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Hello, everyone. Welcome to this lecture. So, this will be Part I of our analysis of the EIG 

protocol for perfectly – secure Byzantine Agreement. 
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So, the lecture outline is as follows we will focus on the proof of the validity property, the 

rest of the properties, we will discuss in the next lecture. 
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So, just let us quickly go through the EIG protocol. So, we have the EIG data structure 

𝑇𝑛,𝑡 which has 𝑡 + 1 layers, and each node will have a label associated with it or a tag 

associated with it. The idea behind the labelling is that as we go from the root to the leaf 

node then the labels that we encounter it consist of the index of distinct parties. That means, 

it should not happen that the index gets repeated. 

Each party maintains a local copy of its EIG tree and in the protocol, the parties exchange 

messages for 𝑡 + 1 communication rounds and assign values to their respective copies of 

the EIG tree. And, based on the values which they have assigned they recompute the values 

assign new values and based on the new values which are computed the overall decision 

is done taken. 

So, the initialization is as follows. Each party assigns the bit 𝑏𝑖 ,the input for the byzantine 

agreement protocol, to the root. And, then for the next 𝑡 + 1 rounds each party 𝑃𝑖 does the 

following in round number 𝑟. It sends the values of all the nodes in its local copy of the 

EIG tree at level 𝑟 − 1 except for those nodes whose label has the index 𝑖 somewhere. 

So, for instance during round 1 if we consider party number 1, then it will never send the 

value which it has assigned to this node to anyone because the label of this node has the 

index 3 appearing in it. Now, based on the messages which the parties receive during round 

𝑟 they assign values to the nodes at level 𝑟 in their respective copies of the EIG tree. This 

is done as follows. 



So, if 𝑃𝑖 has received a message of the form that a node with label 𝑖1, 𝑖2, … , 𝑖𝑟−1 has the 

value 𝑣 in 𝑃𝑗’s local copy of the EIG tree then what 𝑃𝑖 does is that it goes to the child node 

in its local copy of the EIG tree which has the label 𝑖1, 𝑖2, … , 𝑖𝑟−1 followed by 𝑗 and it’s in 

its local copy of the EIG tree that the value 𝑣 is assigned.  

However, it could be possible that party 𝑃𝑗 is corrupt and it does not send any message and 

remember that we do not have separate instructions for messages which do not arrive 

within a specific round.  

The nomenclature or the strategy that we follow is that if some expected message does not 

arrive in a particular round and substitute it with some default message and proceed. So, 

if the message comes fine well and good; if the message does not come then the node with 

this label 𝑖1, 𝑖2, … , 𝑖𝑟−1, 𝑗 in 𝑃𝑖’s copy of the local EIG tree is assigned a value 𝑣. 

And, once all the nodes in EIG tree have been assigned values, the output is decided based 

on the values assigned to the respective nodes. 

(Refer Slide Time: 04:43) 

 

Namely parties now go to their respective copies of the EIG tree and start from the leaf 

nodes and go in a bottom-up fashion. So, they reassign values to the nodes and 

reassignment happens as follows. For the leaf nodes, the reassigned values remain the 

same as they were earlier, i.e., whatever values the parties have assigned are assigned 

during the 𝑡 + 1th round. 



But as we go up the new values are computed based on the majority strict majority of the 

new values which have been computed for the child nodes if at all majority exist. Of 

course, it could be possible that majority does not exist in which case some default bit 𝑣 is 

taken and assigned as the new value. 

And, once the new value has been assigned to the root node in the respective copies of the 

EIG tree the 𝑖th party outputs the value which has been assigned as the new value to the 

root node. That is the decision that is the output for the byzantine agreement protocol for 

the party 𝑃𝑖, ok. 
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And, in the last lecture we have also seen a demonstration. So, I hope that the working of 

the protocol is clear. Now, let us prove that this protocol satisfies the liveness requirement 

and validity requirement. The proof for the consistency we will see in the next lecture. So, 

the liveness of the termination requirement is that every party should terminate the 

protocol and should have an output by some specific time. 

And that is very trivial to verify because there are 𝑡 + 1 communication rounds and each 

round will take Δ clock cycle if once the party sends a message in a round, it is received at 

the end of the Δ clock cycles. So, therefore, at the end of time (𝑡 + 1) ⋅  Δ every party will 

have the new value ready for the root node and that is the value which they are going to 

output. 



So, termination is trivial to verify, I am not separately going through the proof of the 

termination property. It will never happen that the parties keep on running the protocol 

forever even if the corrupt parties decide not to cooperate, not sending any message and 

so on.  

So, let us go to the validity property the proof of the validity property and to recall the 

validity property demands that if in the EIG protocol all the honest parties start with the 

same input, say all the parties start with the input 0 then the output decision of all the 

honest parties should be 0 and vice versa. 

All the honest parties start with the input 1, then all the honest parties should output 1 as 

the decision at the end of the protocol. Of course, we do not care anything regarding the 

output of the corrupt parties because the corrupt parties can output whatever they feel like. 

So, to prove the validity property we will require help of several lemmas. 

So, let us start with lemma 1 which states the following that if you have a triplet of parties 

𝑃𝑖 , 𝑃𝑗 , 𝑃𝑘 and say all of them are honest, then if we take any node whose label is 𝑥 and 

suppose the label 𝑥 has the last indexes 𝑘 corresponding to party 𝑃𝑘 and say 𝑃𝑘 is honest, 

then the claim is that the value which is assigned to the node with label 𝑥 in the 𝑖th party’s 

EIG tree and the 𝑗th party’s EIG tree will be the same. 

So, it is like saying the following that you take any node 𝑥 whose label ends with the 

identity or the index of an honest party and there will be a node with this label 𝑥 in the 

copy of the EIG tree of all the parties. So, what I am saying is what this lemma says is that 

if we take the node with label 𝑥 across the EIG tree of all the honest parties, then the value 

which will be assigned by the respective honest parties during the protocol to this node 

will be the same. 

It will not be the case that 𝑃𝑖 assigns a value say 0 to the node with label 𝑥 in its local copy 

of the EIG tree and 𝑃𝑗 assigns the value 1 in its local copy of the EIG tree for the same 

node if. It will never happen provided we are talking of a node whose label ends with the 

index of an honest party and the proof is very trivial, ok. 

So, imagine what will be happening in the 𝑃𝑘’s copy of the EIG tree. So, I am assuming 

here that 𝑥 has a label of the form 𝑖1, 𝑖2 … , 𝑖𝑟−1 followed by 𝑘. Now, if we consider the 

𝑃𝑘’s copy of the EIG tree during round 𝑟 − 1 𝑃𝑘 would have assigned some value say 𝑣 to 



the node with this label, right and during the same round 𝑟 it would have sent the following 

message to everyone. 
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It would have informed everyone that the node with the label 𝑖1, 𝑖2 … , 𝑖𝑟−1 has the value 𝑣 

in 𝑃𝑘′s copy of the EIG tree and it would have sent the same message identically to all the 

parties because we are assuming that 𝑃𝑘 is an honest party. This lemma is with respect to 

a label which ends with the index of an honest party. So, 𝑃𝑘 would not do the following 

that to one set of parties it sends 𝑣 being 0 and to another set of parties it sends 𝑣 being 1, 

it would not be the case. 

Now, consider what happens in 𝑃𝑖’s copy of the EIG tree and 𝑃𝑗’s copy of the EIG tree 

when 𝑃𝑖 and 𝑃𝑗 receives this message from 𝑃𝑘 during round 𝑟. They will go to their 

respective copies of their EIG tree and focus on the node labelled 𝑥 and 𝑥 is 𝑖1, 𝑖2 … , 𝑖𝑟−1 

followed by 𝑘. 

Now, since 𝑃𝑖 has received this message from 𝑃𝑘 ok what 𝑃𝑖 will do 𝑃𝑖 will assign the 

value 𝑣 to the node labelled 𝑥 and since 𝑃𝑗 also would have received the same message 

from 𝑃𝑘 it will assign the value 𝑣 to the node with label 𝑥 in its copy of the EIG tree and 

this holds for other part honest parties as well. So, if you take any honest party, in their 

respective copies of the EIG tree, the value 𝑣 will be assigned to the node whose label ends 

with the index 𝑘, where 𝑘 is an honest party. 



This lemma does not hold if 𝑃𝑘 is corrupt because it might send the value 𝑖1, 𝑖2 … , 𝑖𝑟−1 and 

say 0 to 𝑃𝑖; that means, it is telling that 0 is the value in my copy of the EIG tree with the 

𝑖1, 𝑖2 … , 𝑖𝑟−1 whereas, to 𝑃𝑗 it might send that the node with label 𝑖1, 𝑖2 … , 𝑖𝑟−1 has the 

value 1 if 𝑃𝑘 is corrupt. 

Due to which 𝑃𝑖 may end up assigning the value 0 to the node with label 𝑥 and 𝑃𝑗 may end 

up assigning the value to the node with label 𝑥, but we are talking about the case when 𝑃𝑘 

is honest. If 𝑃𝑘 is honest it will send the same 𝑣 due to which this would not happen. 
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Now, helping lemma number 2, which is also very straight forward. The lemma states that 

if I focus on the EIG tree then at every level 𝑟 where 𝑟 ranges from 0 to 𝑡, majority of the 

child nodes will have a label whose index corresponds to an honest party. So, again before 

going into the proof you can verify that the lemma is trivially true for this example. So, 

here 𝑛 = 4 and 𝑡 = 1 and assume 𝑃3 is corrupt.  

So, if I focus on this node its children are this node this node this node and this node. So, 

if 𝑃3 is corrupt honest parties are 𝑃1, 𝑃2 and 𝑃4. So, you can see those three circled nodes 

at level one end with the index of an honest party and it’s only one node whose label ends 

with a corrupt party. 

Similarly, if I go one layer down right then among these three children of the node with 

label 1, it is only one node with label ending with the index of a corrupt party, but majority 



of them are ending with the index of an honest party everywhere you can see here. So, 1 

is honest here, 2 is honest here and 4 is honest. In fact, all the three children end with the 

index of an honest party.  

If I focus on these three children then 1 corresponds to the index of an honest party, 4 

corresponds to the index of an honest party and only 3 corresponds to the index of a corrupt 

party. So, majority of the children have a label ending with the index of an honest party. 

So, why this is true? In general, at any node at level 𝑟 will have how many children? It 

will have 𝑛 − 𝑟 children because of the nomenclature because of the way we have labelled 

the nodes assigned the labels to the various nodes. 

And remember the EIG protocol assumes that 𝑛 > 3𝑡 holds. So, if 𝑛 > 3𝑡 holds  for every 

𝑟 in the range 0 to 𝑡 the condition 𝑛 − 𝑟 ≥ 2𝑡 holds. That means out among the 𝑛 − 𝑟 

children at most 𝑡 can be corrupt at most at most 𝑡 nodes end with an index of a corrupt 

party. 

And at least 𝑡 + 1 nodes have labels ending with an honest party. Remember that each 

child node has a label ending with the index of a distinct party. So, among these 𝑛 − 𝑟 

children it would not be the case that if we focus on the last index repetition occurs, no. 

So, that is why this lemma is trivially true. 

If I go one layer further down; that means, if I make 𝑟 = 𝑡 + 1, then this lemma need not 

hold because then there will be only 2𝑡 children and among those 2𝑡 children there might 

be 𝑡 children whose labels end with the index of a corrupt party and 𝑡 children whose labels 

end with the index of an honest party. 

In that case strict majority may not be there, but in the protocol, we do not go beyond level 

𝑡 because during the 𝑡 + 1th round only the values of the nodes at level 𝑡 are 

communicated. 
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Now, comes the very crucial lemma which states the following that if I focus on any node 

with label 𝑥 and it ends with the index of an honest party. Then in every local copy of the 

EIG tree corresponding to the honest parties; that means, if I consider the party 𝑃𝑖 and if 

party 𝑃𝑖 is honest, then the old value of the node with label 𝑥 will be the same as the new 

value for the same node. 

It would not be the case that the old value was different and the new value which is 

computed based on the majority rule is different and this holds with respect to every honest 

party’s local copy of the EIG tree provided the node 𝑥 ends with the index of an honest 

party. Now, this proof will be done through a backward induction; backward induction on 

the size of 𝑥 why size of 𝑥 because this lemma is for any 𝑥.  

So, 𝑥 could be of size 1; that means, it could be as simple as that 𝑥 is the label of a layer 1 

node or 𝑥 could be a string of size 2; that means, this lemma even holds for the nodes 𝑥 

which are occurring at layer number 2 or 𝑥 could be a string of size 𝑡 + 1; that means, 

lemma even holds for a node 𝑥 occurring at layer number 𝑡 + 1. 

So, we must prove that this lemma holds irrespective of the position of the layer number 

of 𝑥. So, that is why to prove it for any 𝑥 whose label ends with the index of a corrupt 

party we are going to use a proof by induction and the induction will be a backward 

induction; that means, we will first start with the leaf nodes, and we will keep on going 

from leaf to root and prove it is true for all the layers. 



So, our base case will be when 𝑥 is the label of a leaf node. So, assume that 𝑥 is a leaf node 

and it ends with the index of an honest party. So, we want to prove that across all the copies 

of EIG trees corresponding to the honest parties, the new value which is assigned to 𝑥 will 

be the same as the old value. 

So, for that we will trigger the lemma number 1 first and lemma number 1 states that the 

old value which is assigned to the node 𝑥 across all the copies of the EIG tree by the 

respective party respective honest parties is same. Say a value 𝑣 is the old value which is 

assigned to all the in all the EIG trees. 

Now, recall that the way new values are computed for the leaf nodes the leaf value of 𝑥 

the for the leaf nodes 𝑥 the new value is same as the old value. That is the way new values 

are computed. We do not apply the majority rule for the nodes labelled 𝑥, where 𝑥 

corresponds to a leaf node because since it is a leaf node it does not have any children. So, 

how can we apply the majority rule? 

So, the new value for 𝑥 will remain the same as the old value of 𝑥 if 𝑥 corresponds to a 

leaf node and from lemma one the value which is assigned, or the old value of the node 

labelled 𝑥 is same across all the EIG trees that also implies that the new value for the 𝑥 

also remains the same across all the copies of the EIG tree. So, the base case is done. 
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Now, assume the inductive hypothesis assume that the statement is true; that means, the 

lemma is true for a node any node 𝑥 occurring at layer 𝑘 + 1. And now we go one layer 

further up; that means, now we are taking the case when the label of 𝑥 is a string of size 

𝑘; that means, x is occurring at layer 𝑘. 

And say the label of 𝑥 is 𝑖1, 𝑖2, … , 𝑖𝑘 which are all distinct and 𝑃𝑘 is an honest party; that 

means, the index 𝑘 corresponds to the party 𝑃𝑘 and 𝑃𝑘 is honest. Why honest? Because we 

want to prove the lemma for all the 𝑥 whose label ends with the index of an honest party 

not corrupt party. So, what do we know? What is going to happen in the protocol and what 

exactly are the things which we already know? 

So, again let me trigger lemma number 1 for this node 𝑥 occurring at layer 𝑘 and what we 

know is that across all the EIG trees corresponding to the honest parties the old value 

which is assigned to 𝑥 is a common value. That means, in 𝑃𝑖’s copy of the EIG tree the old 

value of 𝑥 will be 𝑣 and in 𝑃𝑗’s copy of the EIG tree the old value of 𝑥 also will be 𝑣 and 

if there are other honest parties in their respective copies of the EIG tree the old value of 

𝑥 will be 𝑣 that comes from lemma number 1. 

Now, we want to prove what is our goal? Our goal is to prove that even the new value 

which is computed for the node labelled 𝑥 across all the honest parties EIG tree based on 

the majority rule also remains the same namely 𝑣. So, for that the first thing to observe is 

that during round 𝑘 what every honest 𝑃𝑗 would have done? Every honest 𝑃𝑗 would have 

communicated the message that a in my copy of the EIG tree the value of the node labelled 

𝑥 is 𝑣 and it would have sent this message identically to everyone. 

So, 𝑃𝑗 would have sent the message (𝑥, 𝑣) to everyone. 𝑃𝑖  would have sent the message 

(𝑥, 𝑣) to everyone and so on. 

And all other honest parties would have sent the message (𝑥, 𝑣) to everyone of course, the 

corrupt parties might send that in their respective copies of the EIG tree 𝑥 has the value 𝑣′ 

where 𝑣′ is the complement of 𝑣. Corrupt parties can behave arbitrarily. 

So, before going into the before proceeding further what we are going to see here is that 

because every honest party 𝑃𝑗 sends this message (𝑥, 𝑣) identically to everyone what is 

going to happen is that if we focus on the children of the node labelled 𝑥 there will be 



children which will have labels of the form 𝑥 followed by the index of an honest party. 

Those indexes could be 𝑗, 𝑖 and other honest parties. 

The old value which will be assigned to the nodes with or to the children with label 𝑥𝑗, 𝑥𝑖 

and 𝑥 followed by the index of an honest party will be 𝑣 because as I said all honest parties 

will be sending the message 𝑥 followed by 𝑣 to everyone. And, now let us apply the 

inductive hypothesis. 

Let us now apply the inductive hypothesis and as per the inductive hypothesis since the 

children are now appearing at level 𝑘 + 1 and we have assumed that the statement is true 

the lemma statement is true even for nodes which have labels of size 𝑘 + 1. So, if we focus 

on all the children of 𝑥 whose label ends with the index of an honest party the new value 

and the old value for such nodes will be 𝑣 only.  

That comes from the inductive hypothesis. And now, we can apply we can trigger the 

lemma 2 which states that if we focus on the node with label 𝑥, majority of it is children 

will have the last index corresponding to an honest party. And such nodes whose last index 

corresponds to an honest party, their new values will be the common 𝑣 that comes from 

the inductive hypothesis.  

Due to this when the parties respectively apply the majority rule in their respective copies 

of the EIG tree to compute the new value for the node 𝑥, it will turn out to be value 𝑣 only. 

So, the old value also remains the 𝑣 and the new value also remains 𝑣. It would not change 

for all the nodes 𝑥 irrespective of at which layer they occur provided 𝑥 ends with the index 

of an honest party. 
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So, now we will use the lemma number 2 and lemma number 3 which we have proved to 

conclude our validity proof. So, the theorem statement is the validity statement is that in 

the EIG protocol, if all the honest parties start the protocol with the same input bit say 𝑣 

where 𝑣 could be either 0 or it could be 1, then after exchanging messages assigning old 

values computing new values each party will have the decision output 𝑣 only; that means, 

the old state 𝑣 remains the same it does not get changed. 

So, how do we prove this? So, without loss of generality assume that the parties 

𝑃1, 𝑃2, … , 𝑃𝑛−𝑡 are the honest parties. Remember there are at least 𝑛 − 𝑡 honest parties and 

at most 𝑡 corrupt parties and their exact identities will not be known. But what we will be 

knowing is that there are at least 𝑛 − 𝑡 honest parties. 

To do the analysis of the validity statement I am making a simplified assumption. Imagine 

that the first 𝑛 − 𝑡 parties are the honest parties, but this is without loss of generality 

because whatever we are stating here as the proof carries over for the general case where 

the 𝑛 − 𝑡 parties are scattered means their indices need not be consecutive. 

Also note that 𝑛 − 𝑡 is strictly greater than 2𝑡 because𝑛 > 3𝑡. So, during round one what 

would have happened in the EIG protocol? During round 1 𝑃1 would have reported to 

everyone that its input is 𝑣 𝑃2 would have sent so, 𝑃1 would have sent the message (𝜆, 𝑣) 

to everyone 𝑃2 would have sent the message (𝜆, 𝑣) to everyone because we are assuming 



that the inputs of all the honest parties are same and 𝑃𝑛−𝑡 would have send the message 

(𝜆, 𝑣) to everyone else. 

Of course, corrupt parties can send different versions of their input to the respective parties. 

Now, due to this at the end of the round one what would have happened? Every honest 

party 𝑃𝑖 would have assigned the value 𝑣, 𝑣, 𝑣, 𝑣, 𝑣 to the nodes with label 1,2, … , 𝑛 − 𝑡. I 

do not care what values it assigned to the nodes whose label ends with the corrupt party. 

Now, what does lemma 3 states? Lemma 3 states that the old value which has been 

assigned to the nodes with label 1,2, … , 𝑛 − 𝑡 will be same as the new value. That means, 

the re computed values will also remain the same namely 𝑣, 𝑣, 𝑣, 𝑣, 𝑣 and from lemma 2 

majority of the child nodes of this root of the EIG tree will end with the index of an honest 

party. 

Namely, there are 𝑛 − 𝑡 children whose labels end with the index of an honest party 

and𝑛 − 𝑡 ? 2𝑡; that means, at least 2𝑡 + 1; that means, the majority of them are ending 

with the index of an honest party. So, by the majority rule every honest party will assign 

new value as 𝑣 to their respective root nodes and that will be the overall output of the EIG 

protocol. So, that shows that completes the validity proof and that also concludes today’s 

lecture. 
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So, these are the references which I have been used. So, I have used heavily the material 

from MITs Distributed Algorithm course and of course, the full details of the EIG protocol 

and proof you can find from any of these two textbooks. 

Thank you. 


