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Hello everyone, welcome to this lecture. So, in this lecture we will see another protocol 

another Perfectly-Secure Protocol which will be useful later for getting our preprocessing 

phase protocol to generate secret shared random multiplication triples. So, this protocol is 

for Verifying Multiplicative Relationship among three polynomials. 
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This protocol is called as the PolyVer protocol, Poly stands for polynomial and Ver stands 

for verification, and this is a perfectly secure protocol. Later, we will see a PolyVer 

protocol where there might be a negligible error involved. But this is a perfectly secure 

protocol where the verification happens in an absolutely error free fashion. So, what 

exactly is the input for this polynomial verification protocol?  

We will have three polynomials an 𝐴 polynomial and 𝐵 polynomial and 𝐶 polynomial. 

The degrees of 𝐴 and 𝐵 polynomial will be 𝑡 whereas, the degree of the 𝐶 polynomial will 

be 2𝑡 and there will be 𝑛 points on the 𝐴, 𝐵 and 𝐶 polynomials which will be secret shared. 

What you can imagine is that you are given here 𝑛 number of secret shared triples.  

The 𝑎 components of all the secret shared triples lie on a 𝑡 degree polynomial 𝐴, the 𝑏 

components of all these secret shared triples lie on a 𝑡 degree polynomial 𝐵 and the 𝑐 

components of all these secret shared triples lie on a 2𝑡 degree polynomial 𝐶. The input 

triples I stress need not be multiplication triples.  

So, for instance 𝑐1 may not be equal to 𝑎1 ⋅ 𝑏1 and so on that is the input that is the input 

for this protocol. And here the relationship among 𝑡 and 𝑛 will be the following, 𝑡 <
𝑛

3
 and 

for simplicity we will be focusing on the case where 𝑛 = 3𝑡 + 1 that is the that is the 

smallest value of 𝑛 satisfying the condition 𝑡 <
𝑛

3
. 



Now, what is the goal of the protocol? What exactly is the output? Now, the goal here is 

to check whether the 𝐶 polynomial is the product of A and 𝐵 polynomials, now you might 

be wondering what the big deal in that is, why cannot we simply reconstruct all these 

triples right.  

Since all these triples are secret shared, we can apply the Reed- Solomon error correction 

algorithm, we can ask each party to make public its shares of all the triples. And then we 

can apply the Reed-Solomon error correction as a result of that all the triples will be known 

to the parties. 

And then they can check whether this property holds or not because once they know the 

exact value of all these triples, they can check whether 𝑎1 ⋅ 𝑏1 = 𝑐1 or not, 𝑎2 ⋅ 𝑏2 = 𝑐2 or 

not and then like, 𝑎𝑛 ⋅ 𝑏𝑛 = 𝑐𝑛 or not. If all this equality holds and we can conclude that a 

𝐶 polynomial is indeed equal to the product of 𝐴 and 𝐵 polynomials. But we cannot do 

that because another property which we require from the polynomial verification protocol 

is the following. 

We require that during this verification process at most 𝑡 points on the 𝐴, 𝐵 and 𝐶 

polynomials should be revealed to the adversary not more than 𝑡, this automatically 

implies that if the 𝐴, 𝐵 and 𝐶 polynomial were unknown to the adversary to begin with, 

then at the end of the protocol, adversary should learn at most 𝑡 points on those 

polynomials. It cannot figure out what exactly was the entire 𝐴 polynomial, 𝐵 polynomial 

or 𝐶 polynomial. 

So, that is the requirement and because of this requirement whatever method I suggested 

earlier namely we make we make all these triples public and then check whether all the 

triples are multiplication triple that will not work because in that protocol adversary end 

up learning more than 𝑡 points on the 𝐴, 𝐵 and 𝐶 polynomial because it learns all the 𝑛 

points on the 𝐴, 𝐵 and 𝐶 polynomial. So, that method will not work right. So, instead we 

have to use a different approach. 
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So, let us see the protocol here, the idea behind the protocol is as follows; what we will do 

is there are 𝑛 number of secret share triples, we will designate each party to verify one of 

these triples. So, for instance the 𝑖-th party can be designated to verify whether the 𝑖-th 

input triple the 𝑖-th secret shared input triple is indeed a multiplication triple or not. For 

that what must we do? 

We have to just let the 𝑖-th secret share triple to be reconstructed only towards the party 𝑃𝑖 

and, how we can do that? Well, we can do that by asking every party to send its share 

shares of these triples only to the party 𝑃𝑖 instead of sending it to every other parties only 

to the party 𝑃𝑖 and then party 𝑃𝑖 can apply the Reed-Solomon error correction on the 

received shares of 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖.  

Since we are working in the setting where 𝑛 = 3𝑡 + 1 and the degree of sharing of 𝑎𝑖, 𝑏𝑖 

and 𝑐𝑖 is 𝑡, even if up to 𝑡 shares for 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are corrupt party 𝑃𝑖 can error correct 

them and it can robustly reconstruct the 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 values. And then once it learns the 

𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 values it can verify whether this triplet (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) constitutes a multiplication 

triplet or not. If it constitutes a multiplication triplet, then 𝑃𝑖 says that it has personally 

privately checked and indeed (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is a multiplication triplet otherwise 𝑃𝑖 makes 

public an NOK message.  

So, this OK or NOK message is broadcasted - by broadcast I mean a reliable broadcast 

protocol is used here by 𝑃𝑖 - to make public the OK or the NOK message. Notice that if 𝑃𝑖 



is honest then only if the triplet is not a multiplication triplet it will broadcast an NOK 

message. However, if 𝑃𝑖 is corrupt then even though the triplet (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is a 

multiplication triplet it may unnecessarily broadcast an NOK message.  

So, we do not know whether party 𝑃𝑖 is honest or corrupt, if it is honest then indeed it will 

perform its steps properly that is it will broadcast OK only if the triplet is a multiplication 

triplet else it will broadcast an NOK message. 
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So, now what we have to do is if 𝑃𝑖 broadcasts an NOK message then we do not know 

whether 𝑃𝑖 is lying or whether 𝑃𝑖 is behaving honestly; that means, whether we should 

consider the complaint of 𝑃𝑖 genuine or not. If it has made a complaint by making public 

an NOK message then that is a complaint; that means, it is complaining against the 𝑖-th 

triplet and to verify whether its complaint is indeed genuine or not, what we do next is that 

we now publicly reconstruct the 𝑖-th triplet. 

So, you see this public reconstruction of the 𝑖-th triplet is optional it is happening only 

when a complaint is made against the 𝑖-th triplet by 𝑃𝑖 and only 𝑃𝑖 can complain against 𝑖-

th triplet. That means, the first triplet 𝑃1 is designated to check, the second triplet 𝑃2 is 

designated to check, the 𝑖-th triplet 𝑖-th party is designated to check and nth triplet the nth 

party is designated to check. 



Now, the designated verifier here what they are doing is they are either making public an 

OK message or NOK message if any designated verifier has made public an NOK message 

for its triplet; that means, now it is the time to check it publicly. Because we cannot trust 

the designated verifier, the designated verifier could be corrupt, and it might unnecessarily 

complain against the 𝑖-th triplet even though it is a multiplication triplet. 

So, that is why now it is time to publicly check it and this step is optional; that means, if 

𝑃𝑖 has broadcasted an ok message for the 𝑖-th designated triplet then it is fine, no need to 

check it, we trust 𝑃𝑖, but if a complaint is made fine it is a time to publicly check it and to 

publicly check it the value (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) needs to be publicly reconstructed. So, that is why 

in this picture I am showing this (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) now in clear; that means, it will be learned by 

everyone.  

How this (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) will be publicly reconstructed, well every party will be asked to send 

its shares of 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 to every other party because it is now a public reconstruction 

and then every party will apply the Reed-Solomon error correction algorithm and they will 

reconstruct the value of 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖. Now, once this triplet is available publicly 𝑃𝑖 's 

complain will be called it will be termed genuine if indeed this triplet turns out to be it 

turns out not to be a multiplication triplet.  

It turns out to be a non-multiplication triplet; that means, 𝑐𝑖 is not the product of 𝑎𝑖 and 𝑏𝑖 

then we will consider 𝑃𝑖’s complaint to be genuine otherwise we will label the 𝑃𝑖 's 

complaint as a fraud complaint. Now, what is the output of the protocol? The output of the 

protocol is success if and only if there are no genuine complaints against if the if and only 

if there are no genuine complaints.  

That means, either every party has broadcasted an OK message or wherever there are NOK 

messages which are broadcasted those complaints turned out to be non-genuine. If this is 

the case then the output of the protocol is success; that means, the 𝐶 polynomial is indeed 

the product of 𝐴 and 𝐵 polynomial otherwise the output is failure, that is the polynomial 

verification protocol right. 
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So, this is the these are the steps of the protocol. Now, we have to prove what are the 

properties achieved by the protocol, the crucial property we wanted is that if the 𝐶 

polynomial is not equal to the product of 𝐴 and 𝐵 polynomial then the output should not 

be success. So, we are going to prove that. So, we first prove that if indeed the 𝐶 

polynomial is product of 𝐴 and 𝐵 polynomials then all honest parties will output success, 

why honest parties because we do not care what the corrupt parties output.  

That means, even though a corrupt party should output success because all the complaints 

are non-genuine it may still end up outputting failure, we cannot prevent corrupt parties 

from doing that. But what we want here is that if the 𝐶 polynomial is indeed the product 

of 𝐴 and 𝐵 polynomials then all honest parties should output success, let us see whether 

that is happening here or not. 

So, if the 𝐶 polynomial is the product of 𝐴 and 𝐵 polynomials what exactly every honest 

party 𝑃𝑖 is going to do. So, party 𝑃𝑖 is designated with the task of verifying the 𝑖-th output 

triple. So, I am consider here I am considering here an arbitrary honest 𝑃𝑖 that arbitrary 

honest 𝑃𝑖 would have learnt the value of 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 and what exactly 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖, 𝑎𝑖 is 

equal to the 𝐴 polynomial at 𝛼𝑖, what is the 𝑏𝑖, 𝑏𝑖 is the value of the 𝐵 polynomial at 𝛼𝑖 

and what is 𝑐𝑖, 𝑐𝑖 is the 𝐶 polynomial at 𝛼𝑖. 



What is the hypothesis of the claim? The hypothesis of the claim is that the 𝐶 polynomial 

is the product of 𝐴 and 𝐵 polynomial, if 𝐶 polynomial is the product of 𝐴 and 𝐵 

polynomial. What is 𝐶(𝛼𝑖)? 𝐶(𝛼𝑖) is the c component of the 𝑖-th triple. What is 𝐴(𝛼𝑖)?  

It is the 𝑎 component of the 𝑖-th triple and what is 𝑏𝑖? It is the 𝑏 component of the 𝑖-th 

triple. So, since party 𝑃𝑖 is honest and it learns 𝑐𝑖, 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 is the product of 𝑎𝑖, 𝑏𝑖 it 

will find that (𝑎𝑖, 𝑏𝑖 , 𝑐𝑖) is a multiplication triplet and as a result of that it will broadcast 

OK message. However, if 𝑃𝑖 is corrupt it may broadcast an NOK message that is quite 

possible even though the triplet is a multiplication triplet.  

But then if it broadcast and NOK message then the triplet will be publicly reconstructed 

and after publicly reconstructing it everyone will find that 𝑃𝑖 's complaint is not genuine 

because it has simply complained even though it that triplet (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is a multiplication 

triplet. So, it will not be considered as a genuine complaint and as a result of that everyone 

will output success here. 
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On the other hand, suppose the 𝐶 polynomial is not the product of 𝐴 and 𝐵 polynomial 

then we claim that no honest party outputs success, again why an honest party? Because 

in this case corrupt parties may simply end up outputting success even though the 𝐶 

polynomial is not the product of 𝐴 and 𝐵 polynomials. So, for proving this claim let us 

focus on the set of honest parties I denote it by ℋ and for simplicity imagine that the first 

2𝑡 + 1 parties are honest.  



Why 2𝑡 + 1? Because we are considering a setting where 𝑛 = 3𝑡 + 1 there could be up to 

𝑡 corrupt parties. So, we take the worst case when there are exactly 𝑡 corrupt parties; that 

means, we are left with exactly 2𝑡 + 1 honest parties they could be any 2𝑡 + 1 honest 

parties, but for simplicity let me take those honest parties to be the first 2𝑡 + 1 honest 

parties. 

So, what is the hypothesis of the state claim here claim statement that the 𝐶 polynomial is 

not the product of 𝐴 and 𝐵 polynomials. If that is the case, then the claim here is that there 

will be at least some honest party 𝑃𝑖 corresponding to which the value of the 𝐶 polynomial 

at 𝛼𝑖 will not be equal to the value of the 𝐴 polynomial at 𝛼𝑖 times the value of the 𝐵 

polynomial at 𝛼𝑖. 

This is because if this is not the case; that means, if there is no such honest 𝑃𝑖; that means, 

the 𝐶 polynomial at 𝛼1 is equal to 𝐴 polynomial at 𝛼1 times 𝐵 polynomial at 𝛼1 and 

corresponding to 𝑃2 the 𝐶 polynomial at 𝛼2 is equal to 𝐴 polynomial at 𝛼2 times 𝐵 

polynomial at 𝛼2. And like that say the 𝐶 polynomial at 𝛼2𝑡+1 is equal to the 𝐴 polynomial 

at 𝛼2𝑡+1 times the 𝐵 polynomial at 𝛼2𝑡+1. Then together this implies that the 𝐶 polynomial 

is equal to the product of the 𝐴 and 𝐵 polynomials which is a contradiction. 

How we get 𝐶 polynomial equal to 𝐴 polynomial times 𝐵 polynomial, because this equality 

holds for 2𝑡 + 1 distinct points the degree of the 𝐶 polynomial is 2𝑡 and the degree of the 

𝐴 and 𝐵 polynomials is 𝑡 and if this equality hold then the 𝐶 polynomial will be equal to 

𝐴 polynomial times 𝐵 polynomial which is a contradiction because as per the hypothesis 

of the claim statement the 𝐶 polynomial is not equal to the product of 𝐴 and 𝐵 polynomials.  

That means, there is definitely at least one honest party 𝑃𝑖 in the system corresponding to 

which the value of the 𝐶 polynomial at 𝛼𝑖 is not equal to the value of the 𝐴 polynomial at 

𝛼𝑖 times the value of the 𝐵 polynomial at 𝛼𝑖 that is guaranteed. It could be any 𝑃𝑖 in the 

set ℋ it could be either 𝑃1 or 𝑃2 or 𝑃3 or 𝑃𝑖 or 𝑃2𝑡+1 we do not know, but the existence of 

such a 𝑃𝑖 is guaranteed. 
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Now, if that is the case then it automatically implies that the 𝑖-th triplet here the 𝑖-th secret 

shared triplet is not a multiplication triplet because all these triplets constitute distinct 

points on the 𝐴, 𝐵 and 𝐶 polynomials. Now, what exactly that honest party 𝑃𝑖 would have 

done in the protocol, when the party 𝑃𝑖 would learn the 𝑖-th triplet when it is reconstructed 

towards the party 𝑃𝑖 it will find that it is not a multiplication triplet and hence it will 

publicly complain it will broadcast an NOK message.  

And as soon as it broadcast an NOK message it will be publicly reconstructed no one will 

prevent no adversary cannot prevent a reconstruction of this triplet robustly; that means, it 

cannot provide incorrect shares and hope that the triplet is reconstructed incorrectly. So, 

whatever is the value of the triplet it will be reconstructed correctly because everyone will 

be applying the Reed - Solomon error correction algorithm.  

And as soon as this triplet is publicly learnt it will be known to everyone that it is not a 

multiplication triplet. Hence, 𝑃𝑖′ s complaint will be considered as a genuine complaint 

and as a result of that no one will output success. 
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Now, let us prove the last property we claim here that if the 𝐶 polynomial is the product 

of 𝐴 and 𝐵 polynomials then throughout the protocol adversary learn at most 𝑡 points on 

these polynomials. 

So, let 𝒞 be the set of corrupt parties in the system and again we take the worst case when 

there are exactly 𝑡 corrupt parties in 𝒞. So, what exactly the adversary learns here in the 

protocol every party is designated to first privately check one of the 𝑛 secret shared triplets. 

So, since there are 𝑡 corrupt parties; that means, there are 𝑡 corresponding designated 

corrupt verifiers who will be verifying up to 𝑡 number of secret shared triplets here.  

That means, they will be learning the value of 𝐴 polynomial, 𝐵 polynomial and 𝐶 

polynomial at 𝛼𝑖 corresponding to every corrupt 𝑃𝑖 and there are at most 𝑡 such. In fact, 

there are exactly two such corrupt parties because we are assuming that there are 𝑡 corrupt 

parties in the system. So, that is one case. And now, corresponding to every honest party 

adversary does not learn anything about the corresponding input triplet.  

So, if 𝑃𝑖 is not a corrupt party; that means, if 𝑃𝑖 is an honest party since the 𝐶 polynomial 

is a product of 𝐴 and 𝐵 polynomial it will broadcast an OK message instead of NOK 

message and no one will be publicly reconstructing the 𝑖-th input triplet. That means, this 

𝑖-th input triplet will not be publicly reconstructed, it will be reconstructed only by 𝑃𝑖 and 

since 𝑃𝑖 is assumed to be honest; that means, adversary does not learn what exactly is the 

𝑖-th input triplet. 



So, that means that if the 𝐶 polynomial is the product of 𝐴 and 𝐵 polynomials adversary 

can learn at most 𝑡 of this 𝑛 number of secret shared triplets during the polynomial 

verification protocol. So, you can see now that we have achieved all the protocols and you 

can see that why this protocol is perfectly secure, this protocol is perfectly secure because 

all the properties are achieved against a computationally unbounded adversary and there 

is no error associated with any of the achieved properties. 
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So, with that I end this lecture again the reference for this lecture is this IEEE transaction 

paper. 

Thank you. 


