
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 50

Generating Random Multiplication-Triples: III

Hello everyone. Welcome to this lecture.

(Refer Slide Time: 00:25)

So, in this lecture we will continue our discussion regarding the efficient framework for

generating shared random multiplication triples. So, in the last lecture we had seen the

triple transformation protocol, in this lecture we will complete the analysis of the triple

transformation protocol.

(Refer Slide Time: 00:41)

So, just to quickly recap what are the required properties from the triple transformation

protocol, the input will be a set of 2𝑑 + 1 number of secret shared triples. And these triples

need not be multiplication triples and there may not be any relationship among these triples

and all these triples are triples shared as per the Shamir secret sharing scheme, where the

degree of the sharing is 𝑡.

And here 𝑑 will be at least 𝑡 and the output for the triple transformation protocol will be

another bunch of 2𝑑 + 1 secret share triples, which are now correlated. And the correlation

is the following; so first of all we want that the 𝑎 components of all the output triples

should lie on a 𝑑-degree polynomial, all the 𝑏 components of the output triples should lie

on a 𝑑-degree polynomial and the 𝑐 component of all the output triples should lie on a 2𝑑

degree polynomial.

So, I stress that the 𝑎 component, 𝑏 component and 𝑐 components of the output triples they

are themselves secret shared, but we want that there the values of those triples they should

lie on polynomials 𝐴, 𝐵 and 𝐶 of degree 𝑑, 𝑑 and 2𝑑 respectively, that is the first

correlation we require from the triple transformation protocol.

The second correlation that we require is that the 𝐶 polynomial should be equal to the

product of the 𝐴 and 𝐵 polynomials if and only if all the input triples are multiplication

triples. And this is this should hold in an if and only if fashion, namely if the 𝐶 polynomial

is the product of 𝐴 polynomial and 𝐵 polynomial, then that implies that all the input triples

were multiplication triples and vice versa.

That is if all the input triples for multiplication triples, then the 𝐶 polynomial is the product

of 𝐴 polynomial and 𝐵 polynomial, which implicitly means that all the output triples are

also multiplication triples. And the third property from the security point of view is that if

the 𝑖th input triple was random for the adversary, then the 𝑖th output triple should also be

random for the adversary.

Of course, adversary will have 𝑡 shares for the for each of the triples, both for the input

triples as well as for the 𝑖th triple, but the property here demands that that if the 𝑖th input

triple was random, namely the value of the triple was unknown to the adversary, then the

value of the 𝑖th output triple also should be unknown to the adversary. So, these are the

requirements from the triple transformation protocol.

(Refer Slide Time: 04:04)

And in the last lecture we had seen a protocol for triple transformation. So, let me quickly

go through the steps of the triple transformation protocol. So, what we do is that we are

given 2𝑑 + 1 number of secret shared triples. So, this is the input and the input triples are

divided into two groups, the first group consisting of 𝑑 + 1 number of triples.

So, sorry pardon here, this the input is only this bit in the picture and this is the output. So,

the idea behind the protocol is that we divide the input triples into two groups, the first

group consisting of the first 𝑑 + 1 secret shared triples and then the second group have the

has the remaining 𝑑 secret shared triples.

Now, using the 1st 𝑑 + 1 secret shared triples we do the following, we define the 𝐴 and 𝐵

polynomials. So, we let the 𝐴 polynomial to be the unique 𝑑 + 1 degree, unique 𝑑-degree

polynomial passing through the 𝑎 components of the first 𝑑 + 1 input triples. And then

that automatically defines the, that automatically said sets the first 𝑑 + 1 output triples as

well. So, the first 𝑑 + 1 output triples set to be the first 𝑑 + 1 input triples.

And then we compute new points on this defined 𝐴 polynomial in a secret shared fashion

because that involves computing a linear function. So, we compute the next set of points

on the 𝐴 polynomial and they constitute the remaining 𝑑 output triples. So, since these

points can be computed as a linear function of the first 𝑑 + 1 points on the 𝐴 polynomial,

all of which are secret shared, it follows from the linearity property of secret sharing, that

the parties can now compute a secret sharing of the 𝑎 components of the remaining output

triples.

The same thing we do even for the 𝐵 polynomial, we take the 𝑏 components of the first

𝑑 + 1 triples and using those as distinct points we define a 𝑑-degree polynomial and then

we compute the next set of points on that defined 𝐵 polynomials. And this will help the

parties to locally compute the secret shared 𝑏 components of the output triples. And now

what we do for the 𝐶 polynomial is the following.

We take the leftover 𝑑 number of input secret shared triples and use them as the auxiliary

triples in the Beaver’s method to compute the 𝑐 component of the last 𝑑 output triples. And

now we have 2𝑑 + 1 number of 𝑐 components for the output triples, using them we define

the 𝐶 polynomial. So, that was the protocol. And now we want to prove that it achieves all

the properties that we had desired for.

So, the first claim here is that the 𝐴 polynomial that we have defined is a 𝑑-degree

polynomial such that the 𝑎 components of all the output triples lie on this 𝐴 polynomial.

And this simply follows from the steps of the protocol. How exactly we have computed

the 𝑎 component of the output triples? Well, the first 𝑑 + 1 at the 𝑎 component of the first

𝑑 + 1 output triples are same as the 𝑎 component of the input triples.

And the 𝑎 component of the last 𝑑 output triples are distinct points on the 𝐴 polynomial.

So, that comes from the steps of the protocol the proof is straightforward. The same claim

we can make for the 𝐵 polynomial, the claim here is that the 𝑏 component of all the output

triples lie on a 𝑑-degree 𝐵 polynomial and this again comes from the steps of the protocol.

The 𝑏 component of the first 𝑑 + 1 output triples are same as the 𝑏 components of the

input triples using them we define the 𝐵 polynomial and this 𝐵 polynomial will be a unique

polynomial because using 𝑑 + 1 distinct points we can only define a single 𝑑-degree

polynomial.

And then the remaining points on the 𝐵 polynomial constitute the 𝑏 component of the last

𝑑 output triples. And then we have the claim that the 𝑐 component of all the output triples

lie on a 2𝑑 degree 𝐶 polynomial and this also follows using a similar argument because of

the steps of the protocol. Namely, the 𝑐 component of the first 𝑑 + 1 input triples are said

to be the 𝑐 component of the first 𝑑 + 1 output triples.

And now we are applying the Beaver’s method to compute the 𝑐 components of the last 𝑑

triples and now using the 𝑐 component of all the output triples which are 2𝑑 + 1 in number,

we are defining the 𝐶 polynomials. So, using 2𝑑 + 1 distinct points we can define a unique

2𝑑 degree polynomial and that polynomial in this case is the 𝐶 polynomial. So, all these

three claims hold.

(Refer Slide Time: 10:25)

Now, let us prove some other properties. So, we next claim here that for each of the triples

namely for 𝑖 equal to 2𝑑 + 1 if the 𝑖th input triple was a multiplication triple, then the 𝑖th

output triple is a multiplication triple and vice versa. And this holds for any 𝑖 in the range

1 to 2𝑑 + 1. So, let us take some arbitrary 𝑖 in the range 1 to 2𝑑 + 1.

So, the claim is obviously true if that 𝑖 is in the range 1 to 𝑑 + 1, because the first 𝑑 + 1

output triples are said to be the first 𝑑 + 1 input triples. So, if the first 𝑑 + 1 input triples

are multiplication triples, then that automatically implies that the first 𝑑 + 1 output triples

are also multiplication triple.

So, the claim is obviously true, if my 𝑖 is either 1 or 2 or 𝑑 + 1, but my 𝑖 could be different

from 1 to 𝑑 + 1, because remember the way I have computed the output triples is that I do

some set of actions for the first 𝑑 + 1 output triples and a different set of actions for the

last 𝑑 output triples. So, what I have argued here is that if I focus on the first 𝑑 + 1 output

triples, there will be multiplication triples, if and only if the first 𝑑 + 1 input triples are

multiplication triples.

Now, consider an 𝑖 in the range 𝑑 + 2 to 2𝑑 + 1, namely a triple which is different from

the first 𝑑 + 1 output triples. My claim I would like to claim that even that output triple

will be a multiplication triple if and only if the corresponding input triple was a

multiplication triple.

So, for that we have to show that the 𝑐𝑖 which we have computed in the 𝑐 component of

the output triple is the product of the 𝑎 and 𝑏 component, if and only if for the 𝑖th input

triple the 𝑐 component was the product of the 𝑎 component of the input triple and the 𝑏

component of the input triple.

Now, for that we have to see how exactly we have computed as the 𝑐 component of the 𝑖th

output triple. We have computed the 𝑐 component of the 𝑖th output triple by applying the

Beaver’s method, on the 𝑎 component of the 𝑖th output triple and the 𝑏 component of the

𝑖th input triple. And for applying the Beaver’s method we have used the 𝑖th input triple as

the auxiliary triple. Now, as part of the Beaver’s method what exactly are the computations

which are involved for computing the 𝑐 component of the 𝑖th output triple?

Well, we would have computed an intermediate value 𝑢 and intermediate value 𝑣 and

would have publicly reconstructed them. The values 𝑢 and 𝑣 would have been robustly

reconstructed even if up to 𝑡 parties produce incorrect shares, because we are in the setting

of 𝑡 <
𝑛

3
. And that is why the error correction will work properly so; that means, everyone

will reconstruct the right value of 𝑢𝑖 and 𝑣𝑖.

And then as per the Beaver’s method, the 𝑐 component of the 𝑖th output triple would be

set to this value. Now, this value will be same as the product of the 𝑎 component and 𝑏

component of the 𝑖th output triple, if and only if the 𝑐 component of the 𝑖th input triple

was the product of the 𝑎 component and 𝑏 components of the 𝑖th input triple. And that

shows that this claim is now true, even for an output triple where that output triple is in the

range 𝑑 + 2 to 2𝑑 + 1.

(Refer Slide Time: 15:02)

So, we have proved a bunch of claims now. We have proved the claims regarding the

degrees of the 𝐴, 𝐵 and 𝐶 polynomial and we have proved that the 𝑖th output triple is a

multiplication triple if and only if the 𝑖th input triple was the multiplication triple. Now,

as a corollary of all these claims, as an implication of all these claims we can claim that

the 𝐶 polynomial is the product of the 𝐴 and 𝐵 polynomial if and only if all the input triples

are multiplication triples.

This is because the 𝐶 polynomial is a 2𝑑 degree polynomial, 𝐴 polynomial is a 𝑑-degree

polynomial and 𝐵 polynomial is a 𝑑-degree polynomial. So, let us prove this implication.

So, the there it is since it is an if and only if statement, we have to prove two things. So,

the first thing we must prove is that if the 𝐶 polynomial is the product of the 𝐴 and 𝐵

polynomials, then all the input triples are multiplication triples and that comes from this

claim.

Because if the 𝐶 polynomial is the product of 𝐴 and 𝐵 polynomials; that means, the 𝑐

components of all the output triples is equal to the product of the corresponding 𝑎

component and 𝑏 component of the output triples because the points because the 𝑎, 𝑏 and

𝑐 components of the output triples, they lie on the 𝐴, 𝐵 and 𝐶 polynomials which followed

from the first two claims.

And now if the 𝑐 component of every output triple is the product of the corresponding 𝑎

and 𝑏 components, then because of this last claim it automatically follows that even for

the input triples the 𝑐 component is the product of the 𝑎 and 𝑏 component. So, that shows

the implication in one direction.

(Refer Slide Time: 17:16)

The other direction thing that we have to prove is that if all input triples are multiplication

triples, then we want to claim that 𝐶 polynomial is the product of 𝐴 polynomial into 𝐵

polynomial. And this again comes from the fact that if all the input triples are

multiplication triples, then from this third claim this last claim all the output triples are

multiplication triples.

And the output triples are nothing but the points on the 𝐴, 𝐵 and 𝐶 polynomials and 𝐶

polynomial has degree 2𝑑 and 𝐴 and 𝐵 polynomials have degree 𝑑, which automatically

implies that the 𝐶 polynomial will be the product of the 𝐴 and 𝐵 polynomials.

(Refer Slide Time: 18:08)

Now, let us prove the last property which we require from the triple transformation

protocol. The property that we require is that, if the 𝑖th input triple was random for the

adversary, random in the sense it does not know the value of 𝑎 component, 𝑏 component

and 𝑐 component except that the 𝑐 component is the product of 𝑎 and 𝑏 component.

That means that triple could be any triple over the field, then at the end of the triple

transformation protocol even the 𝑖th output triple is also randomly distributed for the

adversary. Adversary will not know the exact value of the 𝑖th output triple, it could be any

triple over the field corresponding to which it may have at most 𝑡 shares. So, again to prove

the claim, we have to focus on the index 𝑖 and there could be two cases depending upon

whether the 𝑖th triple is one of the triples among the first 𝑑 + 1 output triples or whether

the 𝑖th triple is one of the triples among the last 𝑑 output triples.

So, if this 𝑖 is in the range 1 to 𝑑 + 1, then the claim holds trivially because of the way we

have defined the first 𝑑 + 1 output triples. The first 𝑑 + 1 output triples are said to be the

first 𝑑 + 1 input triples. So, if any of the triples among the first 𝑑 + 1 input triples is

random for the adversary, then that automatically implies that the same triple is when

viewed as an output triple is also random for the adversary.

Because for computing the first 𝑑 + 1 output triples, we have not done any computation.

They are said to be the first 𝑑 + 1 input triples only. Whereas, consider the case where 𝑖

is in this range 𝑑 + 2 to 2𝑑 + 1. So, in this case what can we say about the 𝑎 component

of the output 𝑖th output triple and the 𝑏 component of the 𝑖th output triple?

Well, they are computed non interactively. Why are they computed non interactively?

Because they are basically locally computed as a distinct point on the defined 𝐴

polynomial and as a distinct point on the defined 𝐵 polynomial and this does not require

any interaction among the parties.

So, if there is no interaction happening among the parties; that means, adversary has

learned nothing about the resultant 𝑎 component of the 𝑖th output triple and the 𝑏

component of the 𝑖th output triple. But for computing the 𝑐 component of the 𝑖th output

triple interaction is involved, because the 𝑐 component of the 𝑖th output triple is computed

by applying the Beaver’s method where the 𝑖th input triple is used as the auxiliary triple.

So, now, let us go into the details of what exactly or the computation involved for

computing the 𝑐 component of the 𝑖th output triple. For computing the 𝑐 component of the

𝑖th output triple the parties would have reconstructed two public values, namely the value

𝑢𝑖 and value 𝑣𝑖 by exchanging shares and applying the Reed Solomon error correction.

But as per our assumption, the 𝑖th input triple is random for the adversary because that is

the hypothesis of the claim statement. So, if the 𝑎 component of the 𝑖th input triple and the

𝑏 component of the 𝑖th input triple are random for the adversary, then even though the

adversary would have learnt the values 𝑢𝑖 and 𝑣𝑖 it cannot figure out what exactly is the

value of the 𝑎 component of the 𝑖th output triple and the 𝑏 component of the 𝑖th output

triple.

Because 𝑢𝑖 and 𝑣𝑖 will serve as the one-time pad encryption of the 𝑎 component and 𝑏

components of the 𝑖th output triples respectively, where the pads are random, the pads here

are the 𝑎 component𝑎 component and the 𝑏 component of the 𝑖th input triples. And that

shows that the probability distribution of this 𝑢𝑖 and 𝑣𝑖 values which adversary would have

learnt will be independent of the 𝑎 and 𝑏 components of the 𝑖th output triples.

And finally, the 𝑐 component of the 𝑖th output triple is computed locally, once the values

𝑢𝑖 and 𝑣𝑖 are publicly known, hence adversary does not learn anything additional about

the 𝑐 component of the 𝑖th output triple. It is a randomly distributed value. So, that is all

about the triple transformation protocol; that means, we have now proved all the desired

properties of the triple transformation protocol, namely the protocol takes a bunch of

unrelated triples, which may or may not be multiplication triples.

And transforms them into another bunch of correlated triples, in a very nice way and the

correlation is very nice. Namely the correlation is that the 𝑎, 𝑏 and 𝑐 components of the

output triples now constitute distinct points on some well-defined 𝐴 polynomial, 𝐵

polynomial and 𝐶 polynomial such that the 𝐶 polynomial will be the product of 𝐴 and 𝐵

polynomials, if and only if all the input triples are multiplication triples. And I stress here

that here all the computations are performed over secret shared values.

So, for the input triples, the values may not be known to any party, they might be secret

shared and even for the output triples the values may not be known to any specific parties,

but all of them are in secret shared fashion. That means, even the polynomials 𝐴, 𝐵 and 𝐶

are also not known to any specific party, but they are in a secret shared fashion. That

means, every point on the 𝐴 polynomial, 𝐵 polynomial and 𝐶 polynomial is available in a

secret shared fashion.

And all this is happening because, we are exploiting the linearity property of secret sharing

here.

(Refer Slide Time: 25:03)

So, with that I end this lecture, the reference for this lecture is this paper.

Thank you.

