
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 57

Ingredients for Statistically-Secure MPC

Hello everyone, welcome to this lecture.

(Refer Slide Time: 00:24)

 So, we will now start our discussion on statistically secure MPC. We already discussed

the IC protocol. So, for statistically secure MPC we will require a variant of verifiable

secret sharing. The data which is generated by that verifiable secret sharing is called as 2D

secret sharing with IC signatures.

So, I will introduce this 2D secret sharing with IC signatures in this lecture, and then we

will see a statistically secure reconstruction protocol if we have some data which is 2D

secret shared with IC signatures.

We will also see a statistically secure protocol for verifying the multiplicative relationship

this will be different slightly different from a perfectly secure protocol for verifying the

multiplicative relationship which we had discussed earlier. Looking ahead this will be

useful for generating the Beaver’s random multiplication triples for our statistically secure

MPC.

(Refer Slide Time: 01:27)

So, let us start with 2D secret sharing with IC signatures. So, a value 𝑠 from the field will

be 2D secret shared with IC signatures, if all the following hold. The data 𝑠 should be

secret shared as per Shamir secret sharing with degree of sharing being 𝑡 with every party

𝑃𝑖 holding a share of 𝑠, namely there should exist a 𝑡 degree polynomial whose constant

term should be the secret 𝑠, and party 𝑃𝑖 should hold the value on that 𝑡 degree polynomial

at alpha i.

So, the vector of shares 𝑠1, 𝑠2, 𝑠𝑖, 𝑠𝑛 we will call them as the primary shares of the secret

𝑠, and this is the way a secret would have been considered as secret shared in our perfectly

secure MPC protocol, but now we are actually augmenting this data structure data structure

in the sense whatever data is available corresponding to the secret 𝑠 and we are augmenting

it in 2 dimension that is why this 2D.

Now, what is the second dimension of sharing here? The second dimension of sharing is

that each primary share 𝑠𝑖 will be further secret shared among the parties; that means, if I

consider the share 𝑠𝑖 corresponding to that there should exist a 𝑡 degree polynomial whose

constant term should be 𝑠𝑖, and every party should have the value of that straight line not

sorry not straight line the value of that 𝑡 degree polynomial at 𝛼𝑖.

So, 𝑃1 will have the value of that 𝑡 degree polynomial at 𝛼1, 𝑃𝑗 will have the value of that

𝑡 degree polynomial at 𝛼𝑗, 𝑃𝑛 will have the value of that 𝑡 degree polynomial at 𝛼𝑛. Now,

the vector of shares corresponding to the primary share 𝑠𝑖 will be considered as the

secondary shares.

So, now you can see that you have 2 level of sharing here. One level of sharing is in terms

of primary shares and now we are augmenting we are augmenting this data structure in the

2 dimensions by saying that each share first share, second share, 𝑖th share, 𝑗th share, 𝑛th

share should be further secret shared resulting in secondary shares. So, that is a 2D secret

sharing.

But we require some more augmentation here in the form of IC signatures. We require that

each party 𝑃𝑖 not only should have its primary share 𝑠𝑖 and the secondary shares

𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛, but it should also hold the signature of the 𝑗th party on the 𝑗th secondary

share. So, those are pictorially represented by this notation.

So, this 𝑖th party it will have the full vector 𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛 and along with that on 𝑠𝑖1 it will

have party ones signature, on 𝑠𝑖2 it will have the second party signature, on 𝑠𝑖𝑗 it will have

the 𝑗th party signature, on the 𝑠𝑖𝑛 it will have the 𝑛th party signature signed as per the

information checking protocol which we had discussed earlier.

So, if such if all these three conditions hold then we say that the value 𝑠 is 2D secret shared

with IC signatures. How exactly such a data secret sharing, or such data structure will be

generated that will be done by a statistically secure VSS protocol which we will discuss

later.

(Refer Slide Time: 05:43)

So, now, for notational convenience we will be using a box representation as we have used

it for our perfectly secure protocol. So, in the perfectly secure protocol also we had used

this box representation whenever a value 𝑠 is secret shared through a 𝑡 degree polynomial,

we use this box for discussing perfectly secure protocols.

So, now I am abusing the notations and I will be using this box notation whenever a value

𝑠 is 2D secret shared with IC signatures; that means, if you if you have a system of values

distributed like this namely you have primary share, secondary shares and signed

secondary shares, IC signed secondary shares then I will be using this box representation

and sometimes I will also write this notation.

So, remember in the perfectly secure protocols we use the representation [𝑠]𝑡 to denote

Shamir secret sharing of a value 𝑠. Now, since we have augmented the secret sharing in 2

dimensions. So, that is why I am using [[𝑠]]
𝑡
 denotes the degree of sharing for primary

shares, secondary shares. So, that is a notation which we are going to now follow for the

rest of our description on statistically secure VSS and MPC.

(Refer Slide Time: 07:19)

Like Shamir secret sharing which has the nice linearity property namely you can perform

linear computation of any Shamir secret shared values non interactively we can perform

non we can compute any linear function of 2D secret shared values non interactively; that

means, suppose you have a value 𝑠 which is 2D secret shared with IC signatures and say

you have another value 𝑣 which is also 2D secret shared with IC signatures.

And, suppose as part of the IC signatures we use consistent keys between every pair of

parties every pair of prover and verifier; that means, whenever so, recall that the IC

protocol which we had discussed in the last lecture it is based on information theoretic

MAC and what I am saying here is that as part of that information theoretic MAC if we

use consistent MAC keys between every pair of parties in the system then that will lead to

an IC protocol where the IC protocol will have the linearity property; that means, the IC

sig will have the linearity property.

So, if IC sig has the linearity property, then what we can say here is that we can perform

linear we can we can compute linear functions of secret shared data non interactively. So,

if 𝑤 is the result of 𝑐1𝑠 + 𝑐2𝑣 where 𝑐1 and 𝑐2 are some public values from the field, then

everyone can compute a 2D secret sharing for 𝑤 with IC signatures.

So, what will be for instance the primary shares of 𝑤 for the parties, it will be the sum of

the primary shares of 𝑠 and 𝑣 for the individual parties. Now, if I consider the 𝑖th party

what will be the secondary shares for its primary share 𝑤𝑖 it will be the sum of the

secondary shares of 𝑠𝑖 and 𝑣𝑖, and now how the signature of the 𝑗th party will be computed

by 𝑃𝑖 on the 𝑗th secondary share 𝑤𝑖𝑗 it can be computed by using the linearity property of

IC signature provided consistent keys would have been used as part of the IC protocol

which will be guaranteed in our verifiable secret sharing protocol

So, like you had the linearity property for secret shared Shamir secret shared values you

have the linearity property even for 2D secret shared value values with IC signature; that

means, you can non interactively perform any computation, any linear computation on 2D

secret shared data with IC signatures.

(Refer Slide Time: 10:53)

Now, imagine you have a value 𝑠 which is 2D secret shared with IC signatures and now

we require a reconstruction protocol to publicly reconstruct 𝑠 mind it. We are now in the

setting 𝑡 <
𝑛

2
. So, you cannot use the perfectly secure protocols in the perfect security, in

the world of perfect security to reconstruct a secret shared value 𝑠 every party could have

made public its share of 𝑠 up to 𝑡 corrupt parties could have produced incorrect shares to

error correct we can use the Reed Solomon error correction property because in the perfect

world we are in the setting where𝑡 <
𝑛

3
.

But for the statistically secure protocols we will be in the setting where 𝑡 <
𝑛

2
 and hence

the Read Solomon error correction will not work. So, that is why the reconstruction of 2D

secret shared value will be slightly different here. Our idea will be still the same we will

try to reconstruct the primary shares because once the primary shares are made public and

if we get 𝑡 + 1 correct primary shares then using them we can interpolate the underlying

Shamir sharing polynomial through which the secret 𝑠 is shared that is the idea but a

corrupt party can make public incorrect primary share.

(Refer Slide Time: 12:29)

So, for instance if the 𝑖th party is a corrupt party then it can change, it can try to change its

primary share 𝑠𝑖 from 𝑠𝑖 to 𝑠𝑖
′ and as I said Reed Solomon error correction will not be

sufficient to identify whether 𝑃𝑖 has made public the right primary share or incorrect

primary share.

So, our idea will be slightly changed we will not ask 𝑃𝑖 directly to make public its primary

share 𝑠𝑖 because it can change its primary share from 𝑠𝑖 to 𝑠𝑖
′ rather we will ask 𝑃𝑖 to reveal

all the signed second shares. So, it has to produce the secondary share 𝑠𝑖1 signed by 𝑃1, it

has to produce the secondary share 𝑠𝑖2 signed by 𝑃2, it has to produce the secondary share

𝑠𝑖𝑗 signed by the 𝑗th party 𝑃𝑗, and it has to produce the secondary share 𝑠𝑖𝑛 signed by the

𝑛th party.

Now, if any of this signed values are incorrect, incorrect in the sense that the signatures

are incorrect then clearly the 𝑖th party is corrupt and it can be discarded from the system;

that means, its primary share will not at all be considered, but suppose 𝑃𝑖 is able to reveal

all the signatures correctly, then we will use the revealed secondary shares 𝑠𝑖1, 𝑠𝑖2, … 𝑠𝑖𝑛

and see whether all of them lie on a 𝑡 degree polynomial. If it is the case then using the

constant treating the constant term of the polynomial as the primary share for the 𝑖th party,

the parties will be recovering the primary share of the 𝑖th party.

So, now you see that we are not asking 𝑃𝑖 to make its primary share 𝑠𝑖 directly public,

rather we are asking him to make public the signed secondary shares which are verified

for correct signature and whether they are lying on 𝑡 degree polynomial, if both theses

verifications pass then we interpolate them to get the primary share for 𝑃𝑖.

(Refer Slide Time: 14:53)

This guarantees the following; if the 𝑖th party is a corrupt party then it will fail to reveal

incorrect secondary shares corresponding to honest parties. So, for instance if say party 1

is an honest party. Now, what 𝑃𝑖 should do to ensure that his secondary share should be

considered as 𝑠′𝑖 instead of 𝑠𝑖.

He should change at least one of the secondary shares say the secondary share

corresponding to the first honest party or the second honest party or the third honest party

or say the 𝑛th honest party, because only then the interpolated secondary shares will lead

to an incorrect secondary share, because if the secondary shares corresponding to all the

honest parties are revealed as it is by 𝑃𝑖 then using them using by interpolating them the

whatever primary share we recover on the behalf of 𝑃𝑖 it is bound to be 𝑠𝑖 only it will not

be different.

So, assuming that say for instance we are in the setting where 𝑛 = 2𝑡 + 1 and say the first

𝑡 + 1 honest parties are say the first 𝑡 + 1 parties are honest then either 𝑃𝑖 should attempt

to change 𝑠𝑖1 to 𝑠𝑖1
′ or it should try to change 𝑠𝑖2 to 𝑠𝑖2

′ or it should try to change 𝑠𝑖(𝑡+1) to

𝑠′𝑖(𝑡+1)and hope that all this secondary shares get accepted namely the corresponding

signatures get accepted and when they are interpolated the resultant primary share will be

𝑠𝑖
′ which is different from 𝑠𝑖.

But now what is the probability that a corrupt 𝑃𝑖 will be able to forge signature of at least

one of the honest parties out of this 𝑡 + 1 honest parties on the corresponding secondary

share it is very small, it is negligible which comes from the unforgeability property of your

IC protocol; that means, if at all the signed values have been verified correctly.

And if all the secondary shares interpolate to a 𝑡 degree polynomial, then with very high

probability whatever is the primary share obtained on the behalf of the 𝑖th party it is the

correct primary share, it is not an incorrect primary share.

(Refer Slide Time: 18:15)

Now, once we have all the primary shares available for some parties the primary shares

may not be available because that party would have been discarded if it tries to reveal an

incorrect signed value, but since we are in the setting where 𝑛 = 2𝑡 + 1 there will be at

least 𝑡 + 1 honest parties whose primary shares will always be finally, available we

interpolate them to reconstruct a shared secret.

So, now you can see that even though we are in the setting where 𝑡 <
𝑛

2
 without even

applying the Reeds Solomon error correction procedure we are getting we are we get a

mechanism to reconstruct a secret shared value with very high probability, and you can

see that what is the purpose of the secondary shares and the signatures on the secondary

shares.

If we do not put signatures on the secondary shares then again 𝑃𝑖 can simply make public

any bunch of secondary shares public and it will get accepted, but as soon as we put

signatures of the respective parties on the secondary shares it becomes difficult for a

corrupt 𝑃𝑖 to get an incorrect primary share being considered on its behalf.

(Refer Slide Time: 19:42)

Now, we will see a variant of Beaver’s protocol which is now statistically secure this will

be later useful for evaluating the multiplication gates in the circuit and this variant will

work even if we are in the setting where 𝑡 <
𝑛

2
 we do not require the setting of 𝑡 <

𝑛

3
.

So, the inputs here will be a pair of values 𝑢 and 𝑣 both of which are secret shared 2D

secret shared with IC signatures and the auxiliary data will be a secret shared triplet 𝑎, 𝑏, 𝑐

where the 𝑎, 𝑏 and 𝑐 components of the triplet are 2D secret shared with IC signature. So,

the way Beaver’s protocol will work in this particular setting will be the following. Let us

define the value 𝑑 and 𝑒 to be the one-time pad encryptions of 𝑢 and 𝑣 with respect to the

𝑎 and 𝑏 components of the triplet.

Because of the linearity property of 2D secret sharing the values 𝑑 and 𝑒 can be computed

the secret sharing of the values 𝑑 and 𝑒 can be computed non interactively and then the

parties can run the statistically secure reconstruction protocol which we had discussed in

the earlier slide to publicly reconstruct 𝑑 and 𝑒.

So, with very high probability the parties will be reconstructing the correct 𝑑 and e, and

now once 𝑑 and 𝑒 are publicly available the output of the Beaver’s protocol can be again

computed non interactively namely the parties linearly compute this function on secret

shared 𝑎, 𝑏, 𝑐.

As usual we can claim the privacy property for the Beaver’s protocol for this variant as

well namely if the triplet 𝑎, 𝑏, 𝑐 is random for the adversary, random in the sense that apart

from the shares which adversary has for this triplet (𝑎, 𝑏, 𝑐) the view of the adversary is

independent of what exactly the values of 𝑎, 𝑏 and 𝑐.

If that is the case then in this whole protocol no additional information about the inputs 𝑢

and 𝑣 is revealed that this is because even though the OTP encryptions of 𝑢 and 𝑣 are made

public, the corresponding parts 𝑎 and 𝑏 are random for the adversary and the second

property is that the output secret shared value 𝑤 will be the product of the inputs to this

protocol if and only if 𝑎, 𝑏, 𝑐 is a multiplication triplet.

So, if 𝑎, 𝑏, 𝑐 is a multiplication triplet then indeed the secret shared 𝑤 will be equal to the

product of secret shared 𝑢 and 𝑣 and vice versa and this simply comes by rearranging the

terms here and expanding the values 𝑑 and 𝑒.

(Refer Slide Time: 22:51)

We can now so ok so, once we have a statistically secure variant of the Beaver’s protocol

we can go to the perfectly secure triple transformation protocol which we had discussed

for the setting where 𝑡 <
𝑛

3
, and we can see that the same protocol we can run for the setting

of 𝑡 <
𝑛

2
 if a negligible error is allowed.

So, in the triple transformation protocol we have input a bunch of Shamir secret shared

triplets and we transform them into another bunch of Shamir secret shared triplets such

that even if there is no relationship among the input triplets, we end up setting up some

correlation among the output triplets.

But now, our inputs will be 2D secret shared values with IC signatures. So, if you see this

triple transformation protocol almost all the steps involve only performing linear functions

or involving or involve performing local computation on secret shared data, the only

interaction is in this step where the Beaver’s method is triggered.

(Refer Slide Time: 24:22)

So, what we are going to do is we are now going to change the setting to 𝑡 <
𝑛

2
, and instead

of a perfectly secure protocol we will target a statistically secure protocol and the idea will

be that we can use the statistically secure variant of the Beaver’s method which we had

discussed earlier, rest of the proto steps of the triple transformation protocol remains the

same.

Namely we define the 𝐴 polynomial and 𝐵 polynomial non interactively and the 𝐶

polynomial is set in 2 stages we first fix few points on the 𝐶 polynomial and the remaining

points are obtained by applying the Beaver’s method. Now, we will use the statistically

secure variant of the Beaver’s method and all our secret sharing will be now 2D secret

sharing with IC signatures.

(Refer Slide Time: 25:29)

So, now, once we have a triple transformation protocol we can next think about polynomial

verification protocol with statistically secure properties, namely where a small error is

allowed here.

So, recall we had seen a perfectly secure polynomial verification protocol for the setting

𝑡 <
𝑛

3
, where we have a triplet of polynomials 𝐴, 𝐵, 𝐶 polynomials and the points on the

𝐴, 𝐵, 𝐶 polynomials are secret shared, and we wanted to check the multiplicative

relationship between the 𝐴, 𝐵, 𝐶 polynomials.

(Refer Slide Time: 26:15)

Now, our inputs will be 2D secret shared with IC signatures.

(Refer Slide Time: 26:21)

We will be in the setting where 𝑡 <
𝑛

2
.

(Refer Slide Time: 26:25)

And we want to still check whether the 𝐶 polynomial is equal to the product of 𝐴 and 𝐵

polynomials.

(Refer Slide Time: 26:33)

But, in the process we will be letting the adversary to learn only one point on the 𝐴, 𝐵, 𝐶

polynomials. For the perfect protocol we were allowed to reveal up to 𝑡 points on the 𝐴, 𝐵,

𝐶 polynomials, but now in the statistically secure protocol we will see that just by revealing

one point on 𝐴, 𝐵 and 𝐶 polynomials publicly we will be able to check whether the

multiplicative relationship holds with high probability or not.

(Refer Slide Time: 27:05)

And the idea is very simple. The idea is that if indeed the 𝐴, 𝐵 and 𝐶 polynomials satisfy

the multiplicative relationship. Then the 𝐶 polynomial evaluated at any point 𝛽, any

random point 𝛽 should be equal to the value of the 𝐴 polynomial at 𝛽 multiplied by the

value of the 𝐵 polynomial at 𝛽, and here 𝛽 will be a random point which is going to be

selected independent of what exactly are my 𝐴, 𝐵, 𝐶 polynomials.

How exactly this random element 𝛽 is going to be generated, we will discuss that later,

but assume for the moment there is a mechanism through which the parties can generate

publicly uniformly random value 𝛽 which is independent of the points on the 𝐴, 𝐵, 𝐶

polynomials, then just by checking this relationship they can check whether the

multiplicative relationship among the 𝐴, 𝐵, 𝐶 polynomials hold.

The claim here is that if the multiplicative relationship among 𝐴, 𝐵, 𝐶 polynomials does

not hold and even the multiplicative relationship between 𝐶(𝛽), 𝐴(𝛽) and 𝐵(𝛽) will not

hold except with probability
2𝑡

|𝔽|
, why so, because the only way through which 𝐶(𝛽) turns

out to be 𝐴(𝛽) ⋅ 𝐵(𝛽) even though the 𝐴, 𝐵, 𝐶 polynomials do not satisfy the multiplicative

relationship is that 𝛽 turns out to be a root of the 2 degree polynomial say the 𝐷 polynomial

which is defined to be 𝐶(𝑍) − 𝐴(𝑍) ⋅ 𝐵(𝑍).

So, this 𝐷 polynomial has degree 2𝑡 because 𝐶 polynomial has degree 2𝑡, and this point

𝐶(𝛽) − 𝐴(𝛽) ⋅ 𝐵(𝛽) is nothing but the point on the 𝐷 polynomial and this value will be

equal to 0 if and only if 𝛽 is a root of the polynomial 𝐷, but remember the 𝛽 value is

selected randomly from the field and since the 𝐷 polynomial has degree 2𝑡 it can have at

most 2𝑡 roots.

So, the only way even though the 𝐶 polynomial, 𝐴 polynomial, 𝐵 polynomial does not

multiply the multiplicative relationship, but still 𝐶(𝛽) turns out to be 𝐴(𝛽) ⋅ 𝐵(𝛽), is that

the random point 𝛽 turns out to be one of the roots of the polynomial 𝐷 which can happen

only with probability
2𝑡

|𝔽|
 because there are 2 at there could be at most 2𝑡 number of roots

for the polynomial 𝐷.

(Refer Slide Time: 30:40)

So, now how exactly the parties are going to check whether 𝐶(𝛽) = 𝐴(𝛽) ⋅ 𝐵(𝛽)? Well,

using the points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽). They can be computed as a linear function of the

existing points on the 𝐴, 𝐵, 𝐶 polynomials respectively. So, we can trigger the linearity

property of 2D secret sharing with IC signatures and say that the parties can locally

compute a 2D secret sharing with IC signatures for of the points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽)

respectively.

And then they can publicly reconstruct these points using our statistically secure

reconstruction protocol with 𝑡 <
𝑛

2
 which will guarantee that with very high probability

the correct points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽) are reconstructed, and now once you have the points

𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽) in public we can check whether this condition holds or not.

(Refer Slide Time: 31:41)

So, with that I end this lecture. We had seen lots of ingredients which are going to be later

useful for our statistically secure MPC namely we have introduced the data structure on

which we will be performing use that we have seen the data structure which will be useful

which will be used for performing computations.

In our shared circuit evaluation, we have seen how to reconstruct 2D secret shared value

we have seen the linearity property, we had seen the polynomial verification protocol, and

we have also seen the statistically secure variant of the triple transformation protocol. So,

these are the references for this lecture.

Thank you.

