
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 60

Pedersen Commitment Scheme

(Refer Slide Time: 00:24)

Hello everyone, welcome to this lecture. So, in this lecture we will discuss about

commitment schemes as a primitive and then we will see an instantiation of commitment

scheme, namely Pedersen’s commitment scheme and its homomorphic property.

(Refer Slide Time: 00:39)

So, a commitment scheme is a very important cryptographic primitive, it involves two

entities a sender and a receiver. And a commitment scheme will have two phases, each

phase implemented by a separate protocol.

So, we have a commitment phase implemented by a protocol Com and we have an opening

phase implemented by the protocol Open. In the commitment phase the sender will have

some input m from some domain which it would like to commit to R. So, to do that it, will

compute some commitment as per the com protocol, the commitment will be denoted by

c and this commitment will be given to the receiver.

So, the security property that we require here from this commitment phase is the following.

If the receiver is corrupt, then by seeing the commitment c it should not learn anything

regarding the value which has been committed by the S. Namely, it should not learn

anything about the value of m, this is called as the hiding property. So, you can imagine

the commitment c to be some kind of sealed envelope and the sealed envelope is given to

this receiver and receiver should not be able to find out what exactly is kept inside the

envelope, that is the analogy here.

I would like to stress here that the hiding property I have discussed here is very loose, it is

not very formal. To formalize that the receiver does not learn anything about the message

m from the commitment c, we can use the notion of indistinguishability. Loosely speaking

that demands that even if receiver gives a pair of messages m0 and m1 to the sender and

if sender randomly commits one of those messages, receiver should not be able to tell

whether it has seen the commitment of m0 or it has seen the commitment of m1.

But for the purpose of understanding, for the ease of understanding, we will loosely say

that the commitment hiding property means that the commitment should not reveal

anything about the sender’s message to the receiver.

(Refer Slide Time: 03:01)

So, that is the commitment phase, where the sealed envelope is given to the receiver

namely a value has been committed. Now, the opening phase is implemented by the open

protocol, where S would now like to reveal the value which had which it has committed

in the commitment c.

So, the way this commitment phase and opening phase are used in a primitive will be as

follows. So, there will be always some gap between the commitment phase and an opening

phase, there might be a scenario where sender would like to commit some values and once

the values has been committed, we would like to open and check what is the value which

had been committed.

So, to check what value has been committed, the Open protocol will be used where S has

to reveal the committed value by providing some kind of opening information. Now, using

this opening information receiver will open the commitment and after opening it either

accepts or reject the revealed value.

The security property which we require here is the binding property, which informally

requires that a corrupt S should be committed to the value which it has committed earlier

in the commitment phase; that means, it should not be possible for a corrupt sender to

commit to m during the commitment phase, but later he is able to open the commitment to

m star, where m star is different from m, that should not happen. Again this requirement

can be modeled through some security experiment, but I am not going into the details of

those security experiment.

(Refer Slide Time: 04:51)

So, there are several instantiations of commitment schemes, for the purpose of our

cryptographically secure verifiable secret sharing, we will be using Pedersen’s

commitment scheme.

To understand the Pedersen’s commitment scheme, we will first try to understand the

representation of a group element with respect to a generator and a random element. So,

imagine you are given a prime order cyclic group, where the size of the group is

exponentially large in n and you are also given a uniformly random group element h ok.

So now, you are given the generator as well as a random element h from the group and a

discrete logarithm of this element h is not known ok.

Now, for any group element u, we say that a pair of indices (𝛼, 𝛽) from the set Zq is a

representation of u, if u is equal to 𝑔𝛼ℎ𝛽, ok that is the definition of a representation of a

group element relative to g and h. So, the elements g and h are fixed, you can treat them

as some kind of base with respect to that base, (𝛼, 𝛽) will be considered as a representation

for u, if 𝑔𝛼ℎ𝛽 gives you the element u.

Now, you might be wondering whether there exists a unique representation for any given

group element, the answer is no. Because if I give you any element u there could be up to

q number of distinct representations with respect to the fixed base g and h. This is because,

if I take any candidate beta as one part of the representation, then corresponding to that

beta, I can always find the corresponding unique alpha, such that this relationship holds.

Now, how many betas I can have? I can have q number of betas, because remember both

alpha and beta are elements from Zq and Zq is nothing but the 0 to q minus 1. So that

means, if you set beta equal to 0, corresponding to that there will be some alpha, if you set

beta equal to 1 then corresponding to that there will be some another alpha. If you set beta

equal to 2 corresponding to that there will be some another alpha and so on, such that all

of them constitute a representation of the same element u; that means, g to the power alpha

1, h to the power 0 will give you u, g to the power alpha 2 times h to the power 1 will give

you u, g to the power alpha 3 times h square will give u and so on. So, with respect to this

fixed base g and h, there could be up to q number of representations. Another fact which

we can quickly derive here is the following.

If you are given a pair of distinct representations for any element u in the group, with

respect to the base g and h then using these two representations you can easily compute

the discrete logarithm of h. How? So, since alpha, beta is a representation of u; that means,

u is equal to g to the power alpha times h to the power beta. And since alpha prime, beta

prime is also a representation of u, you have g to the power alpha prime times h to the

power beta prime also giving you u. And remember that we are assuming here that the

representations alpha, beta and alpha prime, beta prime are different.

Now, if this is the case then I can say that g to the power alpha minus alpha prime is same

as h to the power beta prime minus beta and this automatically implies that the difference

of beta prime and beta has to be non-zero, because if the difference of beta prime and beta

is 0, then the right-hand side here becomes h to the power 0, which is the identity element.

That means, we have g to the power alpha minus alpha prime giving you the identity

element; that means, it is g to the power 0 here the left-hand side; that means, alpha minus

alpha prime is 0.

And alpha minus alpha prime being 0 means alpha is equal to alpha prime and beta prime

minus beta being 0 means beta prime equal to beta, but that is against this assumption that

the representation alpha, beta and alpha prime, beta prime are distinct.

(Refer Slide Time: 10:18)

So; that means, the right-hand side is definitely not h to the power 0 here; that means, the

inverse of beta prime minus beta exists because it is a non 0 element. And we can easily

find out that inverse in polynomial time, say by using the extended Euclid algorithm.

So, let me denote the inverse of beta prime minus beta by delta. As I said, this can be

computed in polynomial time. So, now, given alpha, beta, alpha prime, beta prime and u,

it is easy to see that this relationship holds and this implies that the discrete logarithm of h

is nothing but the value alpha minus alpha prime times delta. And if this value is beyond

q minus 1, you can bring it within the range 0 to q minus 1 by performing mod q.

So, you are given alpha, you are given alpha prime, you are given delta, you are given q

by computing this value, you will be able to compute discrete logarithm of h. So that

means, the fact two shows here that if you know a way to come up with two distinct

representations for any group element u, then using the two distinct representations you

can solve an instance of discrete logarithm problem. Namely, you can compute a discrete

logarithm of this random group element h in polynomial amount of time without doing

any kind of brute force operations.

(Refer Slide Time: 12:04)

Now, based on all these things, let us see the Pedersen’s commitment scheme, there will

be a public setup which will be used in the scheme, the public setup is that of a prime order

cyclic group. Since, it is a cyclic group, a generator will be given to us and the order of the

cyclic group is exponentially large in this parameter n. As part of the setup you will be

also provided with a random group element h, the message space for this commitment

scheme will be the set Zq.

So, let me write down what is Zq here, the set Zq will have the elements 0 to q minus 1;

that means, this commitment scheme can allow the sender to commit any value from this

set Zq, we will be using some randomness as part of the commitment scheme, the

randomness space also will be the set Zq. The commitment phase is as follows: so, the

com algorithm will do the following operations, if there is a value alpha, I should have

used M to represent the input of S. But I am using alpha to represent the value which the

sender would like to commit. So, to commit the value alpha, it picks a randomness beta

which is also a random element from the randomness space and the commitment is g to

the power alpha times h to the power beta, which is denoted by C subscript alpha, beta. I

am using the left arrow here to represent the output of the Pedersen commitment algorithm.

Because this commitment algorithm is a randomized algorithm; that means, every time

sender would like to commit the same value alpha, the commitment output, commitment

will be different because beta will be picked randomly for every instance. So, first time it

might be g to the power alpha times h to the power beta 1, next time it will be g to the

power alpha times h to the power beta 2 and so on.

That means if the same value alpha is committed multiple times, a corrupt receiver cannot

simply say that the two committed values are same or they are different and so on ok, by

comparing the commitments.

(Refer Slide Time: 14:40)

So, that is the commitment phase. And the opening phase is very simple. If sender wants

to reveal the value which it had committed earlier, then it simply gives in clear the value

committed and the randomness used.

So, if sender is corrupt, it might try to give now a different value for alpha and the

randomness. So, that is why I am using the notation alpha prime and beta prime, if sender

is honest, if S is honest, then alpha prime will be same as alpha and beta prime will be

same as beta ok, but if the sender is corrupt then this need not be the case.

Now, how does the receiver verify the opening information? So, it already has the

commitment, C of alpha, beta. And now it is seeing the values revealed by the sender, it

itself recomputes the commitment of alpha prime with respect to the randomness beta

prime, namely receiver itself recomputes g to the power alpha prime h to the power beta

prime and it checks whether it matches the commitment which it had received earlier.

If it matches then the output is 1, that means accept, otherwise the output is 0, namely

reject. So, now, let us see whether the hiding and the binding properties are achieved by

this commitment scheme. So, let us first argue about the binding property and remember

for binding we have to consider a potentially corrupt sender.

So, the claim here is that if the discrete log assumption is true in the group, that means in

polynomial amount of time, it is not possible to solve an instance random instance of

discrete log except with negligible probability, then the commitment scheme satisfies the

binding property.

(Refer Slide Time: 16:43)

Because breaking the binding property would require the sender to come up with the pairs

alpha, beta and alpha prime, beta prime which are different such that the commitment of

both alpha, beta as well as alpha prime, beta prime turns out to be this common group

element C of alpha, beta.

That means to break the binding property, a corrupt sender has to come up with two

different representations for this element C of alpha, beta, so two different representations

with respect to g and h. But recall that in the previous slide we had seen that if you can

come up with two distinct representations of any group element with respect to this

generator g and a random element h, then that is equivalent to solving or computing the

discrete logarithm of the random element h in polynomial time. But that goes against the

assumption that discrete logarithm is difficult to solve in my group.

So that means, if my sender is corrupt and its running time is polynomially bounded then

except with a negligible probability, it cannot break the binding property. Of course, if

sender is computationally unbounded, then it can brute force over all candidate alpha, beta

and it can always come up with two distinct representations for this commitment.

So, during the commit phase, it can use alpha, beta, but during the opening phase it can

use alpha prime, beta prime and receiver will accept it. But that will require the sender to

perform exponential amount of computation, the binding property holds only if the sender

is corrupt and its running time is computationally bounded.

(Refer Slide Time: 18:55)

Now, let us see the hiding property for which we have to consider a corrupt receiver. And

interestingly now we can claim here that even if the receiver is computationally unbounded

the hiding property will hold.

So, this is quite asymmetric. The binding property is conditional because it requires the

sender to be restricted to perform only polynomial amount of computation or the adversary

to perform only polynomial amount of computation. But the hiding property here is

unconditional; that means, if the receiver is corrupt and even if it is allowed unbounded

resources, unbounded time, it cannot figure out what is the value which had been

committed ok.

So, a natural question will be can we have a commitment scheme, where the binding as

well as the hiding property are both unconditional and the answer is no. Either of these

two properties has to be conditional. Now, coming back to Pedersen’s commitment scheme

let us see why the hiding property here is unconditional. So, let us imagine a corrupt

receiver. So, what exactly the receiver is seeing in the commitment phase, it is seeing this

commitment C of alpha, beta which is a group element.

Now, remember fact 1 states that this commitment will have q distinct representations with

respect to the generator g and the random element h, with each representation being equally

probable, from the viewpoint of the receiver.

Namely, if the receiver thinks in its mind that it is the value alpha sub b which has been

committed by the sender, then corresponding to that candidate alpha sub b there is indeed

a randomness, a unique randomness, say beta sub b from the randomness space, such that

the commitment of alpha sub b with respect to the randomness beta sub b will give you

the commitment which receiver has seen.

But what is the probability that the randomness used by the sender is indeed beta sub b?

Well, that is 1 over q, because the randomness used in the protocol is uniformly picked

from the randomness space. So that means, for all candidate alpha 0, alpha 1, from Z q the

probability that alpha 0 could have been committed in this commitment C alpha, beta is 1

over q.

And the probability that alpha 1 would have been committed in this same commitment C

alpha, beta is also 1 over q. So that means, just by seeing the value C alpha beta, this

receiver cannot figure out whether it is the value 0 which is committed or whether it is the

value 1 which is committed or whether it is the value 2 which is committed or whether it

is the value q minus 1 which is committed.

With equal probability, it could be the case that sender has computed g to the power 0

times h to the power some beta 1, giving you the commitment. With equal probability it

could be the case that sender has computed g to the power 1 times h to the power some

beta 2 giving you the same C of alpha, beta. And with equal probability it is the case that

sender has computed g to the power q minus 1 times h to the power some beta q minus 1,

giving you the same commitment C of alpha, beta.

So, receiver cannot pinpoint whether sender’s input was 0 or 1 or 2 or q minus 1. That

means, the commitment which it sees, its probability distribution is independent of the

input of the sender and this hold even if the receiver is computationally unbounded and

this implies that the hiding property holds here ok.

(Refer Slide Time: 23:50)

So, that is a very simple Pedersen’s commitment scheme. Now, a very interesting property

of the Pedersen’s commitment scheme is its associated homomorphic property.

So, the Pedersen’s commitment scheme is linearly homomorphic. To understand that,

imagine you are given the commitment of the value alpha 1, with respect to the randomness

beta 1. And say there is another value alpha 2 which is committed with respect to the

randomness beta 2 ok. You also imagine that you are given two values c1, c2, treat them

as constants from the message space. Now, what will happen if I take the first commitment

and raise it to the power c1. Mind it, this operation, the first commitment raised to the

power c1, can be performed in polynomial amount of time, because this can be done using

the square and multiply method, because this is nothing but the group exponentiation

operation. So, if I raise the first commitment to the power c1, that is nothing but the

Pedersen commitment of the value c1 times alpha 1 with respect to the randomness c1

times beta 1.

And in the same way if I take the second commitment and raise it to the power c2, that

will give me the commitment of c2 times alpha 2 with respect to the randomness c2 times

beta 2. That means, now if I take these two new values and multiply them and then if I

rearrange the terms, I can see that this final thing which I have computed here is nothing

but a Pedersen commitment of c1 times alpha 1 plus c2 times alpha 2, with respect to the

randomness c1 times beta 1 plus c2 times beta 2.

That means if someone gives me the commitment of alpha 1 and the commitment of alpha

2 and now if I would like to have a commitment of c1 times alpha 1 plus c2 times alpha 2,

I do not require the sender again to freshly compute a commitment of this value c1 times

alpha 1 plus c2 times alpha 2 and give it to me. Just by performing some operations on the

existing commitments of alpha 1 and alpha 2, I will end up getting a commitment of c1

times alpha 1 plus c2 times alpha 2.

In general, that implies that if you have several committed values available and if you want

to compute a linear function of those committed values, you can do that, it does not require

any interaction whatsoever. You just perform some operations on the commitments which

are already given to you, that will give you the commitment of the resultant output of this

linear function. Looking ahead, we will exploit this homomorphic property when we

design cryptographically secure verifiable secret sharing scheme.

(Refer Slide Time: 27:16)

So, these are the references. So, you can find more about commitments schemes from this

lecture series.

Thank you.

