
Secure Computation: Part II

Prof. Ashish Choudury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 45

The BGW MPC Protocol for Linear Functions: Security Analysis

(Refer Slide Time: 00:30)

(Refer Slide Time: 00:32)

Hello everyone, welcome to this lecture. So, in this lecture, we will quickly do a security

analysis for the BGW MPC Protocol for Linear Functions which we had discussed in the

previous lecture. So, before going to the formal analysis, we try to understand why this

protocol is secure with an example here.

So, let us consider a very simple function with the addition of four inputs here. We have

four parties and up to one party can be corrupt. So, for simplicity, imagine that the first

party is corrupt; of course, the parties will not be knowing that it is the first party who is

corrupt, but they will be knowing that up to one party can be corrupt here.

And we will perform all the computations over the field ℤ5, where the plus operation is

the addition modulo 5 operation, and the multiplication operation is the multiplication

modulo 5 operation. We fix the evaluation points which are going to be used during the

instances of the VSS to be 1, 2, 3 and 4 for 𝑃1, 𝑃2, 𝑃3, 𝑃4, respectively.

Now, suppose the inputs of the parties are 2, 1, 1 and 0 respectively. So, during the input

stage, suppose the Shamir sharing polynomial through which 𝑥1 is shared is this

polynomial 𝐴, which is 2 + 0𝑍. And say at the end of the sharing phase protocol of the

VSS scheme the shares for the parties are 2, 2, 2 and 2 respectively.

(Refer Slide Time: 02:03)

In parallel, suppose 𝑃2 in its instance of the secret sharing protocol where VSS protocol

uses the Shamir sharing polynomial 1 + 0𝑍 and say the resultant shares are 1, 1, 1, 1

respectively at the end of the sharing phase.

(Refer Slide Time: 02:20)

In the same way imagine that 𝑃3 during its instance of the VSS scheme has used this

Shamir sharing polynomial resulting in the shares 3, 0, 2 and 4.

(Refer Slide Time: 02:37)

And 𝑃4 in its instance of the VSS scheme uses the polynomial 0 + 3𝑍 resulting in the

vector of shares 3, 1, 4, 2. So, all this VSS instances uses they use polynomials of degree

1 because 𝑡 is equal to 1. Now, since there is only one linear gate namely the addition of

all the four inputs, each party will locally add the shares of 𝑥1, 𝑥2, 𝑥3, 𝑥4 to obtain the

share of 𝑦.

So, 𝑃1 is going to add all these four shares; and of course, the addition is performed modulo

5 that will result in 𝑃1′s share to be 4. And in the same way 𝑃2′𝑠 share will be the addition

of all these four values, 𝑃3′s share will be the addition of these four shares and 𝑃4′s share

will be the addition of these four shares. And now the output starts. So, since 𝑃1 is corrupt,

it is supposed to make the share 4 public.

But suppose it says that my share is 2 and that is fine because that is allowed because 𝑃1

is corrupt. So, it can deviate from the protocol instructions. So, it is supposed to make

public the correct share of 𝑦, but it is making an incorrect share of 𝑦 public. No one of

course, will know whether 𝑃1 is corrupt or not.

(Refer Slide Time: 04:06)

(Refer Slide Time: 04:12)

However, the other parties correctly make their shares public. So, 𝑃3 makes public the

share 4, 𝑃4 makes the share public.

(Refer Slide Time: 04:21)

And now, the vector of shares corresponding to the output gate will be available with

everyone. And now they will do the Reed Solomon error correction and recover this 1-

degree polynomial. And the output will be 𝑦 = 4, that is a possible execution for the BGW

protocol.

(Refer Slide Time: 04:44)

Now, let us see that whether the privacy property holds here or not; that means, whether

the adversary learns anything additional about the inputs of the honest parties, beyond

what it is allowed to learn. So, in this table I have highlighted the view of the adversary in

bold, what does the view mean? View means whatever information the adversary learns

through the corrupt party.

So, in this case 𝑃1 is the only corrupt party. So, the adversary’s view will be consisting of

the input of the party 𝑃1. And all the shares corresponding to this input are generated during

the VSS instance where 𝑃1 is the dealer. However, for the remaining three VSS instances,

the view of the adversary will be independent of what exactly are the secrets in those VSS

instances.

So, that is why 𝑥2 is unknown for the adversary, 𝑥3 is unknown for the adversary, 𝑥4 is

unknown for the adversary. And the adversary will have only its share from those VSS

instances. And of course, it will not know what shares the honest parties have received in

those VSS instances from the corresponding dealers.

And, now during the reconstruction stage everyone has made public their respective shares

of the output value. Of course, 𝑃1 has made public the incorrect share and then the Reed

Solomon error correction has resulted in the output 𝑦 = 4 that is the view of the adversary.

Now, this view adversary can try to analyse to see whether it can learn anything additional

about 𝑥2, 𝑥3, 𝑥4.

(Refer Slide Time: 06:28)

I have filled this table with the values which have been used by the parties during the

execution of the protocol in our current example. Now, this 𝑥2, 𝑥3, 𝑥4 they are currently

unknown for the adversary. So, adversary, based on its own input 2 and the function output

𝑦 = 4, can make many hypotheses.

It knows that the function which is getting computed is a sum of 𝑥1, 𝑥2, 𝑥3 and 𝑥4. Out of

that 𝑥1 is known and the sum 𝑦 is also known. So, it can always conclude that there are

various possibilities for 𝑥2, 𝑥3, 𝑥4. So, for instance one possibility could be that 𝑃2 has

executed the protocol with input 2, and 𝑃3 has executed the protocol with input 0 and 𝑃4

has executed the protocol with input 0, that is quite a possibility, because if indeed 𝑥2 is 2

and 𝑥3 is 0 and 𝑥4 is 0 and if 𝑃1′s input would have been 2, then together it will result in

the function output to be 𝑦 = 4.

Now, what adversary can try to do is the following. This table right now is unknown for

the adversary namely the values in red colour. And adversary makes a hypothesis and is it

possible that I have participated in the protocol execution where 𝑥2 was 2, 𝑥3 was 0, 𝑥4

was 0.

And the values in bold in this table are the values which I have seen. And indeed, it is quite

possible that 𝑃2 has participated in the protocol with 𝑥2 equal to 2 and 𝑃3 has participated

with input 𝑥3 equal to 0 and 𝑃4 has participated with input 𝑥4 equal to 0.

More specifically, if 𝑃2 would have used the polynomial 2 + 4𝑍 in an instance of the BGW

protocol for linear function, then it would have resulted in 𝑃1 getting the share 1. Of course,

𝑃2, 𝑃3, 𝑃4 might get other shares, but 𝑃1 is not going to see what exactly are the shares

which 2, 3 and 4 have received in that instance.

And in the same way it could be possible that 𝑃3′s input during the run of the BGW

protocol was 0, and it has used the sharing polynomial 0 + 3𝑍 which would have resulted

in the share 3 for 𝑃1. And similarly, it could be possible that 𝑃4′s input was 0, its sharing

polynomial was 0 + 3𝑍 which would have resulted in 𝑃1 getting the share 3 during a run

of BGW protocol.

And now you can see that magically it’s so happening here that if the BGW protocol would

have been executed with 𝑥2 being 2 and 𝑃2′s sharing polynomial being 2 + 4𝑍 𝑥3 being 0

and 𝑃3′s sharing polynomial being 0 + 3𝑍 and 𝑥4 being 0 and 𝑃4′s polynomial being 0

plus 3𝑍 along with 𝑃1′s input being 2. And its sharing polynomial being whatever it has

used then that completely matches with all the information which actually 𝑃1 has received

during the run of the protocol.

As a result of that adversary simply cannot rule out this possibility. So, what I am trying

to argue here is that even though the protocol was executed with inputs being 2, 1, 1 and

0, whatever value adversary namely 𝑃1 has seen in that run could have also resulted if the

BGW protocol would have been executed with input 𝑥1 being 2 and input 𝑥2 being 2 and

inputs 𝑥3 and 𝑥4 being 0.

Now, there are other possibilities as well which along with the input 𝑥1 being 2 can result

to the sum 4. For example, one possibility could be that 𝑥2 was 1, 𝑥3 was 1 and 𝑥4 was 0.

Let us see whether this possibility could also result in the same set of values whether this

possibility matches whatever adversary 𝑃1 has got during the run of the protocol.

And indeed, it is quite possible that 𝑃2′s input was 1, and its sharing polynomial was 1.

𝑃3′s input was 1, its sharing polynomial was 1 + 2𝑍, 𝑃4′s input was 0 its sharing

polynomial was 3𝑍. And along with that 𝑃1′s input was 2 and its sharing polynomial is

whatever it has used. And all together it leads to a scenario where the values learnt or seen

by 𝑃1 during the run of the protocol matches.

That means adversary again cannot rule out this possibility. And in the same way adversary

cannot rule out the possibility of 𝑥2 being 0, 𝑥3 being 2, and 𝑥4 being 0 because indeed it

could be the case that 𝑃2 has participated in the BGW protocol with its input being 0 and

sharing polynomial being 𝑍. 𝑃3 has participated with input being 2 and sharing polynomial

being 𝑍 + 2. And 𝑃4 has participated with input 0 and sharing polynomial being 3, 0.

Of course, due to lack of space in this slide, I cannot show you the other possibilities, but

you can work out and you can see that magically what is happening here is that whatever

is the adversary’s view namely the first table which it has collected. And when I say the

first table, I mean to say with this question marks here, because all those things were

unknown for the adversary.

That view is going to be consistent with every candidate 𝑥2, 𝑥3, 𝑥4 from the field ℤ5 such

that that candidate 𝑥2, 𝑥3, 𝑥4 along with 𝑥1, 𝑥1 being 2 leads to the value 4 and that is why

adversary cannot pinpoint what exactly what the values of 𝑥2, 𝑥3 and 𝑥4.

(Refer Slide Time: 13:08)

Now, let us try to understand that why this is working. For example, it is fine, but we have

to give a general argument that why the adversary will fail to identify anything about the

inputs of the honest parties. So, where exactly is communication happening in the

protocol? The communication is happening during the input stage and during the output

stage.

So, let us first fix the set of corrupt parties to the set 𝒞. We have 2𝑡 corrupt parties here.

So, during the sharing phase during the input stage corresponding to every honest party 𝑃𝑖

how much information adversary learns? Adversary learns up to 𝑡 shares, but we can use

the privacy property of the underlying verifiable secret sharing, which guarantees that the

probability distribution of the 𝑡 shares which adversaries sees corresponding to the inputs

of the honest parties is independent of the actual input, which is secret shared.

So, whatever 𝑡 shares the adversaries sees corresponding to the inputs 𝑥𝑖 of the honest

parties that does not help the adversary to find out anything about 𝑥𝑖; 𝑥𝑖 could be any

random element from the field.

(Refer Slide Time: 14:24)

During the computation stage, no interaction happens among the parties. So, whatever the

adversary has learnt from the input stage it has learnt the same amount of information even

at the end of the computation stage. And now you have the reconstruction phase or the

output stage basically where the parties publicly reconstruct a function output and here

adversary learns some information; learns means it receives some messages from the

honest parties.

What are the messages? What are the values it receives from the honest parties? It receives

basically the shares of the output value from the honest parties. Of course, the adversary

has up 𝑡 shares of the output value 𝑦 corresponding to the corrupt parties. But now the

interesting thing is that these shares corresponding to the value 𝑦 received from the honest

parties they are not going to add anything additional to adversary’s view.

It is not going to provide any new information to the adversary because adversary already

has the knowledge of the function output 𝑦 because that is anyhow allowed to be learnt by

everyone publicly including the adversary. And adversary itself has the 𝑡 shares

corresponding to 𝑡 shares of the output 𝑦. To be more specific, 𝑡 shares of the output 𝑦

corresponding to the correct parties; that means, it has the point (0, 𝑦); and it has the points

(𝛼𝑗 , 𝑦𝑗) corresponding to every corrupt parties.

Now, using so, how many points total he has now? He has total 𝑡 + 1 points. Now, using

this 𝑡 + 1 points, it can completely identify the output polynomial which it is going to see

at the end of the Reed Solomon error correction process, because this 𝑡 + 1 points uniquely

define that polynomial which is going to be obtained at the end of the Reed Solomon error

correction process call that polynomial as say 𝑓𝑦(𝑍) polynomial.

Now, this 𝑓𝑦(𝑍) polynomial automatically defines the 𝑦 shares for the value 𝑦

corresponding to the honest parties, because those shares are nothing, but the value of this

𝑓𝑦 polynomial at 𝛼𝑖 corresponding to every honest party 𝑃𝑖. And that those are the precise

shares which adversary is going to receive from the honest parties during the output stage,

but at the first place he already knows those shares; that means, it already knows that I am

going to receive those shares from the honest parties.

So, it does not add any new information to the adversary; that means, whatever shares it is

going to see it is going to receive from the honest parties as part of the output stage, it

could have precomputed before itself without even waiting to see what the honest parties

are sending to him. And that means, that this information this exchange of information

during the output stage is nothing.

It is not going to add anything new to adversary’s view and that is why we can say that

adversary’s view is simply limited to 𝑡 shares corresponding to the inputs of the honest

parties as far as the inputs of the honest parties are concerned, but anyhow the probability

distribution of those shares is independent of the actual inputs secret shared by those

honesty dealers and that ensures the privacy property.

(Refer Slide Time: 18:26)

Now, let us see the correctness property. So, our claim here is that at the end of the

protocol, every honest party will obtain the output 𝑦 even if up to 𝑡 corrupt parties behave

maliciously. So, again let us fix the set of correct parties to 𝒞. And during the input stage

what is going to happen?

If there is an honest party 𝑃𝑖 then even if the corrupt parties misbehave during the sharing

phase protocol of those VSS instances, the correctness property guarantees that at the end

of the sharing phase instances of those VSS schemes, the input 𝑥𝑖 is (𝑛, 𝑡) Shamir shared;

that means that there will be a 𝑡 degree polynomial with 𝑥𝑖 being the constant term, and

every party having a share on that polynomial.

However, if the party 𝑃𝑖 who is acting as the dealer in some secret sharing instance of the

VSS scheme is corrupt. Even for such corrupt dealers the strong commitment property of

the underlying secret sharing scheme guarantees that some input 𝑥𝑖 is Shamir shared on

the behalf of 𝑃𝑖; that means, it is not the case that corresponding to the corrupt parties no

value is secret shared in an anti-Shamir shared fashion.

The strong commitment property guarantees that some value is indeed secret shared on the

behalf of even potentially corrupt parties in the system; that means, at the end of the input

stage all the values for respective parties are secret shared. On the behalf of the honest

parties 𝑥𝑖 will be secret shared even on the behalf of corrupt parties some values are (𝑛, 𝑡)

secret shared.

Now, the computation stage involves no interaction. So, what we can conclude is that end

of the computation phase, the value 𝑦 which is defined here is (𝑛, 𝑡) secret shared. And

now during the reconstruction phase, every party makes public its share of the output 𝑦 up

to 𝑡 corrupt parties make public incorrect shares, but we are working in the setting 𝑡 <
𝑛

3
.

And this value 𝑦 is secret shared through a 𝑡 degree polynomial its secret shared through

𝑡 degree polynomial

So, we can now apply the properties of Reed Solomon error correction which guarantees

that even there are up to 𝑡 shares which are incorrect in this vector of shares for the value

𝑦. The Reed Solomon error correction algorithm will identify what those incorrect shares

are and give you back the correct output 𝑦, which guarantees that even if there are up to 𝑡

corrupt parties who behave maliciously in the protocol the honest parties end up obtaining

the correct output 𝑦.

(Refer Slide Time: 21:43)

Again, my analysis and explanation here for the privacy and the correctness properties are

slightly loose, because there are a bunch of other properties also which we might expect

from a any generic MPC protocol. But we can prove that even those properties can also be

achieved by the BGW protocol here. If you want to know more about the full rigorous

analysis of the BGW protocol, you are strongly encouraged to read the first reference here.

Thank you.

