
Secure Computation: Part II 

Prof. Ashish Choudhury 

Department of Computer Science and Engineering 

Indian Institute of Science, Bengaluru 

 

Lecture - 54 

Towards Secure MPC with an Honest Majority 

 

Hello everyone, welcome to this lecture. 
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So, in this lecture we will discuss about Secure MPC in an Honest Majority setting, namely 

we will discuss about statistical security and cryptographic security. 
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So, we will focus on MPC with honest majority and by honest majority I mean majority 

of the parties are guaranteed to be honest. Our focus till now was on perfect security where 

adversary was computationally unbounded and we want all the properties to be achieved 

in an error free fashion. And we have seen the BGW protocol, of course, there are plenty 

of other protocols which are kind of variants of BGW protocol based on the principle of 

shared circuit evaluation which are perfectly secure. 

And, all these protocols can tolerate up to n/3 corruptions, up to 33 percent corruption in 

the system. And, the setup that we require for these protocols is the private channel model; 

we do not require anything else. Private channel means we require every pair of parties 

should be able to communicate securely with every other party. Apart from that we do not 

require any other setup. Even though the protocols that we had seen they require broadcast, 

for simplicity we assume the presence of a broadcast channel, but that is just a simplifying 

abstraction, because we know that we can use reliable broadcast protocols like the phase 

king protocol and so on to emulate the effect of broadcast which are done as part of the 

BGW protocol. So, if you want perfect security, the maximum that you can tolerate, the 

maximum number of errors which you can tolerate is upper bounded by n/3. 

A natural question is can we improve the resilience further, can we tolerate more number 

of faults? And if you want to achieve perfect security well that is not possible; that means, 

you have to degrade the security level of your protocols. So, what if I want to tolerate up 



to n/2 corruptions ok? Before, going into the answer for this question whether we can 

tolerate up to n/2 corruptions or not, this resilience of t < n/2 is the optimal resilience for 

guaranteed output delivery protocols. 

So, this GOD here stands for Guaranteed Output Delivery. What does that mean? That 

means, even if up to t parties behave maliciously in the system they cannot prevent the 

honest parties from achieving the right function output; such kind of protocols are called 

as guaranteed output delivery protocols. So, it is easy to verify that the BGW protocol that 

we had seen, it is a GOD protocol. 

Even, if up to t corrupt parties misbehave we have enough number of honest parties in the 

system who ensure that at the end of the protocol, the correct function outpost is learned 

by all the honest parties. It turns out that for any arbitrary MPC protocol with the GOD 

property the maximum number of faults which you can tolerate is t < n/2.  

That means, if t >= n/2, then you cannot achieve GOD and intuitively this follows from 

the fact that if exactly 50 percent of the participants are corrupt, then you have half of the 

participants who are honest and half of the participants who are corrupt. 

And, at the end of the protocol the corrupt parties might behave as if they are participating 

with some different set of inputs corresponding to which the function output could be 

something else compared to the 50 percent honest participates in the system. Its only when 

t < n/2; that means, the number of honest parties is at least one more than the number of 

corrupt parties, you can hope to achieve the GOD property. 

So, now if you want to achieve the resilience of t less than n over 2 which is the maximum 

or which is the best you can do and achieve the GOD property, then there are two class of 

MPC protocols. The first class of MPC protocols is the statistically secure protocol where 

the adversary is still computationally unbounded, unbounded adversary, but negligible 

error in the protocol outcome is allowed ok. This is unlike your perfectly secure protocols 

where also the adversary is computationally unbounded, but we require absolutely no 

compromise on the security properties ok. 

So, depending upon how critical is your application is, if it is a very very critical 

application where you are willing where you are not willing to compromise anything 

whatsoever in terms of security, you should go for perfect security, but then you have to 



pay a price. You can tolerate only up to 33 percent corruption but, if the security is not 

very critical, in the sense that it is fine if you have a non-zero error in the protocol 

outcomes; namely in terms of correctness, privacy. 

But, that non-zero error is so small; it is so negligible that for most practical cases you can 

ignore it off. Then, you can go for statistically secure protocol where still adversary is 

allowed to be computationally unbounded. But, to design these protocols I need some 

additional setup on top of the private channel model. So, not only I require pairwise secure 

authentic channels, but I also require a broadcast channel. 

And, now this broadcast channel in the setting of t < n/2 cannot be emulated by simply 

running a protocol over the point to point channels. So, recall during our discussion on 

reliable broadcast, we had discussed that if you want to get a statistically secure broadcast 

then you need some kind of setup apart from the pair wise secure channels. Namely, we 

require a pseudo signature setup. 

Option 2, will be to go for computationally secure or cryptographically secure MPC 

protocol, where adversary is now assumed to be computationally bounded, it is no longer 

computationally unbounded. So, here we have computationally bounded adversary, 

namely adversary is allowed to perform only polynomial amount of computation and here 

just a simple public key infrastructure setup is sufficient. 

Namely, if we have a setup for encryption scheme and signatures using that we can not 

only implement a pair wise secure channels, we can also emulate the broadcast using the 

Dolev-Strong reliable broadcast protocols ok. So that means, the summary is that if you 

want to further improve the resilience of MPC protocols, but want to remain within the 

honest majority setting which of course, is a necessary condition for GOD protocols. 

Then depending upon whether you have the pseudo signature set up or not, you can go 

either for statistical security and tolerate computationally unbounded adversaries or you 

can go for computational security and tolerate computationally bounded adversary. So, 

now, for the rest of our course we will see how to design statistically secure MPC protocols 

and how to design computationally secure MPC protocols. 

The idea remains the same, we will be performing shared circuit evaluation for that we 

will require verifiable secret sharing scheme, methods for generating multiplication triplets 



and so on. But, since now a negligible error is allowed and I am no longer in the setting of 

t < n/3, the resultant sub protocols have to be changed. 
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So, we start our discussion first with statistically secure MPC and for that we require first 

a statistically secure verifiable secret sharing scheme with t < n/2. And, there are some 

significant challenges to design a verifiable secret sharing scheme with t < n/2. Even, the 

basic task of reconstructing a secret shared value becomes challenging if you are in the 

setting of t < n/2; because now, the Reed-Solomon error correction will simply fail. 

To demonstrate that imagine a scenario where t = 1 and n = 3 and say there is a value s 

which is secret shared through a 1 degree polynomial with three parties holding the shares 

s1, s2, s3 respectively and one of them is corrupt and your goal is to publicly reconstruct 

s. If there would have been 4 parties namely t = 1 and n = 4 parties, we know how to do it. 

We could have asked every party to exchange their share with every other party and then 

we can apply the Reed-Solomon error correction, where there will be sufficient 

redundancy to error correct one error. 

But, now we no longer have 4 parties, we have only 3 parties out of which 1 could be 

corrupt and we do not know whether to take the shares s1, s2 and interpolate the 1 degree 

polynomial or whether to take the shares s2, s3 and interpolate the 1 degree polynomial or 

to take the shares s1, s3 and interpolate the 1 degree polynomial. That means, we do not 



have now sufficient redundancy as part of the Reed-Solomon error correction to error 

correct the corrupt share. 

And, remember that no one will know the identity of the corrupt party here right. So, Reed-

Solomon error correction will simply fail to give you back the correct 1 degree polynomial 

through which s is secret shared. You can only identify that some error has occurred; that 

means, you can only do error detection here ok. Error detection means you get the output 

that some error has occurred; that means, among these 3 shares definitely 1 share is corrupt. 

But, you will not learn which is that corrupt share whereas, error correction means you not 

only find out that error has occurred, you also identify where exactly the error has occurred. 

And, for doing the error correction we need more number of good shares, the right shares 

which is not happening in this particular example. So that means, we definitely need to 

augment our secret sharing, Shamir secret sharing to identify corrupt shares during the 

time of reconstruction where we are in the setting t < n/2. 

But, fundamentally that is not possible to always identify the in to identify the corrupt 

shares, if you are in the setting of t < n/2. But, since we are in the statistical setting where 

a negligible error is allowed, we want a mechanism where we should be able to identify 

the corrupt shares with high probability which should be possible in the setting of t < n/2. 

And, that augmentation happens through information checking signatures, IC signatures; 

IC stands for Information Checking. 

And, these signatures are analog of digital signatures except that all the properties are now 

achieved in the presence of a computationally unbounded adversary. So, like our digital 

signatures, we require the unforgeability property where the goal is that if the signer is 

honest then its signature cannot be forged on a message which it has never signed. We 

should have the non-repudiation property which should guarantee that, if the signer is 

corrupt and it has signed some message then later when the signature is publicly revealed, 

publicly shown, the signer cannot deny that it has not signed. 

We need the privacy property as well from this primitive which should guarantee that until 

and unless a message signed by an honest signer is revealed, it should remain private. It 

should be available only with the entity who holds the signed message and this information 

checking signatures, IC signatures, they are generated using a distributed protocol which 

we call as Information Checking Protocol or ICP. 
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So, let us see the setting for Information Checking Protocol: ICP, who are the entities 

involved here and what are the sub protocols involved. So, here we have 3 classes of 

entities. We will have a signer who could be any of the n parties, who could be any 

designated party and it will have some message from some domain. And, there will be 

some intermediary INT. 

Again, it could be any of the n parties and then the entire bunch of n parties will play the 

role of verifiers which will also include the signer as well as the INT, that is the way we 

are going to deploy the ICP protocol later ok. So, an ICP protocol or an ICP scheme, 

whatever you call it, will consist of 3 phases. Each of these phases is executed sequentially 

one after the other and each of these 3 phases is implemented by a sub protocol. 

So, whenever I say information checking protocol, it basically has 3 sub protocols. The 

first phase is the generation phase, corresponding to which we will have a generation 

protocol. And, in this phase the signer will send the signed message to this intermediary 

INT. 
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And, some verification information to individual verifiers. What exactly will be the signed 

message? How exactly the signed message look like? What exactly will be the verification 

information and so on? Well, that is determined by the exact instantiation of ICP. But, 

right now I am explaining you the abstract properties, abstract semantics and the required 

properties. 

Now, once the generation phase is over, the next phase is the verification phase and the 

goal of the verification phase is to ensure whether a potentially corrupt signer has 

distributed consistent information to the intermediary and the verifiers. And, this is 

specifically to guarantee the non-repudiation property later. The way this ICP will be used 

is that later whenever INT would like to show the signed message, it will reveal the signed 

message publicly. 

And, then the verifiers will verify individually the signed message with respect to their 

verification information. And, then based on certain conditions the signed message will be 

either accepted or rejected. Now, what a corrupt signer can do is, if the signer is 

maliciously corrupt and that is quite possible, because during the execution of the ICP 

protocol there could be up to t malicious corrupt parties which might either include the 

signer or the intermediary or the verifiers. 

If the signer is maliciously corrupt, then it may distribute inconsistent signed message and 

verification information to the intermediary and honest verifiers respectively; and, that will 



violate the non-repudiation property; that means, INT will think that ok, it has got a proper 

signed message. And, then later when it attempts to reveal it to the verifiers, verifiers will 

say no, no you are corrupt, you are trying to forge signer’s signature, which is not the case, 

if the intermediary is honest. 

So, that is why after the generation phase, the intermediary and the verifiers along with the 

signer, they have to interact to guarantee that whatever information signer has given to 

intermediary, is consistent with the verification information available with the verifiers; 

consistent in the sense later it should get verified. One way of doing this consistency check 

is we ask the INT to make the message and the signature public and we ask the verifiers 

to make the verification information public. 

But, that will simply violate the privacy requirement which we require from ICP. So, recall 

that one of the requirements of ICP is the privacy property which demands that until and 

unless INT does not show the signed message when it is required, the message should 

remain hidden. So, that is why this consistency check during the verification phase should 

happen in a zero knowledge fashion. 

What does this zero knowledge mean here? The zero knowledge here mean that at the end 

of the verification phase INT and the verifier should come to the conclusion, that they hold 

consistent signature and verification information respectively. And, no additional 

information about the intermediaries message and the verification information should be 

revealed, if the signer and INT are honest, that is what  the zero knowledge signifies here. 

And, the third phase is the reveleation phase, where INT will now make public the signed 

message by broadcasting it. And, this message gets verified by the individual verifiers and 

depending upon certain criteria, it is either rejected or accepted. So, that is that is basically 

the syntax and semantics of the ICP. 
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Now, let us see the required properties, what are the properties which we require from an 

ICP ok. So, we require the following properties to be achieved with very high probability; 

that means, all these properties should be achieved except with some negligible 

probability, that negligible probability is 2−𝜅 where 𝜅 is the security parameter. So, we 

can set the security parameter depending upon how much error we want to tolerate. 

And, that will determine the size of the field over which the computations have to be 

performed while deploying or instantiating this ICP. So, the first property we require is the 

correctness property which should guarantee that if you have an honest intermediary and 

honest signer, then when the signed message is revealed during the revelation phase; it 

should be accepted by every honest verifier. That means, it should not happen that signer 

is honest, intermediary is honest and then when intermediary shows the message during 

the revealation phase; it is not accepted by the honest verifiers. 

Why honest verifiers? Because, corrupt verifiers can always reject a correctly signed 

message; they may say oh I do not accept your message, this is fraud; fine they can always 

do that. But, the honest verifiers in the system, they should not reject a correctly signed 

message, that is the correctness property. The next property is the non-repudiation property 

which should hold for an honest INT and a corrupt signer. You see these properties are 

with respect to certain combinations of honest entities and corrupt entities. 



So, the corrupt correctness property was for an honest INT and honest signer along with 

honest verifier. Non-repudiation means we are considering the case when signer now, 

wants to fool an intermediary by giving him some bogus signed message. So, that later 

when intermediary tried to reveal it during the revealation phase, it is not accepted. Non-

repudiation says that should not happen; that means, once the verification phase is over 

and the zero knowledge verification has happened, at the end of the verification phase INT 

should possess a valid signed message. It need not be on m, it could be on 𝑚⋆ ok. 

It could be such that signed m star when INT shows later during the revolution phase, it 

should get accepted by every honest verifier. We require the unforgeability property which 

should hold with respect to a corrupt INT and an honest signer. So, we require that if the 

signer is honest and if he has not signed 𝑚′ for INT, then later if the INT is corrupt, it is 

malicious and try to reveal the signer’s signature on 𝑚′, where 𝑚′ is different from m, 

then it should fail. All the honest verifiers should reject it. 

And, the fourth property is the privacy property which demands that if the signer is honest 

and INT is also honest, then throughout the ICP protocol; that means, till the end of 

verification phase, whatever information adversary has learnt from t corrupt parties that 

should not help the adversary to learn anything about m. That means, the view of the 

adversary should be independent of m and this should hold even if the adversary is 

computationally unbounded. In fact, all the properties hold against computationally 

unbounded adversaries. So, these are the four requirements from an ICP. 
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Looking ahead for designing our verifiable secret sharing scheme with statistical security, 

we will be using information checking protocol which should generate IC signatures with 

linearity property. So, what does that mean? So, suppose the signed message which 

intermediary holds after the verification phase is denoted by this notation; that means, 

signer has given to intermediary a signature on the message; IC-Sig means whatever 

information INT holds at the end of the verification phase. 

Now, the linearity property means here that if a signer has given 2 signed messages to 

intermediary through two different instances of ICP protocol, then later if INT wants to 

get signers signature on a linear combination of messages. Then, it should be possible for 

INT to do that just by performing local operations. And, in the same way if individual 

verifiers would like to get their corresponding information, corresponding verification 

information corresponding to this linear combination of message; they should be able to 

do that locally. 

That means, if there are two documents signed by the same signer and given to INT and if 

in the protocol it is required that there is some linear combination which is publicly known. 

And, INT needs to get signer’s signature on this linear combination of 2 messages; it need 

not have to run a fresh instance of ICP. INT can generate its part of the signature; well INT 

can generate its IC signature just by performing linear operation on whatever signatures, 

IC signatures it has received for m and 𝑚′ from the signer. 



And, correspondingly verifiers also can compute their part of the verification information 

from the verification information corresponding to m and 𝑚′, that is what we mean by the 

linearity property of IC signatures ok. So, that is all about syntax and semantics of IC 

signatures, IC protocol. 

(Refer Slide Time: 27:46) 

 

And, we have not yet seen an exact instantiation of the ICP. In the next lecture, we will 

see an exact instantiation of the ICP. There are several well-known instantiations of ICP 

starting from the classic construction by Ben-Or and Rabin. So, that was the starting point 

of statistically secure MPC.  

This was the seminal work by Ben-Or and Rabin in 1989, STOC paper where they 

formulated the notion of ICP and gave the first construction of ICP. But, the discussion we 

had in this lecture is taken from this textbook on Perfectly Secure MPC. 

Thank you. 


