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Hello everyone, welcome to this lecture. 
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 So, we will now start our discussion on statistically secure MPC. We already discussed 

the IC protocol. So, for statistically secure MPC we will require a variant of verifiable 

secret sharing. The data which is generated by that verifiable secret sharing is called as 2D 

secret sharing with IC signatures. 

So, I will introduce this 2D secret sharing with IC signatures in this lecture, and then we 

will see a statistically secure reconstruction protocol if we have some data which is 2D 

secret shared with IC signatures.  

We will also see a statistically secure protocol for verifying the multiplicative relationship 

this will be different slightly different from a perfectly secure protocol for verifying the 

multiplicative relationship which we had discussed earlier. Looking ahead this will be 

useful for generating the Beaver’s random multiplication triples for our statistically secure 

MPC. 
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So, let us start with 2D secret sharing with IC signatures. So, a value 𝑠 from the field will 

be 2D secret shared with IC signatures, if all the following hold. The data 𝑠 should be 

secret shared as per Shamir secret sharing with degree of sharing being 𝑡 with every party 

𝑃𝑖 holding a share of 𝑠, namely there should exist a 𝑡 degree polynomial whose constant 

term should be the secret 𝑠, and party 𝑃𝑖 should hold the value on that 𝑡 degree polynomial 

at alpha i. 

So, the vector of shares 𝑠1, 𝑠2, 𝑠𝑖, 𝑠𝑛 we will call them as the primary shares of the secret 

𝑠, and this is the way a secret would have been considered as secret shared in our perfectly 

secure MPC protocol, but now we are actually augmenting this data structure data structure 

in the sense whatever data is available corresponding to the secret 𝑠 and we are augmenting 

it in 2 dimension that is why this 2D. 

Now, what is the second dimension of sharing here? The second dimension of sharing is 

that each primary share 𝑠𝑖 will be further secret shared among the parties; that means, if I 

consider the share 𝑠𝑖 corresponding to that there should exist a 𝑡 degree polynomial whose 

constant term should be 𝑠𝑖, and every party should have the value of that straight line not 

sorry not straight line the value of that 𝑡 degree polynomial at 𝛼𝑖. 

So, 𝑃1 will have the value of that 𝑡 degree polynomial at 𝛼1, 𝑃𝑗 will have the value of that 

𝑡 degree polynomial at 𝛼𝑗, 𝑃𝑛 will have the value of that 𝑡 degree polynomial at 𝛼𝑛. Now, 



the vector of shares corresponding to the primary share 𝑠𝑖 will be considered as the 

secondary shares. 

So, now you can see that you have 2 level of sharing here. One level of sharing is in terms 

of primary shares and now we are augmenting we are augmenting this data structure in the 

2 dimensions by saying that each share first share, second share, 𝑖th share, 𝑗th share, 𝑛th 

share should be further secret shared resulting in secondary shares. So, that is a 2D secret 

sharing. 

But we require some more augmentation here in the form of IC signatures. We require that 

each party 𝑃𝑖 not only should have its primary share 𝑠𝑖 and the secondary shares 

𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛, but it should also hold the signature of the 𝑗th party on the 𝑗th secondary 

share. So, those are pictorially represented by this notation.  

So, this 𝑖th party it will have the full vector 𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛 and along with that on 𝑠𝑖1 it will 

have party ones signature, on 𝑠𝑖2 it will have the second party signature, on 𝑠𝑖𝑗 it will have 

the 𝑗th party signature, on the 𝑠𝑖𝑛 it will have the 𝑛th party signature signed as per the 

information checking protocol which we had discussed earlier. 

So, if such if all these three conditions hold then we say that the value 𝑠 is 2D secret shared 

with IC signatures. How exactly such a data secret sharing, or such data structure will be 

generated that will be done by a statistically secure VSS protocol which we will discuss 

later. 
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So, now, for notational convenience we will be using a box representation as we have used 

it for our perfectly secure protocol. So, in the perfectly secure protocol also we had used 

this box representation whenever a value 𝑠 is secret shared through a 𝑡 degree polynomial, 

we use this box for discussing perfectly secure protocols. 

So, now I am abusing the notations and I will be using this box notation whenever a value 

𝑠 is 2D secret shared with IC signatures; that means, if you if you have a system of values 

distributed like this namely you have primary share, secondary shares and signed 

secondary shares, IC signed secondary shares then I will be using this box representation 

and sometimes I will also write this notation. 

So, remember in the perfectly secure protocols we use the representation [𝑠]𝑡 to denote 

Shamir secret sharing of a value 𝑠. Now, since we have augmented the secret sharing in 2 

dimensions. So, that is why I am using [[𝑠]]
𝑡
 denotes the degree of sharing for primary 

shares, secondary shares. So, that is a notation which we are going to now follow for the 

rest of our description on statistically secure VSS and MPC. 
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Like Shamir secret sharing which has the nice linearity property namely you can perform 

linear computation of any Shamir secret shared values non interactively we can perform 

non we can compute any linear function of 2D secret shared values non interactively; that 

means, suppose you have a value 𝑠 which is 2D secret shared with IC signatures and say 

you have another value 𝑣 which is also 2D secret shared with IC signatures. 

And, suppose as part of the IC signatures we use consistent keys between every pair of 

parties every pair of prover and verifier; that means, whenever so, recall that the IC 

protocol which we had discussed in the last lecture it is based on information theoretic 

MAC and what I am saying here is that as part of that information theoretic MAC if we 

use consistent MAC keys between every pair of parties in the system then that will lead to 

an IC protocol where the IC protocol will have the linearity property; that means, the IC 

sig will have the linearity property. 

So, if IC sig has the linearity property, then what we can say here is that we can perform 

linear we can we can compute linear functions of secret shared data non interactively. So, 

if 𝑤 is the result of 𝑐1𝑠 + 𝑐2𝑣 where 𝑐1 and 𝑐2 are some public values from the field, then 

everyone can compute a 2D secret sharing for 𝑤 with IC signatures. 

So, what will be for instance the primary shares of 𝑤 for the parties, it will be the sum of 

the primary shares of 𝑠 and 𝑣 for the individual parties. Now, if I consider the 𝑖th party 

what will be the secondary shares for its primary share 𝑤𝑖 it will be the sum of the 



secondary shares of 𝑠𝑖 and 𝑣𝑖, and now how the signature of the 𝑗th party will be computed 

by 𝑃𝑖 on the 𝑗th secondary share 𝑤𝑖𝑗 it can be computed by using the linearity property of 

IC signature provided consistent keys would have been used as part of the IC protocol 

which will be guaranteed in our verifiable secret sharing protocol 

So, like you had the linearity property for secret shared Shamir secret shared values you 

have the linearity property even for 2D secret shared value values with IC signature; that 

means, you can non interactively perform any computation, any linear computation on 2D 

secret shared data with IC signatures. 
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Now, imagine you have a value 𝑠 which is 2D secret shared with IC signatures and now 

we require a reconstruction protocol to publicly reconstruct 𝑠 mind it. We are now in the 

setting 𝑡 <
𝑛

2
. So, you cannot use the perfectly secure protocols in the perfect security, in 

the world of perfect security to reconstruct a secret shared value 𝑠 every party could have 

made public its share of 𝑠 up to 𝑡 corrupt parties could have produced incorrect shares to 

error correct we can use the Reed Solomon error correction property because in the perfect 

world we are in the setting where𝑡 <
𝑛

3
. 

But for the statistically secure protocols we will be in the setting where 𝑡 <
𝑛

2
 and hence 

the Read Solomon error correction will not work. So, that is why the reconstruction of 2D 

secret shared value will be slightly different here. Our idea will be still the same we will 



try to reconstruct the primary shares because once the primary shares are made public and 

if we get 𝑡 + 1 correct primary shares then using them we can interpolate the underlying 

Shamir sharing polynomial through which the secret 𝑠 is shared that is the idea but a 

corrupt party can make public incorrect primary share. 
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So, for instance if the 𝑖th party is a corrupt party then it can change, it can try to change its 

primary share 𝑠𝑖 from 𝑠𝑖 to 𝑠𝑖
′ and as I said Reed Solomon error correction will not be 

sufficient to identify whether 𝑃𝑖 has made public the right primary share or incorrect 

primary share. 

So, our idea will be slightly changed we will not ask 𝑃𝑖 directly to make public its primary 

share 𝑠𝑖 because it can change its primary share from 𝑠𝑖  to 𝑠𝑖
′ rather we will ask 𝑃𝑖 to reveal 

all the signed second shares. So, it has to produce the secondary share 𝑠𝑖1 signed by 𝑃1, it 

has to produce the secondary share 𝑠𝑖2 signed by 𝑃2, it has to produce the secondary share 

𝑠𝑖𝑗 signed by the 𝑗th party 𝑃𝑗, and it has to produce the secondary share 𝑠𝑖𝑛 signed by the 

𝑛th party. 

Now, if any of this signed values are incorrect, incorrect in the sense that the signatures 

are incorrect then clearly the 𝑖th party is corrupt and it can be discarded from the system; 

that means, its primary share will not at all be considered, but suppose 𝑃𝑖 is able to reveal 

all the signatures correctly, then we will use the revealed secondary shares 𝑠𝑖1, 𝑠𝑖2, … 𝑠𝑖𝑛 

and see whether all of them lie on a 𝑡 degree polynomial. If it is the case then using the 



constant treating the constant term of the polynomial as the primary share for the 𝑖th party, 

the parties will be recovering the primary share of the 𝑖th party. 

So, now you see that we are not asking 𝑃𝑖 to make its primary share 𝑠𝑖 directly public, 

rather we are asking him to make public the signed secondary shares which are verified 

for correct signature and whether they are lying on 𝑡 degree polynomial, if both theses 

verifications pass then we interpolate them to get the primary share for 𝑃𝑖. 
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This guarantees the following; if the 𝑖th party is a corrupt party then it will fail to reveal 

incorrect secondary shares corresponding to honest parties. So, for instance if say party 1 

is an honest party. Now, what 𝑃𝑖 should do to ensure that his secondary share should be 

considered as 𝑠′𝑖 instead of 𝑠𝑖.  

He should change at least one of the secondary shares say the secondary share 

corresponding to the first honest party or the second honest party or the third honest party 

or say the 𝑛th honest party, because only then the interpolated secondary shares will lead 

to an incorrect secondary share, because if the secondary shares corresponding to all the 

honest parties are revealed as it is by 𝑃𝑖 then using them using by interpolating them the 

whatever primary share we recover on the behalf of 𝑃𝑖 it is bound to be 𝑠𝑖 only it will not 

be different. 



So, assuming that say for instance we are in the setting where 𝑛 = 2𝑡 + 1 and say the first 

𝑡 + 1 honest parties are say the first 𝑡 + 1 parties are honest then either 𝑃𝑖 should attempt 

to change 𝑠𝑖1 to 𝑠𝑖1
′  or it should try to change 𝑠𝑖2 to 𝑠𝑖2

′  or it should try to change 𝑠𝑖(𝑡+1) to 

𝑠′𝑖(𝑡+1)and hope that all this secondary shares get accepted namely the corresponding 

signatures get accepted and when they are interpolated the resultant primary share will be 

𝑠𝑖
′ which is different from 𝑠𝑖. 

But now what is the probability that a corrupt 𝑃𝑖 will be able to forge signature of at least 

one of the honest parties out of this 𝑡 + 1 honest parties on the corresponding secondary 

share it is very small, it is negligible which comes from the unforgeability property of your 

IC protocol; that means, if at all the signed values have been verified correctly.  

And if all the secondary shares interpolate to a 𝑡 degree polynomial, then with very high 

probability whatever is the primary share obtained on the behalf of the 𝑖th party it is the 

correct primary share, it is not an incorrect primary share. 
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Now, once we have all the primary shares available for some parties the primary shares 

may not be available because that party would have been discarded if it tries to reveal an 

incorrect signed value, but since we are in the setting where 𝑛 = 2𝑡 + 1 there will be at 

least 𝑡 + 1 honest parties whose primary shares will always be finally, available we 

interpolate them to reconstruct a shared secret. 



So, now you can see that even though we are in the setting where 𝑡 <
𝑛

2
 without even 

applying the Reeds Solomon error correction procedure we are getting we are we get a 

mechanism to reconstruct a secret shared value with very high probability, and you can 

see that what is the purpose of the secondary shares and the signatures on the secondary 

shares.  

If we do not put signatures on the secondary shares then again 𝑃𝑖 can simply make public 

any bunch of secondary shares public and it will get accepted, but as soon as we put 

signatures of the respective parties on the secondary shares it becomes difficult for a 

corrupt 𝑃𝑖 to get an incorrect primary share being considered on its behalf. 
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Now, we will see a variant of Beaver’s protocol which is now statistically secure this will 

be later useful for evaluating the multiplication gates in the circuit and this variant will 

work even if we are in the setting where 𝑡 <
𝑛

2
 we do not require the setting of 𝑡 <

𝑛

3
. 

So, the inputs here will be a pair of values 𝑢 and 𝑣 both of which are secret shared 2D 

secret shared with IC signatures and the auxiliary data will be a secret shared triplet 𝑎, 𝑏, 𝑐 

where the 𝑎, 𝑏 and 𝑐 components of the triplet are 2D secret shared with IC signature. So, 

the way Beaver’s protocol will work in this particular setting will be the following. Let us 

define the value 𝑑 and 𝑒 to be the one-time pad encryptions of 𝑢 and 𝑣 with respect to the 

𝑎 and 𝑏 components of the triplet. 



Because of the linearity property of 2D secret sharing the values 𝑑 and 𝑒 can be computed 

the secret sharing of the values 𝑑 and 𝑒 can be computed non interactively and then the 

parties can run the statistically secure reconstruction protocol which we had discussed in 

the earlier slide to publicly reconstruct 𝑑 and 𝑒.  

So, with very high probability the parties will be reconstructing the correct 𝑑 and e, and 

now once 𝑑 and 𝑒 are publicly available the output of the Beaver’s protocol can be again 

computed non interactively namely the parties linearly compute this function on secret 

shared 𝑎, 𝑏, 𝑐. 

As usual we can claim the privacy property for the Beaver’s protocol for this variant as 

well namely if the triplet 𝑎, 𝑏, 𝑐 is random for the adversary, random in the sense that apart 

from the shares which adversary has for this triplet (𝑎, 𝑏, 𝑐) the view of the adversary is 

independent of what exactly the values of 𝑎, 𝑏 and 𝑐.  

If that is the case then in this whole protocol no additional information about the inputs 𝑢 

and 𝑣 is revealed that this is because even though the OTP encryptions of 𝑢 and 𝑣 are made 

public, the corresponding parts 𝑎 and 𝑏 are random for the adversary and the second 

property is that the output secret shared value 𝑤 will be the product of the inputs to this 

protocol if and only if 𝑎, 𝑏, 𝑐 is a multiplication triplet. 

So, if 𝑎, 𝑏, 𝑐 is a multiplication triplet then indeed the secret shared 𝑤 will be equal to the 

product of secret shared 𝑢 and 𝑣 and vice versa and this simply comes by rearranging the 

terms here and expanding the values 𝑑 and 𝑒. 
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We can now so ok so, once we have a statistically secure variant of the Beaver’s protocol 

we can go to the perfectly secure triple transformation protocol which we had discussed 

for the setting where 𝑡 <
𝑛

3
, and we can see that the same protocol we can run for the setting 

of 𝑡 <
𝑛

2
 if a negligible error is allowed. 

So, in the triple transformation protocol we have input a bunch of Shamir secret shared 

triplets and we transform them into another bunch of Shamir secret shared triplets such 

that even if there is no relationship among the input triplets, we end up setting up some 

correlation among the output triplets. 

But now, our inputs will be 2D secret shared values with IC signatures. So, if you see this 

triple transformation protocol almost all the steps involve only performing linear functions 

or involving or involve performing local computation on secret shared data, the only 

interaction is in this step where the Beaver’s method is triggered. 
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So, what we are going to do is we are now going to change the setting to 𝑡 <
𝑛

2
, and instead 

of a perfectly secure protocol we will target a statistically secure protocol and the idea will 

be that we can use the statistically secure variant of the Beaver’s method which we had 

discussed earlier, rest of the proto steps of the triple transformation protocol remains the 

same.  

Namely we define the 𝐴 polynomial and 𝐵 polynomial non interactively and the 𝐶 

polynomial is set in 2 stages we first fix few points on the 𝐶 polynomial and the remaining 

points are obtained by applying the Beaver’s method. Now, we will use the statistically 

secure variant of the Beaver’s method and all our secret sharing will be now 2D secret 

sharing with IC signatures. 



(Refer Slide Time: 25:29) 

 

So, now, once we have a triple transformation protocol we can next think about polynomial 

verification protocol with statistically secure properties, namely where a small error is 

allowed here. 

So, recall we had seen a perfectly secure polynomial verification protocol for the setting 

𝑡 <
𝑛

3
, where we have a triplet of polynomials 𝐴, 𝐵, 𝐶 polynomials and the points on the 

𝐴, 𝐵, 𝐶 polynomials are secret shared, and we wanted to check the multiplicative 

relationship between the 𝐴, 𝐵, 𝐶 polynomials. 
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Now, our inputs will be 2D secret shared with IC signatures. 

(Refer Slide Time: 26:21) 

 

We will be in the setting where 𝑡 <
𝑛

2
. 
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And we want to still check whether the 𝐶 polynomial is equal to the product of 𝐴 and 𝐵 

polynomials. 
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But, in the process we will be letting the adversary to learn only one point on the 𝐴, 𝐵, 𝐶 

polynomials. For the perfect protocol we were allowed to reveal up to 𝑡 points on the 𝐴, 𝐵, 

𝐶 polynomials, but now in the statistically secure protocol we will see that just by revealing 

one point on 𝐴, 𝐵 and 𝐶 polynomials publicly we will be able to check whether the 

multiplicative relationship holds with high probability or not. 
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And the idea is very simple. The idea is that if indeed the 𝐴, 𝐵 and 𝐶 polynomials satisfy 

the multiplicative relationship. Then the 𝐶 polynomial evaluated at any point 𝛽, any 



random point 𝛽 should be equal to the value of the 𝐴 polynomial at 𝛽 multiplied by the 

value of the 𝐵 polynomial at 𝛽, and here 𝛽 will be a random point which is going to be 

selected independent of what exactly are my 𝐴, 𝐵, 𝐶 polynomials. 

How exactly this random element 𝛽 is going to be generated, we will discuss that later, 

but assume for the moment there is a mechanism through which the parties can generate 

publicly uniformly random value 𝛽 which is independent of the points on the 𝐴, 𝐵, 𝐶 

polynomials, then just by checking this relationship they can check whether the 

multiplicative relationship among the 𝐴, 𝐵, 𝐶 polynomials hold. 

The claim here is that if the multiplicative relationship among 𝐴, 𝐵, 𝐶 polynomials does 

not hold and even the multiplicative relationship between 𝐶(𝛽), 𝐴(𝛽) and 𝐵(𝛽) will not 

hold except with probability 
2𝑡

|𝔽|
, why so, because the only way through which 𝐶(𝛽) turns 

out to be 𝐴(𝛽) ⋅ 𝐵(𝛽) even though the 𝐴, 𝐵, 𝐶 polynomials do not satisfy the multiplicative 

relationship is that 𝛽 turns out to be a root of the 2 degree polynomial say the 𝐷 polynomial 

which is defined to be 𝐶(𝑍) − 𝐴(𝑍) ⋅ 𝐵(𝑍). 

So, this 𝐷 polynomial has degree 2𝑡 because 𝐶 polynomial has degree 2𝑡, and this point 

𝐶(𝛽) − 𝐴(𝛽) ⋅ 𝐵(𝛽) is nothing but the point on the 𝐷 polynomial and this value will be 

equal to 0 if and only if 𝛽 is a root of the polynomial 𝐷, but remember the 𝛽 value is 

selected randomly from the field and since the 𝐷 polynomial has degree 2𝑡 it can have at 

most 2𝑡 roots. 

So, the only way even though the 𝐶 polynomial, 𝐴 polynomial, 𝐵 polynomial does not 

multiply the multiplicative relationship, but still 𝐶(𝛽) turns out to be 𝐴(𝛽) ⋅ 𝐵(𝛽), is that 

the random point 𝛽 turns out to be one of the roots of the polynomial 𝐷 which can happen 

only with probability 
2𝑡

|𝔽|
 because there are 2 at there could be at most 2𝑡 number of roots 

for the polynomial 𝐷. 
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So, now how exactly the parties are going to check whether 𝐶(𝛽) = 𝐴(𝛽) ⋅ 𝐵(𝛽)? Well, 

using the points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽). They can be computed as a linear function of the 

existing points on the 𝐴, 𝐵, 𝐶 polynomials respectively. So, we can trigger the linearity 

property of 2D secret sharing with IC signatures and say that the parties can locally 

compute a 2D secret sharing with IC signatures for of the points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽) 

respectively. 

And then they can publicly reconstruct these points using our statistically secure 

reconstruction protocol with 𝑡 <
𝑛

2
 which will guarantee that with very high probability 

the correct points 𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽) are reconstructed, and now once you have the points 

𝐴(𝛽), 𝐵(𝛽), 𝐶(𝛽) in public we can check whether this condition holds or not. 
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So, with that I end this lecture. We had seen lots of ingredients which are going to be later 

useful for our statistically secure MPC namely we have introduced the data structure on 

which we will be performing use that we have seen the data structure which will be useful 

which will be used for performing computations. 

In our shared circuit evaluation, we have seen how to reconstruct 2D secret shared value 

we have seen the linearity property, we had seen the polynomial verification protocol, and 

we have also seen the statistically secure variant of the triple transformation protocol. So, 

these are the references for this lecture. 

Thank you. 


