified

protocol each phase will have three rounds and there will be a designated king in each phase.

For simplicity, we can imagine that party will be the king for phase k and the general idea𝑃
𝑘

behind the protocol remains the same, we try to achieve the following two properties. We first

try to find out in each phase whether all the honest parties have the same bit or not; if yes,

then we stick to that bit in all the subsequent phases irrespective of whether the king for that

phase is honest or corrupt.

Whereas, if in the phase k all the honest parties do not have the same bit, then we try to take

the help of the king and see whether the king helps the parties to reach agreement, provided

king is honest; of course if king of that phase is corrupt, then the help will be useless, ok. And

as we have argued in the previous lecture, the validity property will be guaranteed; if the

property number 1 that we are aiming for is satisfied, whereas consistency property will be

guaranteed, because of the property number 2 which we are ensuring in the protocol and the

fact that there will be at least one phase among the t+1 phases, where the designated king will

be honest, right.



(Refer Slide Time: 04:08)

So, let us see the protocol code now. Now, in each phase remember there are three rounds.

So, again to begin with every party will first try to check whether they have the same

preference bit for the current iteration or the current phase; where to begin with their

preference bits are initialized to their respective inputs for the byzantine agreement protocol.

Now, recall in the previous protocol immediately at the end of first round every party sets its

majority bit depending upon whether a value v has been received majority of times as the

preference bit from the other parties; but now we are not going to do that, because we now

want to design a protocol with n > 3t. So, the change that we are making here is the

following.

Every party would have received preference bits from the other parties. So, Pi would have

received n preference bits from n different parties including its own preference bit; remember

when I say sent to everyone, it means sending to itself as well. So, among the n preference

bits which Pi has received, it checks whether there is any preference bit v which has been

received from n- t parties.

Again it is not necessary that this will be the case; but if there is some preference bit which

has been received from n - t parties at the end of first round of the phase k, then during the

second round party Pi sends a message that I am proposing a value v and it sends to

everyone. Of course, if Pi is a corrupt party, it can send different versions of the proposed



message to different parties or it could be possible that party P i has not received any bit n- t

number of times, but still it is claiming that I am proposing this value v, ok.

So, corrupt parties can do anything, but if P i is honest and if P i has indeed received the

preference bit v from at least n - t parties; then it sends a proposed message for that bit v to

everyone else during the second round. Now, the preference bit is set for the time being as

follows; party Pi will check that if some proposed message for the bit w is received more than

t times, then set that bit as the preference bit, right.

So, this step is executed by everyone including the king as well, right. So, king also would

have updated its preference bit if this condition would have been satisfied, otherwise it would

have stick to it is earlier preference bit. And now during the third round of the phase k, only

the king party does the following; it sends its preference bit to everyone, again if the king is

corrupt, it might send different versions of its preference bit to everyone else and so on.

And now the final assignment of the preference bit for the next phase is done as follows. So,

you can imagine that this is a temporary update of preference bit; the final update of the

preference bit at the end of the phase k happens as follows. So, when the temporary

assignment of the preference bit was done, Pi checks whether that preference bit w or the

message proposed w is received at least n- t times ok; that means if during this round II of the

phase k, it is receiving proposed messages from many parties, right.

So, the temporary update was if it would have received the proposed message w at least t+1

times from t + 1 different parties, then it sends it sets the preference bit to w. But now the

permanent update here is happening as follows, it checks whether the proposed message w

for some bit w is received at least n - t number of times during the second round.

If that is the case, then set the preference bit finally for the next iteration to w; otherwise

replace the preference bit with whatever has been received from the king and then go to the

next iteration. And as usual after t + 1 phases are over, party Pi outputs whatever is its current

preference bit. So, you see structure wise this protocol is very different from the previous

protocol, which had only two rounds in each phase; first round everyone sends their current

preference bit to everyone, assigned the majority depending upon whether a majority is there

or not among the received preference bits.



And during the second round, king sends it is preference bit to everyone else. And then the

update of the preference bit happens depending upon whether party Pi’s own majority bit has

been received more than n over 2 plus t number of times or not. But here we are doing

something else; here we are using this proposed messages and depending upon the number of

proposed messages, if a proposal for w is received at least n - t number of times then stick to

that as the preference bit, otherwise change the preference bit to the preference bit which king

is proposing.

(Refer Slide Time: 10:29)

.

So, now again we will do the analysis here, the liveness analysis is trivial here again. Why it

is trivial? Because there are 3 t + 3 number of rounds as there are three rounds involved in

each phase; each round will be over within delta clock cycles, where delta is publicly known.

So, after time (3t + 3) , the protocol will produce an output for every honest party. So, it will∆

not be the case that the honest parties keep on running the protocol forever. Now, we will

prove the validity property first and again for that we prove this lemma that if all the honest

parties have the same preference bit at the beginning of any phase, any iteration k; then they

will stick to that bit as their preference bit at the end of the phase k as well, ok.

So, if all the honest parties have the same preference bit at the beginning of the phase k; say it

is the value b, then every honest party would have sent the value b as its preference bit to

everyone else and there are at least n minus t honest parties. That means, at the end of round I

each Pi each honest Pi will receive n - t copies of the bit b. Of course, corrupt parties may say



that ok, my preference bit is . But clearly n - t is greater than t right, because we are having𝑏

the condition n > 3t. As a result of this during the second round of phase k, each honest Pi

will say that ok I am proposing the bit b; because it has received n - t copies of the preference

bit b during the first round of the phase k, right.

Again, a corrupt Pi might propose , but we have n – t > t. And we do not care whether the𝑏

king is honest or corrupt, king might do anything; when it comes to finally, update the

preference bit for the kth phase, each honest Pi will see that it has received the proposal for

this bit value b at least n - t number of times from n - t honest parties during the second

round, right.

So, it will stick to that bit; that means the value from the king will not be considered at all to

do the final update of the preference bit. So, that that proves the lemma and this lemma

immediately implies the validity property; because if at the beginning of the protocol itself all

the honest parties have the same input bit b, that means their individual preference bit is

assigned the value b.

Then this lemma states that at the end of the first phase, they will stick to the value b as the

output for the preference bit; then in the second phase they will start with their preference bit

being b and at the end of the second phase, they will stick to their preference bit being b only.

And like that in all the t + 1 phases, they start the phase with preference bit b and end the

phase with preference bit b and output b and the value from the king will not be considered in

any of the phases and that proves the validity property, right.



(Refer Slide Time: 14:38)

Now, we prove the consistency property and it is slightly tricky compared to the previous

protocol. So, we first take the help of this helping lemma, which claims that if in any phase Pi

proposes some value v; then no other honest party will propose a value w bit w, where w is

different from v and it holds in any phase provided n > 3t. Let us see why. So, imagine some

phase k and consider two different honest parties; an honest party Pi and an honest party Pj.

Suppose Pi has proposed the value v. Now, why it has proposed the value v?

So, let us see the condition under which the party Pi would have proposed the value v; it

would have proposed the value v only if it has received n - t copies of the preference bit v

from n - t parties.

So, let A be the set of parties n - t parties from whom party Pi has received v as the

preference bit; then it is not necessary that all the parties in A are honest, some of them could

be corrupt as well, who might have unnecessarily reported to Pi that their preference bit is v.

But what we know is that, there are at least n - 2t parties in the set A, ok.

Now, let us see that how many copies of the bit w, where w is different from v will be

received as the preference bit from the other honest party P j, right. So, P j is another honest

party different from Pi and it would be also receiving n preference bits during the same

round, during round number I from different parties, right. Let us see among those n copies;

how many preference bits will be for w, where w is different from v.



The claim is that, there could be at most 2t parties who might send their preference bit as w.

Who could be those 2t parties? They could be the t corrupt parties in A right. So, in this

diagram I am assuming n is equal to 4 and t is equal to 1. So, there could be up to t corrupt

parties. So, this is one corrupt party, which might send v as its preference bit to Pi, but w as

its preference bit to Pj.

And there could be t honest parties outside the set A who would have sent w as the preference

bit to P i and since they are honest, they will stick to their preference bit as w and send w as

their preference bit even to the party Pj, ok. So, in any for the case for n is equal to 4 and t is

equal to 1 what I am stating here is that; in order for Pi to send a proposal for v, it should

have received three copies of v as preference bit. Among those three copies, one copy might

be coming from a corrupt party, who might send w now as the preference bit to Pj.

And how many parties we have outside, overall one more party. So, overall this one corrupt

party in the set A and the outside party might send w as their preference bits. So, these are

total 2, but 2 is not the number using which this party Pj would have proposed the value w, it

needs n - t copies of the value w.

Now, the thing is that n - t is always strictly greater than the value 2t; that means even though

the proposal for w is coming to this party Pj, it will be receiving only 2t number of proposal,

2t number of copies of w as the preference bit and 2t is strictly less than n - t.

You might be wondering that why can not the honest parties in the set A send a proposal for

w to Pj; well the honest parties will send only one version of their preference bit, they cannot

behave like corrupt parties and send v as their preference bit to Pi and w as their preference

bit to Pj, honest parties will not do that, they will stick to their preference bit to be v towards

everyone. It is only the corrupt parties in the set A who may change; to one subset of honest

parties they may say that ok, their preference bit is v and to another set of honest parties it

may say that, their preference bit is w.

But even in that case the corrupt parties copies of the preference bit plus the honest parties

outside A their copies of the preference bit does not sum up to the required quantity n - t in

order that the party Pj sends a proposal for v ok; that means if at all Pj sends a proposal, it

could be only for v, it cannot be for any other value different from v.



(Refer Slide Time: 20:57)

.

That is a very important lemma. So, final lemma which will help us to prove the consistency

property here is that, if the king of a phase is honest; then at the end of that phase, all the

honest parties will reach agreement on their preference bit, they will have the same

preference bit. So, again let us look into the code and there are two steps in each phase ok,

where every party finally updates its preference bit.

So, consider the case one when no honest party executes the step number 1 to set their

preference bit; that means during the protocol execution, the initial configuration of the inputs

of the parties and the messages exchanged by the parties are such that, every party Pi ends up

executing the else statement to update their respective preference bits. That means, they are

setting the final preference bit to whatever preference bit, temporary preference bit king has

communicated to everyone.

And since we are assuming that the king for that phase is honest, the king will be honestly

communicating an identical copy of its preference bit to everyone and that will be taken as

the output preference bit for that phase by every honest party and that shows the lemma

holds. But it could be possible that there is one subset of parties who executes step number 1

to update their preference bit finally; while there is another subset of honest parties who

might be executing step number 2 to finally update their preference bit.

So, this could happen right this this can happen depending upon the initial configuration of

the values of the parties and what messages they would have received; it is not necessary that



if the king is honest, everyone will be only using this else statement or everyone is using only

the if statement to finally update their preference bit. It could happen that one subset of

parties using the step number 1, one subset of parties execute this step number 2 depending

upon which condition is satisfied in their respective case, ok.

We will prove that even if that happens at the end of the phase k all the honest parties will

have the same preference bit. So, let us see why. So, imagine there is a party Pi who does not

consider king’s preference bit to update its preference bit; that means it executes the if

statement to update its preference bit, that means it has received a proposal for the value w at

least n - t times during round II, right.

That is why it has executed step number 1 to update its preference bit finally. Now, among

these n - t copies of the proposal for the value w; how many copies will be received by Pk?

The claim is at least n - 2 t copies of this proposed w message would have been received by

the honest king as well; this is because among these n - t copies of the proposal message for

w, there could be t copies coming from the corrupt parties, those corrupt parties might send a

proposal for to the king.𝑤

But there are at least n -2t number of honest parties among the set of parties who have sent

the proposal message to Pi for w, who would be sending the proposal message for w even to

the king p k. And since we are operating under the condition n > 3t, n - 2t will be strictly

greater than t; that means at the end of round II during phase k, Pk would have received the

proposal for w from at least t + 1 parties, ok.

Moreover from the previous lemma we also know that the king Pk would never receive a

proposal for any other message different from w, if it is receiving a proposal for w, right. So,

all in all what is happening is that, since Pk has received a proposal for w at least t + 1

number of times during the round II; it would have temporarily set its preference bit at the

end of the second round to the same value w.

Now, that means that if we consider the other subset of parties who are executing the step

number 2 or the else statement to finally update their preference bit; that means they are

changing their preference bit to the preference bit which king is communicating, then they are

also setting their final preference bit for this phase to w only, which is the same as the

preference bit which has been set by the party Pi.



So, that shows that it does not matter whether the parties execute step number 1 or they

execute step number 2 to update their final preference bit for the kth phase, they will end up

updating it to the same value. And that shows that the consistency property is achieved in the

protocol; because it is guaranteed that there will be at least one phase among the t + 1 phases,

where the designated king is guaranteed to be honest, ok.

(Refer Slide Time: 27:31)

Let us do the complexity analysis; the total number of communication rounds will be now 3t

+ 3, which is more than EIG and the previous phase king protocol. And the communication

remains the same, because we have t + 1 phases and in each phase, bits are𝑂(𝑛2)

communicated, so total bits. So, you can see that the number of rounds here is more; but𝑛3

the complexity is polynomial and we can design a protocol with the same resilience or the

same fault tolerance as the EIG.

So, now we have three parameters here. So, you have fault tolerance or the resilience, namely

the number of faults which can be tolerated by the protocol and rounds, number of rounds

and communication and computation complexity, these are the three measures based on

which we can compare the three BA protocols which we have considered till now. In EIG

protocol, the resilience was t < n/3, number of rounds was t + 1 very good, but the

computation and communication was exponential.



In the phase king protocol number 1 which we had discussed in the previous lecture, the

resilience was bad; we can tolerate less number of faults compared to EIG protocol, but the

number of rounds was less.

(Refer Slide Time: 29:44)

But the good part was that the computation and communication was polynomial, so it was an

efficient protocol.

And the current protocol that we have discussed is phase king II; it has now the same

resilience as the EIG protocol, but it requires more communication, a much more interaction

and the computation and communication is efficient.

So, you can see now you have a tradeoff; if you do not want a protocol where the parties are

support supposed to interact for many number of rounds, because every round of

communication means parties have to send messages to the other parties through some

channel, over the channel right; that means they have to invoke some SSL protocol, TLS

protocol to send those messages securely to the other parties, ok.

So, a protocol with t + 1 number of rounds will require the parties to open the SSL

connection less number of times compared to a protocol which has 2t + 2 number of rounds

compared to a protocol which has 3t + 3 number of rounds. So, if it is the number of rounds

which is the critical resource for you which you do not want to spend, where you do not want

to spend more; then EIG protocol is preferred, but for that we have to spend a huge price.



Even though the number of times the parties have to communicate is less, the amount of

communication they have to do during those rounds is enormously large compared to the

other two protocols. Similarly, if your criteria is the number of bad parties or the corrupt

parties which you want to tolerate during the protocol execution; then again EIG and phase

king II protocols are preferred compared to phase king I; because phase king I protocol can

tolerate only up to n over 4 corrupt components in the system.

Whereas, EIG protocol and phase king II protocol can tolerate more number of corrupt

components in the system.

(Refer Slide Time: 32:05)

So, the protocol that I discussed in today’s lecture it is not available in any standard textbook;

I have taken the protocol code and its analysis from this reference.

Thank you.


