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Hello everyone. Welcome to this lecture. 
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So, in this lecture we will continue our discussion regarding the efficient framework for 

generating shared random multiplication triples. So, in the last lecture we had seen the 

triple transformation protocol, in this lecture we will complete the analysis of the triple 

transformation protocol. 
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So, just to quickly recap what are the required properties from the triple transformation 

protocol, the input will be a set of 2𝑑 + 1 number of secret shared triples. And these triples 

need not be multiplication triples and there may not be any relationship among these triples 

and all these triples are triples shared as per the Shamir secret sharing scheme, where the 

degree of the sharing is 𝑡.  

And here 𝑑 will be at least 𝑡 and the output for the triple transformation protocol will be 

another bunch of 2𝑑 + 1 secret share triples, which are now correlated. And the correlation 

is the following; so first of all we want that the 𝑎 components of all the output triples 

should lie on a 𝑑-degree polynomial, all the 𝑏 components of the output triples should lie 

on a 𝑑-degree polynomial and the 𝑐 component of all the output triples should lie on a 2𝑑 

degree polynomial. 

So, I stress that the 𝑎 component, 𝑏 component and 𝑐 components of the output triples they 

are themselves secret shared, but we want that there the values of those triples they should 

lie on polynomials 𝐴, 𝐵 and 𝐶 of degree 𝑑, 𝑑 and 2𝑑 respectively, that is the first 

correlation we require from the triple transformation protocol. 

The second correlation that we require is that the 𝐶 polynomial should be equal to the 

product of the 𝐴 and 𝐵 polynomials if and only if all the input triples are multiplication 

triples. And this is this should hold in an if and only if fashion, namely if the 𝐶 polynomial 



is the product of 𝐴 polynomial and 𝐵 polynomial, then that implies that all the input triples 

were multiplication triples and vice versa. 

That is if all the input triples for multiplication triples, then the 𝐶 polynomial is the product 

of 𝐴 polynomial and 𝐵 polynomial, which implicitly means that all the output triples are 

also multiplication triples. And the third property from the security point of view is that if 

the 𝑖th input triple was random for the adversary, then the 𝑖th output triple should also be 

random for the adversary. 

Of course, adversary will have 𝑡 shares for the for each of the triples, both for the input 

triples as well as for the 𝑖th triple, but the property here demands that that if the 𝑖th input 

triple was random, namely the value of the triple was unknown to the adversary, then the 

value of the 𝑖th output triple also should be unknown to the adversary. So, these are the 

requirements from the triple transformation protocol. 
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And in the last lecture we had seen a protocol for triple transformation. So, let me quickly 

go through the steps of the triple transformation protocol. So, what we do is that we are 

given 2𝑑 + 1 number of secret shared triples. So, this is the input and the input triples are 

divided into two groups, the first group consisting of 𝑑 + 1 number of triples. 

So, sorry pardon here, this the input is only this bit in the picture and this is the output. So, 

the idea behind the protocol is that we divide the input triples into two groups, the first 



group consisting of the first 𝑑 + 1 secret shared triples and then the second group have the 

has the remaining 𝑑 secret shared triples. 

Now, using the 1st 𝑑 + 1 secret shared triples we do the following, we define the 𝐴 and 𝐵 

polynomials. So, we let the 𝐴 polynomial to be the unique 𝑑 + 1 degree, unique 𝑑-degree 

polynomial passing through the 𝑎 components of the first 𝑑 + 1 input triples. And then 

that automatically defines the, that automatically said sets the first 𝑑 + 1 output triples as 

well. So, the first 𝑑 + 1 output triples set to be the first 𝑑 + 1 input triples. 

And then we compute new points on this defined 𝐴 polynomial in a secret shared fashion 

because that involves computing a linear function. So, we compute the next set of points 

on the 𝐴 polynomial and they constitute the remaining 𝑑 output triples. So, since these 

points can be computed as a linear function of the first 𝑑 + 1 points on the 𝐴 polynomial, 

all of which are secret shared, it follows from the linearity property of secret sharing, that 

the parties can now compute a secret sharing of the 𝑎 components of the remaining output 

triples. 

The same thing we do even for the 𝐵 polynomial, we take the 𝑏 components of the first 

𝑑 + 1 triples and using those as distinct points we define a 𝑑-degree polynomial and then 

we compute the next set of points on that defined 𝐵 polynomials. And this will help the 

parties to locally compute the secret shared 𝑏 components of the output triples. And now 

what we do for the 𝐶 polynomial is the following. 

We take the leftover 𝑑 number of input secret shared triples and use them as the auxiliary 

triples in the Beaver’s method to compute the 𝑐 component of the last 𝑑 output triples. And 

now we have 2𝑑 + 1 number of 𝑐 components for the output triples, using them we define 

the 𝐶 polynomial. So, that was the protocol. And now we want to prove that it achieves all 

the properties that we had desired for. 

So, the first claim here is that the 𝐴 polynomial that we have defined is a 𝑑-degree 

polynomial such that the 𝑎 components of all the output triples lie on this 𝐴 polynomial. 

And this simply follows from the steps of the protocol. How exactly we have computed 

the 𝑎 component of the output triples? Well, the first 𝑑 + 1 at the 𝑎 component of the first 

𝑑 + 1 output triples are same as the 𝑎 component of the input triples.  



And the 𝑎 component of the last 𝑑 output triples are distinct points on the 𝐴 polynomial. 

So, that comes from the steps of the protocol the proof is straightforward. The same claim 

we can make for the 𝐵 polynomial, the claim here is that the 𝑏 component of all the output 

triples lie on a 𝑑-degree 𝐵 polynomial and this again comes from the steps of the protocol.  

The 𝑏 component of the first 𝑑 + 1 output triples are same as the 𝑏 components of the 

input triples using them we define the 𝐵 polynomial and this 𝐵 polynomial will be a unique 

polynomial because using 𝑑 + 1 distinct points we can only define a single 𝑑-degree 

polynomial. 

And then the remaining points on the 𝐵 polynomial constitute the 𝑏 component of the last 

𝑑 output triples. And then we have the claim that the 𝑐 component of all the output triples 

lie on a 2𝑑 degree 𝐶 polynomial and this also follows using a similar argument because of 

the steps of the protocol. Namely, the 𝑐 component of the first 𝑑 + 1 input triples are said 

to be the 𝑐 component of the first 𝑑 + 1 output triples. 

And now we are applying the Beaver’s method to compute the 𝑐 components of the last 𝑑 

triples and now using the 𝑐 component of all the output triples which are 2𝑑 + 1 in number, 

we are defining the 𝐶 polynomials. So, using 2𝑑 + 1 distinct points we can define a unique 

2𝑑 degree polynomial and that polynomial in this case is the 𝐶 polynomial. So, all these 

three claims hold. 
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Now, let us prove some other properties. So, we next claim here that for each of the triples 

namely for 𝑖 equal to 2𝑑 + 1 if the 𝑖th input triple was a multiplication triple, then the 𝑖th 

output triple is a multiplication triple and vice versa. And this holds for any 𝑖 in the range 

1 to 2𝑑 + 1. So, let us take some arbitrary 𝑖 in the range 1 to 2𝑑 + 1.  

So, the claim is obviously true if that 𝑖 is in the range 1 to 𝑑 + 1, because the first 𝑑 + 1 

output triples are said to be the first 𝑑 + 1 input triples. So, if the first 𝑑 + 1 input triples 

are multiplication triples, then that automatically implies that the first 𝑑 + 1 output triples 

are also multiplication triple. 

So, the claim is obviously true, if my 𝑖 is either 1 or 2 or 𝑑 + 1, but my 𝑖 could be different 

from 1 to 𝑑 + 1, because remember the way I have computed the output triples is that I do 

some set of actions for the first 𝑑 + 1 output triples and a different set of actions for the 

last 𝑑 output triples. So, what I have argued here is that if I focus on the first 𝑑 + 1 output 

triples, there will be multiplication triples, if and only if the first 𝑑 + 1 input triples are 

multiplication triples. 

Now, consider an 𝑖 in the range 𝑑 + 2 to 2𝑑 + 1, namely a triple which is different from 

the first 𝑑 + 1 output triples. My claim I would like to claim that even that output triple 

will be a multiplication triple if and only if the corresponding input triple was a 

multiplication triple. 

So, for that we have to show that the 𝑐𝑖 which we have computed in the 𝑐 component of 

the output triple is the product of the 𝑎 and 𝑏 component, if and only if for the 𝑖th input 

triple the 𝑐 component was the product of the 𝑎 component of the input triple and the 𝑏 

component of the input triple. 

Now, for that we have to see how exactly we have computed as the 𝑐 component of the 𝑖th 

output triple. We have computed the 𝑐 component of the 𝑖th output triple by applying the 

Beaver’s method, on the 𝑎 component of the 𝑖th output triple and the 𝑏 component of the 

𝑖th input triple. And for applying the Beaver’s method we have used the 𝑖th input triple as 

the auxiliary triple. Now, as part of the Beaver’s method what exactly are the computations 

which are involved for computing the 𝑐 component of the 𝑖th output triple? 

Well, we would have computed an intermediate value 𝑢 and intermediate value 𝑣 and 

would have publicly reconstructed them. The values 𝑢 and 𝑣 would have been robustly 



reconstructed even if up to 𝑡 parties produce incorrect shares, because we are in the setting 

of 𝑡 <
𝑛

3
. And that is why the error correction will work properly so; that means, everyone 

will reconstruct the right value of 𝑢𝑖 and 𝑣𝑖. 

And then as per the Beaver’s method, the 𝑐 component of the 𝑖th output triple would be 

set to this value. Now, this value will be same as the product of the 𝑎 component and 𝑏 

component of the 𝑖th output triple, if and only if the 𝑐 component of the 𝑖th input triple 

was the product of the 𝑎 component and 𝑏 components of the 𝑖th input triple. And that 

shows that this claim is now true, even for an output triple where that output triple is in the 

range 𝑑 + 2 to 2𝑑 + 1. 
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So, we have proved a bunch of claims now. We have proved the claims regarding the 

degrees of the 𝐴, 𝐵 and 𝐶 polynomial and we have proved that the 𝑖th output triple is a 

multiplication triple if and only if the 𝑖th input triple was the multiplication triple. Now, 

as a corollary of all these claims, as an implication of all these claims we can claim that 

the 𝐶 polynomial is the product of the 𝐴 and 𝐵 polynomial if and only if all the input triples 

are multiplication triples. 

This is because the 𝐶 polynomial is a 2𝑑 degree polynomial, 𝐴 polynomial is a 𝑑-degree 

polynomial and 𝐵 polynomial is a 𝑑-degree polynomial. So, let us prove this implication. 

So, the there it is since it is an if and only if statement, we have to prove two things. So, 



the first thing we must prove is that if the 𝐶 polynomial is the product of the 𝐴 and 𝐵 

polynomials, then all the input triples are multiplication triples and that comes from this 

claim. 

Because if the 𝐶 polynomial is the product of 𝐴 and 𝐵 polynomials; that means, the 𝑐 

components of all the output triples is equal to the product of the corresponding 𝑎 

component and 𝑏 component of the output triples because the points because the 𝑎, 𝑏 and 

𝑐 components of the output triples, they lie on the 𝐴, 𝐵 and 𝐶 polynomials which followed 

from the first two claims. 

And now if the 𝑐 component of every output triple is the product of the corresponding 𝑎 

and 𝑏 components, then because of this last claim it automatically follows that even for 

the input triples the 𝑐 component is the product of the 𝑎 and 𝑏 component. So, that shows 

the implication in one direction. 
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The other direction thing that we have to prove is that if all input triples are multiplication 

triples, then we want to claim that 𝐶 polynomial is the product of 𝐴 polynomial into 𝐵 

polynomial. And this again comes from the fact that if all the input triples are 

multiplication triples, then from this third claim this last claim all the output triples are 

multiplication triples. 



And the output triples are nothing but the points on the 𝐴, 𝐵 and 𝐶 polynomials and 𝐶 

polynomial has degree 2𝑑 and 𝐴 and 𝐵 polynomials have degree 𝑑, which automatically 

implies that the 𝐶 polynomial will be the product of the 𝐴 and 𝐵 polynomials. 
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Now, let us prove the last property which we require from the triple transformation 

protocol. The property that we require is that, if the 𝑖th input triple was random for the 

adversary, random in the sense it does not know the value of 𝑎 component, 𝑏 component 

and 𝑐 component except that the 𝑐 component is the product of 𝑎 and 𝑏 component. 

That means that triple could be any triple over the field, then at the end of the triple 

transformation protocol even the 𝑖th output triple is also randomly distributed for the 

adversary. Adversary will not know the exact value of the 𝑖th output triple, it could be any 

triple over the field corresponding to which it may have at most 𝑡 shares. So, again to prove 

the claim, we have to focus on the index 𝑖 and there could be two cases depending upon 

whether the 𝑖th triple is one of the triples among the first 𝑑 + 1 output triples or whether 

the 𝑖th triple is one of the triples among the last 𝑑 output triples. 

So, if this 𝑖 is in the range 1 to 𝑑 + 1, then the claim holds trivially because of the way we 

have defined the first 𝑑 + 1 output triples. The first 𝑑 + 1 output triples are said to be the 

first 𝑑 + 1 input triples. So, if any of the triples among the first 𝑑 + 1 input triples is 

random for the adversary, then that automatically implies that the same triple is when 

viewed as an output triple is also random for the adversary. 



Because for computing the first 𝑑 + 1 output triples, we have not done any computation. 

They are said to be the first 𝑑 + 1 input triples only. Whereas, consider the case where 𝑖 

is in this range 𝑑 + 2 to 2𝑑 + 1. So, in this case what can we say about the 𝑎 component 

of the output 𝑖th output triple and the 𝑏 component of the 𝑖th output triple?  

Well, they are computed non interactively. Why are they computed non interactively? 

Because they are basically locally computed as a distinct point on the defined 𝐴 

polynomial and as a distinct point on the defined 𝐵 polynomial and this does not require 

any interaction among the parties. 

So, if there is no interaction happening among the parties; that means, adversary has 

learned nothing about the resultant 𝑎 component of the 𝑖th output triple and the 𝑏 

component of the 𝑖th output triple. But for computing the 𝑐 component of the 𝑖th output 

triple interaction is involved, because the 𝑐 component of the 𝑖th output triple is computed 

by applying the Beaver’s method where the 𝑖th input triple is used as the auxiliary triple. 

So, now, let us go into the details of what exactly or the computation involved for 

computing the 𝑐 component of the 𝑖th output triple. For computing the 𝑐 component of the 

𝑖th output triple the parties would have reconstructed two public values, namely the value 

𝑢𝑖 and value 𝑣𝑖 by exchanging shares and applying the Reed Solomon error correction. 

But as per our assumption, the 𝑖th input triple is random for the adversary because that is 

the hypothesis of the claim statement. So, if the 𝑎 component of the 𝑖th input triple and the 

𝑏 component of the 𝑖th input triple are random for the adversary, then even though the 

adversary would have learnt the values 𝑢𝑖 and 𝑣𝑖 it cannot figure out what exactly is the 

value of the 𝑎 component of the 𝑖th output triple and the 𝑏 component of the 𝑖th output 

triple. 

Because 𝑢𝑖 and 𝑣𝑖 will serve as the one-time pad encryption of the 𝑎 component and 𝑏 

components of the 𝑖th output triples respectively, where the pads are random, the pads here 

are the 𝑎 component𝑎 component and the 𝑏 component of the 𝑖th input triples. And that 

shows that the probability distribution of this 𝑢𝑖 and 𝑣𝑖 values which adversary would have 

learnt will be independent of the 𝑎 and 𝑏 components of the 𝑖th output triples. 

And finally, the 𝑐 component of the 𝑖th output triple is computed locally, once the values 

𝑢𝑖 and 𝑣𝑖 are publicly known, hence adversary does not learn anything additional about 



the 𝑐 component of the 𝑖th output triple. It is a randomly distributed value. So, that is all 

about the triple transformation protocol; that means, we have now proved all the desired 

properties of the triple transformation protocol, namely the protocol takes a bunch of 

unrelated triples, which may or may not be multiplication triples. 

And transforms them into another bunch of correlated triples, in a very nice way and the 

correlation is very nice. Namely the correlation is that the 𝑎, 𝑏 and 𝑐 components of the 

output triples now constitute distinct points on some well-defined 𝐴 polynomial, 𝐵 

polynomial and 𝐶 polynomial such that the 𝐶 polynomial will be the product of 𝐴 and 𝐵 

polynomials, if and only if all the input triples are multiplication triples. And I stress here 

that here all the computations are performed over secret shared values. 

So, for the input triples, the values may not be known to any party, they might be secret 

shared and even for the output triples the values may not be known to any specific parties, 

but all of them are in secret shared fashion. That means, even the polynomials 𝐴, 𝐵 and 𝐶 

are also not known to any specific party, but they are in a secret shared fashion. That 

means, every point on the 𝐴 polynomial, 𝐵 polynomial and 𝐶 polynomial is available in a 

secret shared fashion. 

And all this is happening because, we are exploiting the linearity property of secret sharing 

here. 

(Refer Slide Time: 25:03) 

 



So, with that I end this lecture, the reference for this lecture is this paper. 

Thank you. 


