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Hello everyone, welcome to this lecture. So, in this lecture we will discuss about 

commitment schemes as a primitive and then we will see an instantiation of commitment 

scheme, namely Pedersen’s commitment scheme and its homomorphic property. 
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So, a commitment scheme is a very important cryptographic primitive, it involves two 

entities a sender and a receiver. And a commitment scheme will have two phases, each 

phase implemented by a separate protocol. 

So, we have a commitment phase implemented by a protocol Com and we have an opening 

phase implemented by the protocol Open. In the commitment phase the sender will have 

some input m from some domain which it would like to commit to R. So, to do that it, will 

compute some commitment as per the com protocol, the commitment will be denoted by 

c and this commitment will be given to the receiver. 

So, the security property that we require here from this commitment phase is the following. 

If the receiver is corrupt, then by seeing the commitment c it should not learn anything 

regarding the value which has been committed by the S. Namely, it should not learn 

anything about the value of m, this is called as the hiding property. So, you can imagine 

the commitment c to be some kind of sealed envelope and the sealed envelope is given to 

this receiver and receiver should not be able to find out what exactly is kept inside the 

envelope, that is the analogy here. 

I would like to stress here that the hiding property I have discussed here is very loose, it is 

not very formal. To formalize that the receiver does not learn anything about the message 

m from the commitment c, we can use the notion of indistinguishability. Loosely speaking 

that demands that even if receiver gives a pair of messages m0 and m1 to the sender and 



if sender randomly commits one of those messages, receiver should not be able to tell 

whether it has seen the commitment of m0 or it has seen the commitment of m1. 

But for the purpose of understanding, for the ease of understanding, we will loosely say 

that the commitment hiding property means that the commitment should not reveal 

anything about the sender’s message to the receiver. 

(Refer Slide Time: 03:01) 

 

So, that is the commitment phase, where the sealed envelope is given to the receiver 

namely a value has been committed. Now, the opening phase is implemented by the open 

protocol, where S would now like to reveal the value which had which it has committed 

in the commitment c. 

So, the way this commitment phase and opening phase are used in a primitive will be as 

follows. So, there will be always some gap between the commitment phase and an opening 

phase, there might be a scenario where sender would like to commit some values and once 

the values has been committed, we would like to open and check what is the value which 

had been committed. 

So, to check what value has been committed, the Open protocol will be used where S has 

to reveal the committed value by providing some kind of opening information. Now, using 

this opening information receiver will open the commitment and after opening it either 

accepts or reject the revealed value. 



The security property which we require here is the binding property, which informally 

requires that a corrupt S should be committed to the value which it has committed earlier 

in the commitment phase; that means, it should not be possible for a corrupt sender to 

commit to m during the commitment phase, but later he is able to open the commitment to 

m star, where m star is different from m, that should not happen. Again this requirement 

can be modeled through some security experiment, but I am not going into the details of 

those security experiment. 
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So, there are several instantiations of commitment schemes, for the purpose of our 

cryptographically secure verifiable secret sharing, we will be using Pedersen’s 

commitment scheme. 

To understand the Pedersen’s commitment scheme, we will first try to understand the 

representation of a group element with respect to a generator and a random element. So, 

imagine you are given a prime order cyclic group, where the size of the group is 

exponentially large in n and you are also given a uniformly random group element h ok. 

So now, you are given the generator as well as a random element h from the group and a 

discrete logarithm of this element h is not known ok. 

Now, for any group element u, we say that a pair of indices (𝛼, 𝛽) from the set Zq is a 

representation of u, if u is equal to 𝑔𝛼ℎ𝛽, ok that is the definition of a representation of a 

group element relative to g and h. So, the elements g and h are fixed, you can treat them 



as some kind of base with respect to that base, (𝛼, 𝛽)  will be considered as a representation 

for u, if 𝑔𝛼ℎ𝛽 gives you the element u. 

Now, you might be wondering whether there exists a unique representation for any given 

group element, the answer is no. Because if I give you any element u there could be up to 

q number of distinct representations with respect to the fixed base g and h. This is because, 

if I take any candidate beta as one part of the representation, then corresponding to that 

beta, I can always find the corresponding unique alpha, such that this relationship holds. 

Now, how many betas I can have? I can have q number of betas, because remember both 

alpha and beta are elements from Zq and Zq is nothing but the 0 to q minus 1. So that 

means, if you set beta equal to 0, corresponding to that there will be some alpha, if you set 

beta equal to 1 then corresponding to that there will be some another alpha. If you set beta 

equal to 2 corresponding to that there will be some another alpha and so on, such that all 

of them constitute a representation of the same element u; that means, g to the power alpha 

1, h to the power 0 will give you u, g to the power alpha 2 times h to the power 1 will give 

you u, g to the power alpha 3 times h square will give u and so on. So, with respect to this 

fixed base g and h, there could be up to q number of representations. Another fact which 

we can quickly derive here is the following. 

If you are given a pair of distinct representations for any element u in the group, with 

respect to the base g and h then using these two representations you can easily compute 

the discrete logarithm of h. How? So, since alpha, beta is a representation of u; that means, 

u is equal to g to the power alpha times h to the power beta. And since alpha prime, beta 

prime is also a representation of u, you have g to the power alpha prime times h to the 

power beta prime also giving you u. And remember that we are assuming here that the 

representations alpha, beta and alpha prime, beta prime are different. 

Now, if this is the case then I can say that g to the power alpha minus alpha prime is same 

as h to the power beta prime minus beta and this automatically implies that the difference 

of beta prime and beta has to be non-zero, because if the difference of beta prime and beta 

is 0, then the right-hand side here becomes h to the power 0, which is the identity element. 

That means, we have g to the power alpha minus alpha prime giving you the identity 

element; that means, it is g to the power 0 here the left-hand side; that means, alpha minus 

alpha prime is 0. 



And alpha minus alpha prime being 0 means alpha is equal to alpha prime and beta prime 

minus beta being 0 means beta prime equal to beta, but that is against this assumption that 

the representation alpha, beta and alpha prime, beta prime are distinct. 
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So; that means, the right-hand side is definitely not h to the power 0 here; that means, the 

inverse of beta prime minus beta exists because it is a non 0 element. And we can easily 

find out that inverse in polynomial time, say by using the extended Euclid algorithm. 

So, let me denote the inverse of beta prime minus beta by delta. As I said, this can be 

computed in polynomial time. So, now, given alpha, beta, alpha prime, beta prime and u, 

it is easy to see that this relationship holds and this implies that the discrete logarithm of h 

is nothing but the value alpha minus alpha prime times delta. And if this value is beyond 

q minus 1, you can bring it within the range 0 to q minus 1 by performing mod q. 

So, you are given alpha, you are given alpha prime, you are given delta, you are given q 

by computing this value, you will be able to compute discrete logarithm of h. So that 

means, the fact two shows here that if you know a way to come up with two distinct 

representations for any group element u, then using the two distinct representations you 

can solve an instance of discrete logarithm problem. Namely, you can compute a discrete 

logarithm of this random group element h in polynomial amount of time without doing 

any kind of brute force operations. 
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Now, based on all these things, let us see the Pedersen’s commitment scheme, there will 

be a public setup which will be used in the scheme, the public setup is that of a prime order 

cyclic group. Since, it is a cyclic group, a generator will be given to us and the order of the 

cyclic group is exponentially large in this parameter n. As part of the setup you will be 

also provided with a random group element h, the message space for this commitment 

scheme will be the set Zq. 

So, let me write down what is Zq here, the set Zq will have the elements 0 to q minus 1; 

that means, this commitment scheme can allow the sender to commit any value from this 

set Zq, we will be using some randomness as part of the commitment scheme, the 

randomness space also will be the set Zq. The commitment phase is as follows: so, the 

com algorithm will do the following operations, if there is a value alpha, I should have 

used M to represent the input of S. But I am using alpha to represent the value which the 

sender would like to commit. So, to commit the value alpha, it picks a randomness beta 

which is also a random element from the randomness space and the commitment is g to 

the power alpha times h to the power beta, which is denoted by C subscript alpha, beta. I 

am using the left arrow here to represent the output of the Pedersen commitment algorithm. 

Because this commitment algorithm is a randomized algorithm; that means, every time 

sender would like to commit the same value alpha, the commitment output, commitment 

will be different because beta will be picked randomly for every instance. So, first time it 



might be g to the power alpha times h to the power beta 1, next time it will be g to the 

power alpha times h to the power beta 2 and so on. 

That means if the same value alpha is committed multiple times, a corrupt receiver cannot 

simply say that the two committed values are same or they are different and so on ok, by 

comparing the commitments. 

(Refer Slide Time: 14:40) 

 

So, that is the commitment phase. And the opening phase is very simple. If sender wants 

to reveal the value which it had committed earlier, then it simply gives in clear the value 

committed and the randomness used. 

So, if sender is corrupt, it might try to give now a different value for alpha and the 

randomness. So, that is why I am using the notation alpha prime and beta prime, if sender 

is honest, if S is honest, then alpha prime will be same as alpha and beta prime will be 

same as beta ok, but if the sender is corrupt then this need not be the case. 

Now, how does the receiver verify the opening information? So, it already has the 

commitment, C of alpha, beta. And now it is seeing the values revealed by the sender, it 

itself recomputes the commitment of alpha prime with respect to the randomness beta 

prime, namely receiver itself recomputes g to the power alpha prime h to the power beta 

prime and it checks whether it matches the commitment which it had received earlier. 



If it matches then the output is 1, that means accept, otherwise the output is 0, namely 

reject. So, now, let us see whether the hiding and the binding properties are achieved by 

this commitment scheme. So, let us first argue about the binding property and remember 

for binding we have to consider a potentially corrupt sender. 

So, the claim here is that if the discrete log assumption is true in the group, that means in 

polynomial amount of time, it is not possible to solve an instance random instance of 

discrete log except with negligible probability, then the commitment scheme satisfies the 

binding property. 
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Because breaking the binding property would require the sender to come up with the pairs 

alpha, beta and alpha prime, beta prime which are different such that the commitment of 

both alpha, beta as well as alpha prime, beta prime turns out to be this common group 

element C of alpha, beta. 

That means to break the binding property, a corrupt sender has to come up with two 

different representations for this element C of alpha, beta, so two different representations 

with respect to g and h. But recall that in the previous slide we had seen that if you can 

come up with two distinct representations of any group element with respect to this 

generator g and a random element h, then that is equivalent to solving or computing the 

discrete logarithm of the random element h in polynomial time. But that goes against the 

assumption that discrete logarithm is difficult to solve in my group. 



So that means, if my sender is corrupt and its running time is polynomially bounded then 

except with a negligible probability, it cannot break the binding property. Of course, if 

sender is computationally unbounded, then it can brute force over all candidate alpha, beta 

and it can always come up with two distinct representations for this commitment.  

So, during the commit phase, it can use alpha, beta, but during the opening phase it can 

use alpha prime, beta prime and receiver will accept it. But that will require the sender to 

perform exponential amount of computation, the binding property holds only if the sender 

is corrupt and its running time is computationally bounded. 
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Now, let us see the hiding property for which we have to consider a corrupt receiver. And 

interestingly now we can claim here that even if the receiver is computationally unbounded 

the hiding property will hold. 

So, this is quite asymmetric. The binding property is conditional because it requires the 

sender to be restricted to perform only polynomial amount of computation or the adversary 

to perform only polynomial amount of computation. But the hiding property here is 

unconditional; that means, if the receiver is corrupt and even if it is allowed unbounded 

resources, unbounded time, it cannot figure out what is the value which had been 

committed ok. 



So, a natural question will be can we have a commitment scheme, where the binding as 

well as the hiding property are both unconditional and the answer is no. Either of these 

two properties has to be conditional. Now, coming back to Pedersen’s commitment scheme 

let us see why the hiding property here is unconditional. So, let us imagine a corrupt 

receiver. So, what exactly the receiver is seeing in the commitment phase, it is seeing this 

commitment C of alpha, beta which is a group element. 

Now, remember fact 1 states that this commitment will have q distinct representations with 

respect to the generator g and the random element h, with each representation being equally 

probable, from the viewpoint of the receiver.  

Namely, if the receiver thinks in its mind that it is the value alpha sub b which has been 

committed by the sender, then corresponding to that candidate alpha sub b there is indeed 

a randomness, a unique randomness, say beta sub b from the randomness space, such that 

the commitment of alpha sub b with respect to the randomness beta sub b will give you 

the commitment which receiver has seen. 

But what is the probability that the randomness used by the sender is indeed beta sub b? 

Well, that is 1 over q, because the randomness used in the protocol is uniformly picked 

from the randomness space. So that means, for all candidate alpha 0, alpha 1, from Z q the 

probability that alpha 0 could have been committed in this commitment C alpha, beta is 1 

over q. 

And the probability that alpha 1 would have been committed in this same commitment C 

alpha, beta is also 1 over q. So that means, just by seeing the value C alpha beta, this 

receiver cannot figure out whether it is the value 0 which is committed or whether it is the 

value 1 which is committed or whether it is the value 2 which is committed or whether it 

is the value q minus 1 which is committed. 

With equal probability, it could be the case that sender has computed g to the power 0 

times h to the power some beta 1, giving you the commitment. With equal probability it 

could be the case that sender has computed g to the power 1 times h to the power some 

beta 2 giving you the same C of alpha, beta. And with equal probability it is the case that 

sender has computed g to the power q minus 1 times h to the power some beta q minus 1, 

giving you the same commitment C of alpha, beta. 



So, receiver cannot pinpoint whether sender’s input was 0 or 1 or 2 or q minus 1. That 

means, the commitment which it sees, its probability distribution is independent of the 

input of the sender and this hold even if the receiver is computationally unbounded and 

this implies that the hiding property holds here ok. 
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So, that is a very simple Pedersen’s commitment scheme. Now, a very interesting property 

of the Pedersen’s commitment scheme is its associated homomorphic property. 

So, the Pedersen’s commitment scheme is linearly homomorphic. To understand that, 

imagine you are given the commitment of the value alpha 1, with respect to the randomness 

beta 1. And say there is another value alpha 2 which is committed with respect to the 

randomness beta 2 ok. You also imagine that you are given two values c1, c2, treat them 

as constants from the message space. Now, what will happen if I take the first commitment 

and raise it to the power c1. Mind it, this operation, the first commitment raised to the 

power c1, can be performed in polynomial amount of time, because this can be done using 

the square and multiply method, because this is nothing but the group exponentiation 

operation. So, if I raise the first commitment to the power c1, that is nothing but the 

Pedersen commitment of the value c1 times alpha 1 with respect to the randomness c1 

times beta 1. 

And in the same way if I take the second commitment and raise it to the power c2, that 

will give me the commitment of c2 times alpha 2 with respect to the randomness c2 times 



beta 2. That means, now if I take these two new values and multiply them and then if I 

rearrange the terms, I can see that this final thing which I have computed here is nothing 

but a Pedersen commitment of c1 times alpha 1 plus c2 times alpha 2, with respect to the 

randomness c1 times beta 1 plus c2 times beta 2. 

That means if someone gives me the commitment of alpha 1 and the commitment of alpha 

2 and now if I would like to have a commitment of c1 times alpha 1 plus c2 times alpha 2, 

I do not require the sender again to freshly compute a commitment of this value c1 times 

alpha 1 plus c2 times alpha 2 and give it to me. Just by performing some operations on the 

existing commitments of alpha 1 and alpha 2, I will end up getting a commitment of c1 

times alpha 1 plus c2 times alpha 2. 

In general, that implies that if you have several committed values available and if you want 

to compute a linear function of those committed values, you can do that, it does not require 

any interaction whatsoever. You just perform some operations on the commitments which 

are already given to you, that will give you the commitment of the resultant output of this 

linear function. Looking ahead, we will exploit this homomorphic property when we 

design cryptographically secure verifiable secret sharing scheme. 
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So, these are the references. So, you can find more about commitments schemes from this 

lecture series. 



Thank you. 


