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Hello everyone, welcome to this lecture. So, in this lecture, we will quickly do a security 

analysis for the BGW MPC Protocol for Linear Functions which we had discussed in the 



previous lecture. So, before going to the formal analysis, we try to understand why this 

protocol is secure with an example here. 

So, let us consider a very simple function with the addition of four inputs here. We have 

four parties and up to one party can be corrupt. So, for simplicity, imagine that the first 

party is corrupt; of course, the parties will not be knowing that it is the first party who is 

corrupt, but they will be knowing that up to one party can be corrupt here. 

And we will perform all the computations over the field ℤ5, where the plus operation is 

the addition modulo 5 operation, and the multiplication operation is the multiplication 

modulo 5 operation. We fix the evaluation points which are going to be used during the 

instances of the VSS to be 1, 2, 3 and 4 for 𝑃1, 𝑃2, 𝑃3, 𝑃4, respectively. 

Now, suppose the inputs of the parties are 2, 1, 1 and 0 respectively. So, during the input 

stage, suppose the Shamir sharing polynomial through which 𝑥1 is shared is this 

polynomial 𝐴, which is 2 + 0𝑍. And say at the end of the sharing phase protocol of the 

VSS scheme the shares for the parties are 2, 2, 2 and 2 respectively. 
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In parallel, suppose 𝑃2 in its instance of the secret sharing protocol where VSS protocol 

uses the Shamir sharing polynomial 1 + 0𝑍 and say the resultant shares are 1, 1, 1, 1 

respectively at the end of the sharing phase. 
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In the same way imagine that 𝑃3 during its instance of the VSS scheme has used this 

Shamir sharing polynomial resulting in the shares 3, 0, 2 and 4.  
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And 𝑃4 in its instance of the VSS scheme uses the polynomial 0 + 3𝑍 resulting in the 

vector of shares 3, 1, 4, 2. So, all this VSS instances uses they use polynomials of degree 

1 because 𝑡 is equal to 1. Now, since there is only one linear gate namely the addition of 

all the four inputs, each party will locally add the shares of 𝑥1, 𝑥2, 𝑥3, 𝑥4 to obtain the 

share of 𝑦. 



So, 𝑃1 is going to add all these four shares; and of course, the addition is performed modulo 

5 that will result in 𝑃1′s share to be 4. And in the same way 𝑃2′𝑠 share will be the addition 

of all these four values, 𝑃3′s share will be the addition of these four shares and 𝑃4′s share 

will be the addition of these four shares. And now the output starts. So, since 𝑃1 is corrupt, 

it is supposed to make the share 4 public. 

But suppose it says that my share is 2 and that is fine because that is allowed because 𝑃1 

is corrupt. So, it can deviate from the protocol instructions. So, it is supposed to make 

public the correct share of 𝑦, but it is making an incorrect share of 𝑦 public. No one of 

course, will know whether 𝑃1 is corrupt or not. 
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However, the other parties correctly make their shares public. So, 𝑃3 makes public the 

share 4, 𝑃4 makes the share public. 
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And now, the vector of shares corresponding to the output gate will be available with 

everyone. And now they will do the Reed Solomon error correction and recover this 1-

degree polynomial. And the output will be 𝑦 = 4, that is a possible execution for the BGW 

protocol. 
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Now, let us see that whether the privacy property holds here or not; that means, whether 

the adversary learns anything additional about the inputs of the honest parties, beyond 

what it is allowed to learn. So, in this table I have highlighted the view of the adversary in 

bold, what does the view mean? View means whatever information the adversary learns 

through the corrupt party. 

So, in this case 𝑃1 is the only corrupt party. So, the adversary’s view will be consisting of 

the input of the party 𝑃1. And all the shares corresponding to this input are generated during 

the VSS instance where 𝑃1 is the dealer. However, for the remaining three VSS instances, 

the view of the adversary will be independent of what exactly are the secrets in those VSS 

instances.  

So, that is why 𝑥2 is unknown for the adversary, 𝑥3 is unknown for the adversary, 𝑥4 is 

unknown for the adversary. And the adversary will have only its share from those VSS 

instances. And of course, it will not know what shares the honest parties have received in 

those VSS instances from the corresponding dealers. 

And, now during the reconstruction stage everyone has made public their respective shares 

of the output value. Of course, 𝑃1 has made public the incorrect share and then the Reed 

Solomon error correction has resulted in the output 𝑦 = 4 that is the view of the adversary. 

Now, this view adversary can try to analyse to see whether it can learn anything additional 

about 𝑥2, 𝑥3, 𝑥4. 
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I have filled this table with the values which have been used by the parties during the 

execution of the protocol in our current example. Now, this 𝑥2, 𝑥3, 𝑥4 they are currently 

unknown for the adversary. So, adversary, based on its own input 2 and the function output 

𝑦 = 4, can make many hypotheses.  

It knows that the function which is getting computed is a sum of 𝑥1, 𝑥2, 𝑥3 and 𝑥4. Out of 

that 𝑥1 is known and the sum 𝑦 is also known. So, it can always conclude that there are 

various possibilities for 𝑥2, 𝑥3, 𝑥4. So, for instance one possibility could be that 𝑃2 has 

executed the protocol with input 2, and 𝑃3 has executed the protocol with input 0 and 𝑃4 

has executed the protocol with input 0, that is quite a possibility, because if indeed 𝑥2 is 2 

and 𝑥3 is 0 and 𝑥4 is 0 and if 𝑃1′s input would have been 2, then together it will result in 

the function output to be 𝑦 = 4. 

Now, what adversary can try to do is the following. This table right now is unknown for 

the adversary namely the values in red colour. And adversary makes a hypothesis and is it 

possible that I have participated in the protocol execution where 𝑥2 was 2, 𝑥3 was 0, 𝑥4 

was 0.  

And the values in bold in this table are the values which I have seen. And indeed, it is quite 

possible that 𝑃2 has participated in the protocol with 𝑥2 equal to 2 and 𝑃3 has participated 

with input 𝑥3 equal to 0 and 𝑃4 has participated with input 𝑥4 equal to 0. 



More specifically, if 𝑃2 would have used the polynomial 2 + 4𝑍 in an instance of the BGW 

protocol for linear function, then it would have resulted in 𝑃1 getting the share 1. Of course, 

𝑃2, 𝑃3, 𝑃4 might get other shares, but 𝑃1 is not going to see what exactly are the shares 

which 2, 3 and 4 have received in that instance. 

And in the same way it could be possible that 𝑃3′s input during the run of the BGW 

protocol was 0, and it has used the sharing polynomial 0 + 3𝑍 which would have resulted 

in the share 3 for 𝑃1. And similarly, it could be possible that 𝑃4′s input was 0, its sharing 

polynomial was 0 + 3𝑍 which would have resulted in 𝑃1 getting the share 3 during a run 

of BGW protocol. 

And now you can see that magically it’s so happening here that if the BGW protocol would 

have been executed with 𝑥2 being 2 and 𝑃2′s sharing polynomial being 2 + 4𝑍 𝑥3 being 0 

and 𝑃3′s sharing polynomial being 0 + 3𝑍 and 𝑥4 being 0 and 𝑃4′s polynomial being 0 

plus 3𝑍 along with 𝑃1′s input being 2. And its sharing polynomial being whatever it has 

used then that completely matches with all the information which actually 𝑃1 has received 

during the run of the protocol. 

As a result of that adversary simply cannot rule out this possibility. So, what I am trying 

to argue here is that even though the protocol was executed with inputs being 2, 1, 1 and 

0, whatever value adversary namely 𝑃1 has seen in that run could have also resulted if the 

BGW protocol would have been executed with input 𝑥1 being 2 and input 𝑥2 being 2 and 

inputs 𝑥3 and 𝑥4 being 0. 

Now, there are other possibilities as well which along with the input 𝑥1 being 2 can result 

to the sum 4. For example, one possibility could be that 𝑥2 was 1, 𝑥3 was 1 and 𝑥4 was 0. 

Let us see whether this possibility could also result in the same set of values whether this 

possibility matches whatever adversary 𝑃1 has got during the run of the protocol. 

And indeed, it is quite possible that 𝑃2′s input was 1, and its sharing polynomial was 1. 

𝑃3′s input was 1, its sharing polynomial was 1 + 2𝑍, 𝑃4′s input was 0 its sharing 

polynomial was 3𝑍. And along with that 𝑃1′s input was 2 and its sharing polynomial is 

whatever it has used. And all together it leads to a scenario where the values learnt or seen 

by 𝑃1 during the run of the protocol matches. 



That means adversary again cannot rule out this possibility. And in the same way adversary 

cannot rule out the possibility of 𝑥2 being 0, 𝑥3 being 2, and 𝑥4 being 0 because indeed it 

could be the case that 𝑃2 has participated in the BGW protocol with its input being 0 and 

sharing polynomial being 𝑍. 𝑃3 has participated with input being 2 and sharing polynomial 

being 𝑍 + 2. And 𝑃4 has participated with input 0 and sharing polynomial being 3, 0. 

Of course, due to lack of space in this slide, I cannot show you the other possibilities, but 

you can work out and you can see that magically what is happening here is that whatever 

is the adversary’s view namely the first table which it has collected. And when I say the 

first table, I mean to say with this question marks here, because all those things were 

unknown for the adversary. 

That view is going to be consistent with every candidate 𝑥2, 𝑥3, 𝑥4 from the field ℤ5 such 

that that candidate 𝑥2, 𝑥3, 𝑥4 along with 𝑥1, 𝑥1 being 2 leads to the value 4 and that is why 

adversary cannot pinpoint what exactly what the values of 𝑥2, 𝑥3 and 𝑥4. 

(Refer Slide Time: 13:08) 

 

Now, let us try to understand that why this is working. For example, it is fine, but we have 

to give a general argument that why the adversary will fail to identify anything about the 

inputs of the honest parties. So, where exactly is communication happening in the 

protocol? The communication is happening during the input stage and during the output 

stage. 



So, let us first fix the set of corrupt parties to the set 𝒞. We have 2𝑡 corrupt parties here. 

So, during the sharing phase during the input stage corresponding to every honest party 𝑃𝑖 

how much information adversary learns? Adversary learns up to 𝑡 shares, but we can use 

the privacy property of the underlying verifiable secret sharing, which guarantees that the 

probability distribution of the 𝑡 shares which adversaries sees corresponding to the inputs 

of the honest parties is independent of the actual input, which is secret shared. 

So, whatever 𝑡 shares the adversaries sees corresponding to the inputs 𝑥𝑖 of the honest 

parties that does not help the adversary to find out anything about 𝑥𝑖; 𝑥𝑖 could be any 

random element from the field. 

(Refer Slide Time: 14:24) 

 

During the computation stage, no interaction happens among the parties. So, whatever the 

adversary has learnt from the input stage it has learnt the same amount of information even 

at the end of the computation stage. And now you have the reconstruction phase or the 

output stage basically where the parties publicly reconstruct a function output and here 

adversary learns some information; learns means it receives some messages from the 

honest parties. 

What are the messages? What are the values it receives from the honest parties? It receives 

basically the shares of the output value from the honest parties. Of course, the adversary 

has up 𝑡 shares of the output value 𝑦 corresponding to the corrupt parties. But now the 



interesting thing is that these shares corresponding to the value 𝑦 received from the honest 

parties they are not going to add anything additional to adversary’s view. 

It is not going to provide any new information to the adversary because adversary already 

has the knowledge of the function output 𝑦 because that is anyhow allowed to be learnt by 

everyone publicly including the adversary. And adversary itself has the 𝑡 shares 

corresponding to 𝑡 shares of the output 𝑦. To be more specific, 𝑡 shares of the output 𝑦 

corresponding to the correct parties; that means, it has the point (0, 𝑦); and it has the points 

(𝛼𝑗 , 𝑦𝑗) corresponding to every corrupt parties. 

Now, using so, how many points total he has now? He has total 𝑡 + 1 points. Now, using 

this 𝑡 + 1 points, it can completely identify the output polynomial which it is going to see 

at the end of the Reed Solomon error correction process, because this 𝑡 + 1 points uniquely 

define that polynomial which is going to be obtained at the end of the Reed Solomon error 

correction process call that polynomial as say 𝑓𝑦(𝑍) polynomial. 

Now, this 𝑓𝑦(𝑍) polynomial automatically defines the 𝑦 shares for the value 𝑦 

corresponding to the honest parties, because those shares are nothing, but the value of this 

𝑓𝑦 polynomial at 𝛼𝑖 corresponding to every honest party 𝑃𝑖. And that those are the precise 

shares which adversary is going to receive from the honest parties during the output stage, 

but at the first place he already knows those shares; that means, it already knows that I am 

going to receive those shares from the honest parties. 

So, it does not add any new information to the adversary; that means, whatever shares it is 

going to see it is going to receive from the honest parties as part of the output stage, it 

could have precomputed before itself without even waiting to see what the honest parties 

are sending to him. And that means, that this information this exchange of information 

during the output stage is nothing. 

It is not going to add anything new to adversary’s view and that is why we can say that 

adversary’s view is simply limited to 𝑡 shares corresponding to the inputs of the honest 

parties as far as the inputs of the honest parties are concerned, but anyhow the probability 

distribution of those shares is independent of the actual inputs secret shared by those 

honesty dealers and that ensures the privacy property. 
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Now, let us see the correctness property. So, our claim here is that at the end of the 

protocol, every honest party will obtain the output 𝑦 even if up to 𝑡 corrupt parties behave 

maliciously. So, again let us fix the set of correct parties to 𝒞. And during the input stage 

what is going to happen? 

If there is an honest party 𝑃𝑖 then even if the corrupt parties misbehave during the sharing 

phase protocol of those VSS instances, the correctness property guarantees that at the end 

of the sharing phase instances of those VSS schemes, the input 𝑥𝑖 is (𝑛, 𝑡) Shamir shared; 

that means that there will be a 𝑡 degree polynomial with 𝑥𝑖 being the constant term, and 

every party having a share on that polynomial. 

However, if the party 𝑃𝑖 who is acting as the dealer in some secret sharing instance of the 

VSS scheme is corrupt. Even for such corrupt dealers the strong commitment property of 

the underlying secret sharing scheme guarantees that some input 𝑥𝑖 is Shamir shared on 

the behalf of 𝑃𝑖; that means, it is not the case that corresponding to the corrupt parties no 

value is secret shared in an anti-Shamir shared fashion. 

The strong commitment property guarantees that some value is indeed secret shared on the 

behalf of even potentially corrupt parties in the system; that means, at the end of the input 

stage all the values for respective parties are secret shared. On the behalf of the honest 

parties 𝑥𝑖 will be secret shared even on the behalf of corrupt parties some values are (𝑛, 𝑡) 

secret shared. 



Now, the computation stage involves no interaction. So, what we can conclude is that end 

of the computation phase, the value 𝑦 which is defined here is (𝑛, 𝑡) secret shared. And 

now during the reconstruction phase, every party makes public its share of the output 𝑦 up 

to 𝑡 corrupt parties make public incorrect shares, but we are working in the setting 𝑡 <
𝑛

3
. 

And this value 𝑦 is secret shared through a 𝑡 degree polynomial its secret shared through 

𝑡 degree polynomial 

So, we can now apply the properties of Reed Solomon error correction which guarantees 

that even there are up to 𝑡 shares which are incorrect in this vector of shares for the value 

𝑦. The Reed Solomon error correction algorithm will identify what those incorrect shares 

are and give you back the correct output 𝑦, which guarantees that even if there are up to 𝑡 

corrupt parties who behave maliciously in the protocol the honest parties end up obtaining 

the correct output 𝑦. 
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Again, my analysis and explanation here for the privacy and the correctness properties are 

slightly loose, because there are a bunch of other properties also which we might expect 

from a any generic MPC protocol. But we can prove that even those properties can also be 

achieved by the BGW protocol here. If you want to know more about the full rigorous 

analysis of the BGW protocol, you are strongly encouraged to read the first reference here. 

Thank you. 


