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Hello everyone. Welcome to this lecture. So, in this lecture we will continue our discussion 

regarding the efficient framework for generating the secret sharing of Random 

Multiplication Triplets, which we started discussing in the last lecture. And in this lecture, 

we will see a triple transformation protocol which will be useful for instantiating both the 

components of the above-mentioned framework. 
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So, just to quickly recap the framework requires 2 protocols. The 1st protocol is the triple 

sharing protocol, which allows a dealer to secret share multiplication triples, where if the 

dealer is honest then its multiplication triples remain private. Unknown to the adversary 

and the verifiability guarantees that even if the dealer is corrupt, it has secret shared 

multiplication triplets and not arbitrary triplets. 

And the 2nd protocol is the triple extraction protocol, which takes a bunch of random and 

nonrandom secret shared multiplication triplets. Namely, there will be a set of 

multiplication triplets, each of which is secret shared. Some of these multiplication triplets 

will be known to the adversary, some of the multiplication triplets will be random from 

the viewpoint of the adversary.  

The exact identity of the multiplication triplets, which are unknown to the adversary, will 

not be known without knowing which multiplication triplets are unknown for the 

adversary; this triple extraction procedure helps us to get a bunch of secret shared 

multiplication triplets all of which are guaranteed to be random from the viewpoint of the 

adversary. 

Now, we want to instantiate this triple sharing protocol and triple extraction protocol, but 

before going into the instantiation we have to discuss another protocol called triple 

transformation protocol TripTrans, which is a common gadget used both for instantiating 

the triple sharing protocol as well as the triple extraction protocol. And as the name suggest 



triple transformation TripTrans. TripTrans here stands for triple transformation. What 

exactly is the transformation? 

The transformation here is that it takes a bunch of secret shared triples, which may not 

have any relation among them, and then transforms them into a bunch of secret shared 

triples, which have a correlation. What exactly is the correlation? We will see very soon. 
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So, this triple transformation protocol takes a set of 𝑛 number of secret shared triplets, 

where ℓ will be of the form 2𝑑 + 1 and 𝑑 will be at least 𝑡. And I stressed that these triplets 

need not be multiplication triplets. In fact, it could be the pause, it could be the case that 

none of these input triplets is a multiplication triplet or it could be the case that all but one 

among these ℓ triplets is a non-multiplication triplet. 

So, it could be any possibility had and there is absolutely no relationship among this ℓ 

triplets. They are just ℓ arbitrary triplets, which are secret shared. Now, this triple 

transformation protocol, transforms this input secret shared triplets into output secret 

shared triplets. So, the number of output triplets is same as the number of input triplets, 

but now the output triplets are no longer unrelated. They have some correlation among 

them ok. 

So, before going into the correlation, you can see here that I have used different fonts to 

represent the input triplets and the output triplets. Just to avoid confusion here. So, what is 



the correlation which we want among the output triplets? The correlation is the following: 

we want that at the end of the protocol there should exist 3 polynomials and 𝐴 polynomial, 

a 𝐵 polynomial, and a 𝐶 polynomial of degree 𝑑, 𝑑 and 2𝑑 respectively, such that all the 

following properties hold. 

The first property is that all the 𝑎 components of the output triplets, they should lie on the 

𝐴 polynomial. So, if I consider the 𝑎 component of the first output triplet, the 𝑎 component 

of the second output triplet, and the 𝑎 component of the ℓth sorry all of them should lie on 

my 𝐴 polynomial, where the degree of the 𝐴 polynomial is 𝑑.  

In the same way I require the 𝑏 component of all the output triplets to lie on the 𝐵 

polynomial. And in the same way I would like the 𝑐 component of all the output triplets to 

lie on the 𝐶 polynomial. Of course, this output triplets have to be available in the secret 

shared fashion, where the degree of sharing should be 𝑡. That is the first correlation. 

The second correlation that we want here is that the 𝐶 polynomial should be equal to the 

product of the 𝐴 and 𝐵 polynomial, if and only if all the input triplets are multiplication 

triplets, stated in a different way. What I require here is that if the 𝑖th input triplet is a 

multiplication triplet, then 𝑖th output triplet should be a multiplication triplet and this is an 

if and only if condition. 

That means I want the property to hold in the other direction as well; that means, if the 𝑖th 

output triplet is a multiplication triplet, then the 𝑖th input triplet was also a multiplication 

triplet. That automatically guarantees that if all the input triplets are multiplication triplets; 

the first, the second, the 𝑖th, and the ℓth, then automatically all the output triplets will be 

multiplication triplets. As a result of that since, the degrees of 𝐴, 𝐵, and 𝐶 polynomials are 

𝑑, 𝑑 and 2𝑑 respectively, it will automatically be guaranteed that the 𝐶 polynomial is the 

product of the 𝐴 polynomial and 𝐵 polynomial. 

Because the 𝑎 component of all the output triplets 𝑏 components of all the output triplets 

and 𝑐 components of all the output triplets, they are distinct points on the 𝐴, 𝐵, and 𝐶 

polynomials respectively. So, that is a very powerful correlation relationship. So, even if 

my inputs are arbitrary triplets, I have tied them together through this triple transformation 

process by ensuring that I transform the input triplets into output triplets in such a way that 

the output triplets now constitute distinct points on the 𝐴, 𝐵, and 𝐶 polynomials. 



However, you see the degrees of the 𝐴 and 𝐵 polynomials are 𝑑 whereas, the degree of the 

𝐶 polynomial is 2𝑑 and the second correlation that I want here is that if all the input triplets 

are multiplication triplets, then all the output triplets will be multiplication triplets and that 

will further guarantee that the 𝐶 polynomial will be the product of 𝐴 and 𝐵 polynomial. 

However, if any of the input triplet is not a multiplication triplet, then the 𝐶 polynomial 

will not be the product of 𝐴 and 𝐵 polynomial. 

Say for instance, the 𝑖th triplet is not a multiplication triplet, then the 𝑖th output triplet 

should also be should also not be a multiplication triplet and since, the 𝑖th output triplet 

constitute distinct points on the 𝐴, 𝐵, and 𝐶 polynomial. We know now that there is at least 

one point on the 𝐴, 𝐵, and 𝐶 polynomial, which violates this multiplicative relationship. 

So, that is the second correlation, which we require from the triple transformation protocol. 

And the third property which we require from the triple transformation protocol is that if 

the 𝑖th input triplet was random for the adversary. Of course, adversary will be knowing 𝑡 

shares for all the input triplets as well as for the output triplets because everything here is 

secret shared. But it could be possible that the 𝑖th input triplet was random for the 

adversary; it only knows 𝑡 shares for the 𝑖th input triplet. If that is the case, then we would 

require that the privacy for the 𝑖th output triplet is also maintained that is a third 

requirement. 

So, that these are the 3 properties we require from the triple transformation protocol. Later 

on, we will see that assuming we have this triple transformation protocol, how we can 

instantiate the 2 components of our efficient framework for the pre processing phase 

protocol. So, now we will see in this lecture how to instantiate the triple transformation 

protocol. 
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Before going into the instantiation of the triple transformation protocol, for the purpose of 

representation, I will introduce here a notation for representing Shamir-secret shared 

values. So, imagine there is a value 𝑠 from the field, which is secret shared as per the 

Shamir-secret sharing scheme through a 𝑡 degree polynomial with every party holding a 

share for this secret; that means there exists some 𝑡 degree polynomial whose constant 

term is 𝑠 and 𝑖th party holds the value of the Shamir-sharing polynomial at 𝛼𝑖.  

If that is the setting, then to represent that setting I will use this box representation. Why 

this box representation? This box representation basically signifies here that there is a 

value 𝑠 which none of the party knows. Of course, the dealer who would have secret shared 

the value 𝑠 would know the value 𝑠. 

But if the dealer is honest from the viewpoint of the corrupt parties, there is a value in this 

box which is not known to the adversary. Adversary has only 𝑡 shares for the value which 

is kept inside the box. And we will also use this notation [𝑠]𝑡 to denote the vector of shares 

corresponding to a secret sharing of 𝑠. Now, we already know the linearity property of 

Shamir-secret sharing. 

So, we know that if the if there is some publicly non-linear function 𝑔 over the field and 

if the inputs for this function 𝑔 are secret shared as per Shamir-secret sharing, then without 

any interaction the parties can locally compute their respective shares corresponding to the 



output of the function 𝑔. So, that will be represented pictorially by the following 

representation.  

So, you have now the inputs for this function g in the box representation. That means, for 

𝑥1 each party has is its share, for 𝑥2 each party has its share, for 𝑥ℓ each party has its share, 

and now, the parties can locally apply the function g on its respective share of 𝑥1, 𝑥2, … , 𝑥ℓ 

which will help every party to obtain its share for namely the output 𝑦1, 𝑦2, … , 𝑦𝑚 for the 

function 𝑔. 

So, this whole process I will pictorially represent like this, and I will also use statements 

like parties locally compute the output of the function 𝑔 by writing this expression.  

So, whenever I write this expression; that means, I want to say that every party 𝑃𝑖, every 

honest party to be more specific, because corrupt party a maliciously corrupt party 𝑃𝑖 may 

not follow protocol instructions, but every honest party 𝑃𝑖 it takes its shares of 𝑥1, 𝑥2, … , 𝑥ℓ 

corresponding to the secret sharing of 𝑥1, 𝑥2, … , 𝑥ℓ applies the function 𝑔 and gets its 

shares corresponding to 𝑦1, 𝑦2, … , 𝑦𝑚 that is what I mean whenever I write this expression. 
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So, now coming to the triple transformation protocol; so, this is your input. What exactly 

is the input here? The input is a bunch of ℓ number of secret shared triplets. They need not 

be multiplication triplets. I stress here where ℓ = 2𝑑 + 1 and 𝑑 ≥ 𝑡 and they may not exist 

any correlation among these secret shared triplets. Now, the steps of the triple 



transformation protocol are the following: the first 𝑑 + 1, for the first 𝑑 + 1 output triplets, 

we set the 𝑎 component to be the same as the input itself. 

So, I take for I equal to 𝑑 + 1 the 𝑎 component of the input triplets and I consider those 

triplets to be the first 𝑑 + 1 output triplets. So, it is basically just renaming that nothing 

else. So, whatever the shares for the first 𝑑 + 1 triplets parties have, they take they focus 

on the shares corresponding to the 𝑎 components and those shares are only considered as 

the shares corresponding to the 𝑎 component of the first 𝑑 + 1 output triplets. 

So, in terms of box representation you can imagine that whatever shares the parties have 

for this 𝑎(1). Namely, the 𝑎 component of the first triplet those shares are retained as the 

shares for the 𝑎 component of the first output triplets and like that, whatever shares parties 

have for the 𝑎 component of the 𝑑 + 1th input triplet, those shares only are retained as the 

shares for the 𝑎 component of the 𝑑 + 1th output triplets. 

Now, the 𝐴 polynomial is defined to be the unique 𝑑 degree polynomial passing through 

the 𝑑 + 1 distinct points, which are written down here; namely we assume that let 𝐴 be the 

𝑑 degree polynomial over which the first 𝑑 + 1 𝑎 components of the output over which 

that 𝑎 component of the first 𝑑 + 1 output triplets lie. And this 𝐴 polynomial is a well-

defined polynomial. Why is it a well-defined polynomial? Because its degree is 𝑑. 

So, any 𝑑 degree polynomial can be uniquely defined if I set or if I fix 𝑑 + 1 points on that 

polynomial. So, what are the 𝑑 + 1 points which I have fixed for the 𝐴 polynomial? Those 

points are basically the 𝑎 components of the first output triplets, which are the same as the 

𝑎 components for the first 𝑑 + 1 input triplets. I stress here that no one will know the value 

of this 𝐴 polynomial; that means, none of the coefficients of a here is known to anyone. 

Because every, because the points on this 𝐴 polynomial; namely the 𝑎 component of the 

first triplet, the 𝑎 component of the second triplet, the 𝑎 component of the 𝑑 + 1th output 

triplet, all of them are secret shared. As a result of that the coefficients of the polynomial 

A are also secret shared here. So, this is the way I have set my 𝐴 polynomial. And now, I 

know that if I want to compute some new points on this 𝐴 polynomial, namely the value 

of the polynomial at 𝛼𝑑+2, the value of the 𝐴 polynomial at 𝛼𝑑+3, and the value of the 𝐴 

polynomial at 𝛼2𝑑+1. 



Then these values are linear function of the first 𝑑 + 1 points on my 𝐴 polynomial and this 

linear function is publicly known namely it is the Lagrange interpolation function. And we 

know that secret sharing satisfies the linearity property. So, we already have the secret 

sharing of the first point on the 𝐴 polynomial. We already have the secret sharing of the 

second point on the 𝐴 polynomial and we already have the secret sharing of the 𝑑 + 1th 

point on the 𝐴 polynomial. 

So, if I apply this linear function on those secret sharing, then that will enable us to get the 

secret sharing of the next points on the semi polynomial without doing any operation. So, 

as a result we can say that the parties now locally compute the 𝑎 component of the 

remaining output triplets. That simply requires applying the linear function. So, you have 

fixed the 𝐴 polynomial here in a secret shared fashion, apply the linear function and get 

this done. 

(Refer Slide Time: 22:02) 

 

That is how the input that is how the 𝑎 component of the input triplets are transformed into 

the 𝑎 components of the output triplets. The same process we do even for the 𝑏 components 

of the triplet namely, we take the first 𝑑 + 1. We take the 𝑏 component of the first 𝑑 + 1 

triplets, each of which is secret shared, and we consider them to be the 𝑏 component of the 

first 𝑑 + 1 output triplets. And then, we define the unique 𝑑 degree 𝐵 polynomial passing 

through the 𝑏 component of the first 𝑑 + 1 output triplets. 



And then, we can apply the Lagrange linear function and get the next bunch of points on 

this defined 𝐵 polynomial. Since everything is now linear function that linear function can 

be now applied on the secret sharing of the points on the 𝐵 polynomial and we can get the 

transformed 𝑏 components for the output triplets. 
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So, our 𝐴 polynomial is defined, our 𝐵 polynomial is defined; now our goal is to define 

the 𝐶 polynomial. Now, you might be tempting to do the following. You might say that 

why we are anyhow given 2𝑑 + 1 number of secret shared 𝑐 components. Why cannot I 

define the 𝐶 polynomial to be the following? That let 𝐶 to be the 2𝑑 degree unique 

polynomial, which when evaluated at alpha 1 gives you the 𝑐 component of the first triplet, 

when evaluated at 𝛼𝑖, gives you the 𝑐 component of the 𝑖th triplet and when evaluated at 

alpha of 2𝑑 + 1 gives you the 𝑐 component of the last input triplet. 

If I do this then you will say that I have now an 𝐴 polynomial of degree d, 𝐵 polynomial 

of degree d, and 𝐶 polynomial of degree 2𝑑 fine. One of the requirements of the triple 

transformation protocol is achieved, but if I do if I define my 𝐶 polynomial like this, then 

it is not guaranteed that the 𝐶 polynomial is the product of the 𝐴 polynomial and 𝐵 

polynomial, if all the input triplets are multiplication triplets, no. 

Because, if you see here the way I have defined the 𝐴 polynomial and 𝐵 polynomial is as 

follows. The 𝐴 polynomial is defined by fixing the first 𝑑 + 1 points here. They are 

basically the first they are basically the 𝑎 components of the first 𝑑 + 1 input triplets, but 



the remaining points on the 𝐴 polynomial, they are not same as the 𝑎 components of the 

remaining input triplets. They are basically now new points on the 𝐴 polynomial. 

In the same way the 𝐵 polynomial is defined by fixing or by setting the first 𝑑 + 1 points 

to be the 𝑏 components of the first 𝑑 + 1 triplets, but the next bunch of 𝑑 points on the 𝐵 

polynomial. They are absolutely different from the 𝑏 component of the remaining input 

triplets, but for the 𝐶 polynomial I am taking all the points on the 𝐶 polynomial to be the 

𝑐 components of all the input triplets. 

So, what can go wrong here is that for the first 𝑑 + 1 values, 𝐶 polynomial evaluated at 𝛼𝑖 

will be same as the 𝐴 polynomial at evaluated at 𝛼𝑖 times 𝐵 polynomial evaluated at 𝛼𝑖, if 

the first 𝑑 + 1 triplets are multiplication triplets fine. But for the remaining 𝑑 values 𝐶(𝛼𝑖) 

may not be equal to the product of 𝐴(𝛼𝑖) and 𝐵(𝛼𝑖), because the next bunch of points on 

the 𝐴 and 𝐵 polynomials they are different. Well, they are not different, they may be 

different from the 𝑎 and 𝑏 components of the remaining 𝑑 number of input triplets. 

So, that is why we cannot define the 𝐶 polynomial like this. We have to do something else 

to ensure that the second property, which we require from the transformation is achieved. 

So, how do we define the 𝐶 polynomial. So, we partially define the 𝐶 polynomial first by 

fixing the 𝑑 + 1 points on the 𝐶 polynomial to be the 𝑐 components on the by fixing the 

by fixing the first 𝑑 + 1 points and the 𝐶 polynomial to be the 𝑐 components of the first 

𝑑 + 1 input triplets; as we have done for the 𝐴 and 𝐵 polynomial. 

So, so right now I have only 𝑑 + 1 points on the 𝐶 polynomial fixed, but I want the 𝐶 

polynomial to be a 2𝑑 degree polynomial. So, to define a 2𝑑 degree polynomial I need 𝑑 

more points on the 𝐶 polynomial; such that those points should be the product of the 𝑎 

components and the 𝑏 components of the output triplet, if the 𝑎 component and the 𝑏 

component and the 𝑐 component were constituting a multiplication triplet. 

So, how do I do that? So, for that for the remaining 𝑑 points on the 𝐶 polynomial, I obtain 

them by computing a secret sharing of the product of the 𝑎 and 𝑏 component by using the 

input triplets, which I have not yet touched and for that I apply the Beaver’s method. 
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So, what was the Beaver’s method? So, remember Beaver’s method helps you to do the 

following. If you have a multiplication gate say 𝑥 𝐴𝑁𝐷 𝑦 and you want to compute 𝑥 ⋅ 𝑦 

and if you have an auxiliary secret shared say (𝑎, 𝑏, 𝑐) in the pre processing phase or 

somehow you have got that secret share triplet (𝑎, 𝑏, 𝑐); then we would have publicly 

computed 𝑥 − 𝑎, we would have publicly computed 𝑦 − 𝑏, and then we would have 

expressed the product of 𝑥 and 𝑦 as a linear function of secret shared 𝑎, 𝑏, 𝑐. 



That was the Beaver’s method for computing the secret sharing of 𝑥 ⋅ 𝑦. What we are 

proposing here is to compute a secret sharing of the product of the 𝑎 and 𝑏 components of 

the last 𝑑 output triplets by using the 𝑑 number of secret shared triplets, input secret shared 

triplets we have not which we have not yet touched.  

So, remember throughout this process of defining the 𝐴 polynomial, 𝐵 polynomial we 

have not touched the last 𝑑 number of input secret share triplets. We are now going to 

utilize them for computing the remaining points on my 𝐶 polynomial. So, what we will do 

now is the following. 
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So, for instance, we take this pair of values, which are points on my 𝐴 and 𝐵 polynomials 

and now I want to compute a secret sharing of a times; I want to compute a secret sharing 

of this value. For that I will apply the Beaver’s method using this as my auxiliary triplet.  

So, I will perform this operation and that will help me to give a secret sharing of an output 

value, which will be t shared and then I will simply ignore this input triplet, like that I will 

take this pair of values and I will take the last secret shared input triplet apply the Beaver’s 

method and then I will get a secret sharing of this value. 

And now, I have 2𝑑 + 1 number of secret shared c points, using which I will define my 𝐶 

polynomial. So, you can see the process of defining the 𝐶 polynomial is different from the 

process of defining the 𝐴 and 𝐵 polynomials. For defining the 𝐴 and 𝐵 polynomials, we 



do not need any interaction whatsoever. First fix the 𝑑 + 1 points and extend them, non-

interactively to get the remaining points.  

Do the same thing for the 𝐵 polynomial for the 𝐶 polynomial half of the points. In fact, 

more than half of the points are fixed. And then the remaining points are computed 

interactively by applying the Beaver’s method, using the input triplets the last 𝑑 number 

of secret shared input triplets as the auxiliary triplets. So, that is a triple transformation 

process. 
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In the next lecture we will discuss the properties achieved by our triple transformation 

process. 

Thank you. 


