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Hello everyone, welcome to this lecture. So, now, for the next few lectures I will be 

discussing cryptographically secure multi party computation. So, there are several ways to 

design cryptographically secure multi party computation based on the underlying 

primitives. We can base the protocol on threshold encryption schemes we can base the 

protocol on fully homomorphic encryption schemes we can base the protocol on garbling 

schemes and so on. 

But I will be discussing a simpler approach for designing cryptographically secure multi 

party computation based on commitment schemes. So, to understand the commitment 

schemes we have to quickly go through cyclic groups and the discrete logarithm problem. 
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So, let us start with the group exponentiation operation. So, let 𝔾 be a group and without 

loss of generality I assume that the underlying operation is multiplicative. But it need not 

be the case, but whatever I am discussing here holds even if the underlying group operation 

is additive. So, since I am considering multiplicative group, I will be denoting the identity 

element by the notation 1. So, this should not be confused with the integer 1.  

Now the group exponentiation operation for an element with respect to an element 𝑔 is 

defined recursively as follows. We define 𝑔0 to be the identity element of the group 𝑔1 is 

defined to be the group element 𝑔 itself. And now 𝑔𝑚 for any 𝑚 ≥ 2 is defined to be the 

result of the group operation being performed over the elements 𝑔 and 𝑔𝑚−1.  

With respect to the negative powers 𝑔−1 is defined to be the inverse of the element 𝑔 and 

𝑔−𝑚 for any 𝑚 ≥ 2 is defined to be the result of the group operation being performed over 

the group elements 𝑔−1 and 𝑔−(𝑚−1). So, it is easy to see that the rules the way we have 

defined the group exponentiation the rules of integer exponentiations are applicable even 

for a group exponentiation.  

Namely if I multi if I apply the group operation on the elements 𝑔𝑚 and 𝑔𝑛 then I will 

obtain the group element 𝑔𝑚+𝑛 and so on. I also would like to stress here that we have 

efficient algorithms.  



We have efficient algorithms for performing group exponentiations. So, for instance we 

can use the square and multiply approach which is a very nice algorithm square and 

multiply algorithm. Its description you can find in any standard text on number theory, or 

you can refer to my course on discrete mathematics the NPTEL course on discrete 

mathematics or foundations of cryptography. 

(Refer Slide Time: 04:18) 

 

Now, let us define cyclic groups. So, a group is called a cyclic group if you have a special 

element 𝑔 in the group which is called as the generator. And the specialty of this element 

is that you can generate all the elements of the group by computing different powers of the 

generator. So, in terms of notation we use this represent notation here within the angular 

bracket we write the generator which denotes that if I take the different powers of 𝑔 starting 

from 0 and 0 onwards I will be able to generate all the elements of the group.  

So, it is not necessary that a cyclic group has a unique generator, it could have multiple 

generators. The definition for cyclic group is that it should have at least 1 generator. So, 

let us see some examples of cyclic groups. If I take the set of integers with respect to the 

integer addition operation, then it constitutes a cyclic group where the element 1 will be 

the generator. Because if you take any integer 𝑥 which is negative or positive, you can 

express that integer 𝑥 as some 𝑘 times the generator 1. 

That means in terms of the generator you can represent each and every integer whereas, if 

you take a prime number 𝑝 then the set ℤ𝑝 which is the set of elements {0, 1 …, 𝑝 − 1} 



then this set along with the operation addition modulo 𝑝. So, +𝑝 is the operation of addition 

modulo 𝑝, it also constitutes a cyclic group of prime order. Prime order means the number 

of elements here will be a prime quantity namely 𝑝 and then if we have a cyclic group of 

prime order then a nice feature of such groups is that every element except the identity 

element 0 will be a generator of this cyclic group. 
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Next let us define the discrete logarithms in the context of cyclic groups. So, imagine you 

have a cyclic group whose order is 𝑞; that means, there are 𝑞 number of elements in the 

group and again without loss of generality imagine that the group is multiplicative. Since 

the group is a cyclic group; that means, by computing the different powers of 0 starting 

from 0 up to 𝑞 − 1 I can generate all the elements of the group. 

Now, suppose I take any arbitrary element of the group. Since it is a group element it can 

be expressed as a power of the generator. So, there will be some unique power 𝑥 in the 

range 0 to 𝑞 − 1 such that 𝑔𝑥 is going to be that arbitrary element 𝑦 then this unique power 

𝑥 in the range 0 to 𝑞 − 1 is considered as the discrete logarithm of 𝑦 with respect to the 

generator and we denote it by 𝐷𝐿𝑜𝑔𝑔𝑦. 

So, it is very similar to our natural logarithm in the for the natural logarithms. We know 

that if 𝑎𝑥 = 𝑦 then we say that loga 𝑦 is 𝑥. You can imagine that discrete logarithm is 

similar to our natural logarithm in the discrete world in the context of a cyclic world. Like 

natural logarithms discrete logarithms also obey some nice properties. 



So, we know that loga 1 is 0 because 𝑎0 is defined to be 1. In the same way the discrete 

logarithm of the identity element of the group with respect to the generator is 0 because 

remember that we have defined 𝑔0 to be the identity element of the group. In the same 

way if we take an element ℎ and raise it to the power 𝑟 it will be a group element because 

the group satisfies the closure property. 

Now, if we want to take if you want to compute the discrete logarithm of this new element 

ℎ to the power 𝑟 that will be same as 𝑟 times the discrete logarithm of ℎ. Now 𝑟 times 

discrete logarithm of ℎ might be a value which crosses 𝑞 − 1. So, to ensure that the 

resultant value is in the range 0 to 𝑞 − 1 we must take 𝑎 mod 𝑞. Because as per the 

definition of discrete log it is the unique power 𝑥 in the range 0 to 𝑞 − 1. 

In the same way if you want to compute the discrete logarithm of the product of two 

elements. Then it will be same as the summation of the discrete logarithms of the 

individual elements. In general if you are given an arbitrary element 𝑦 such that 𝑦 = 𝑔𝑥 

for any integer 𝑥 may not be in the range 0 to 𝑞 − 1, then a discrete logarithm of 𝑦 in the 

range 0 to 𝑞 − 1 can be obtained by computing 𝑥 modulo 𝑞. 

So, these are some standard properties of discrete logarithms. I am not going into the proof 

for these properties I will be telling you the references which you can follow in case you 

want to go through the proof of these properties. 
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Now, how difficult or easy is it to compute the discrete log of a arbitrary given number? 

So, imagine you are given a cyclic group whose order is 𝑞 such that the number of bits 

required to represent the value 𝑞 is 𝑛. So, this notation denotes the size of 𝑞 in terms of 

bits. That means, 𝑞 is an 𝑛 bit number that does not mean there are n elements in the group 

there are 𝑞 elements in a group 𝑔. Where 𝑞 is represented by 𝑛 bits so; that means, the 

magnitude of 𝑞 is roughly 2𝑛; that means, my group size is exponentially large here. 

Now, imagine I give you a generator and a random element from the group I stress a 

random element it is not a fixed element of the group. Now since my group 𝑔 is a cyclic 

group and 𝑔 is a generator there will be a discrete logarithm of 𝑦. So, I would like to 

compute a discrete logarithm of 𝑦 with respect to the generator and I prefer an algorithm 

where the number of operations is polynomial in n namely the size of group elements. 

So, there is of course, a brute force discrete log solver and that brute force algorithm will 

do the following. It will go over every possible value for the discrete logarithm starting 

from 0 all the way to 𝑞 − 1 and checks whether 𝑔𝑥 = 𝑦 or not. Of course, the discrete 

logarithm of 𝑦 will be a value in the range 0 to 𝑞 − 1 and that is precisely this algorithm 

is exploiting. 

So, this algorithm will give you the output, but what is the running time of this algorithm? 

The running time of this algorithm is order of 𝑞. You should not say that this is a 

polynomial time algorithm because 𝑞 in terms of magnitude is 2𝑛. So, the running time of 

this algorithm increases exponentially as the magnitude of 𝑞 increases. So, this is definitely 

not a preferred algorithm. 

The question is does there exist a better algorithm than this naive brute force discrete log 

solver the answer is yes, but not always. So, there are certain cyclic groups where we can 

get where we can use better algorithms in fact, efficient algorithms to compute the discrete 

logarithm for our random number without doing the brute force. So, for instance if I take 

the cyclic group ℤ𝑝 where the operation is addition modulo 𝑝 then we have better 

algorithms. 

But at the same time there are certain candidate cyclic groups where, as of today, we do 

not have any algorithm more efficient than this brute force algorithm. Or even if we have 



alternate algorithms, their worst case running time ends up to be asymptotically order of 

2𝑛 or order of |𝔾|. 

So, for instance one such candidate cyclic group is the group ℤ𝑝
⋆ . So, ℤ𝑝

⋆  is the set 1 to 𝑝 −

1 and the operation here multiplication modulo 𝑝. Of course, there are some other better 

candidate cyclic groups for which it is conjectured that we do not have any better algorithm 

whose running time is better than this order of 2𝑛. 
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So, based on this discussion we now formulate the discrete logarithm problem and the 

𝐷𝐿𝑜𝑔 assumption. So, an instance of 𝐷𝐿𝑜𝑔 problem is basically to efficiently compute the 

discrete logarithm of a given random group element and the difficulty of the 𝐷𝐿𝑜𝑔 

problem the difficulty of solving the 𝐷𝐿𝑜𝑔 problem is formalized by an experiment. We 

call that experiment as the 𝐷𝐿𝑜𝑔 experiment which is parameterized with respect to an 

adversary and a group 𝔾; where the size of the group is exponentially large in 𝑛. And the 

problem instance is created as follows.  

So, we have two entities here the experiment where which is modeled by some 

hypothetical verifier and an adversary. Now this experiment or the verifier it picks a 

random index in the range 0 to 𝑞 − 1. It can be done easily and then it gives the group 

element 𝑔𝛼 to the adversary. So, the discrete logarithm of this element 𝑔𝛼 is 𝛼 which is 

known to this experiment. Now the challenge for this adversary is to compute a discrete 

logarithm for this value 𝑢.  



Notice that the value 𝑢 is going to be a random element in the group now the adversary is 

allowed only polynomial time here. So, PPT here denotes probabilistic polynomial time. 

So, adversary simply cannot run the brute force algorithm which we had discussed earlier. 

It is free to use any other algorithm as long as its running time is polynomial time and in 

polynomial time it has to submit a response to the experiment, we say that the adversary 

has won the experiment, or the output of the experiment is 1. 

So, the output of the experiment being 1 denotes that adversary has won the experiment. 

And adversary has won the experiment if and only if it has computed the discrete logarithm 

correctly. That means, whatever is the response submitted by the adversary g to the power 

that response is equal to the random element which the experiment has chosen. 

Now, what is the 𝐷𝐿𝑜𝑔 assumption? Informally 𝐷𝐿𝑜𝑔 assumption means that it is difficult 

for any adversary to win an instance of 𝐷𝐿𝑜𝑔 modeled by the above experiment in that 

group. Formally we say that the discrete log assumption holds in the group if for every 

polynomial time adversary who participates in the above experiment. The probability that 

it can when the experiment is upper bounded by some negligible quantity; that means, 

except with a negligible probability the adversary will fail to win the experiment. 

We are giving here some negligible advantage to the adversary to win the experiment. 

Because a simple strategy for the adversary to win the experiment could be to just guess 

the value of the discrete logarithm. For that adversary does not have to do any sophisticated 

task it just has to guess a value 𝛼′ and there is always a non 0 probability that the alpha 

prime guessed by the adversary turns out to be the discrete logarithm. 

It turns out that there are several candidate cyclic groups where discrete logarithm is 

conjectured to be difficult. That means, 𝐷𝐿𝑜𝑔 assumption holds in those groups, but again 

it is just a conjecture we do not have any formal proof. As of now even after trying for 

several years as of today we do not have any efficient algorithm to solve an instance 

random instance of discrete log problems in those groups. 



(Refer Slide Time: 19:10) 

 

So, with that I end this lecture. So, these are the references which you can follow to know 

more about discrete logarithm cyclic groups and so on. You can either refer to my NPTEL 

lectures on foundations of cryptography or my NPTEL lectures on discrete mathematics. 

Thank you. 


