
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 44

The BGW MPC Protocol for Linear Functions

(Refer Slide Time: 00:26)

Hello everyone, welcome to this lecture. So, in this lecture we will now start from this

lecture onwards we start discussing about the BGW Protocol for perfectly secure MPC and

we start first with the simpler case namely, we consider the case when the underlying

function is represented by a circuit consisting of only linear gates.

(Refer Slide Time: 00:48)

So, let me quickly go through the idea behind the BGW protocol namely the broad

principle of shared circuit evaluation. So, imagine you have some circuit which is publicly

available the circuit is over some finite field and in the system there could be up to 𝑡

number of Byzantine corruptions malicious corruptions where 𝑡 <
𝑛

3
. Now, I stress that

this condition 𝑡 <
𝑛

3
 is a necessary condition for any perfectly secure multiparty

computation and we can very easily prove this.

What we can say here is that the Byzantine agreement problem is a special case of MPC

and we have already we had already proved that for perfectly secure Byzantine agreement

the condition 𝑡 <
𝑛

3
 is necessary that automatically shows that for generic functions for

computing any generic function or arbitrary function abstract function with perfect

security we require the condition necessary condition 𝑡 <
𝑛

3
.

So, there will be various stages in the BGW protocol depending upon what gates you are

evaluating. So, we start with the input stage where all the inputs for the function are made

available in a secret shared fashion using a (𝑛, 𝑡) secret sharing scheme based on

polynomial based on polynomials. And for doing that we will used polynomial based VSS

the VSS schemes which we had discussed till now.

So, we can use the VSS scheme with 𝑡 <
𝑛

3
 which we had discussed earlier and now each

party is going to do the following say for instance we take the party 𝑃1 it owns the input

𝑥1. So, what it can do is it can act as a dealer and take 𝑥1 as its secret and run the sharing

phase protocol for secret sharing the value 𝑥1 in an (𝑛, 𝑡) secret shared fashion.

Due to which at the end of the sharing phase protocol every party will have a share for the

value 𝑥1 and it will be verified during the sharing phase protocol that indeed party 𝑃1 has

secret shared sum 𝑥1 using a 𝑡 degree polynomial that verifiability comes because of the

strong commitment and the correctness property of the verifiable secret sharing scheme.

So, even if 𝑃1 is corrupt even if it is a corrupted dealer, it cannot distribute arbitrary shares

for its input 𝑥1.

(Refer Slide Time: 03:44)

The shares which it is going to distribute to the honest parties they are going to lie on some

𝑡 degree polynomial and that is guaranteed because of the strong commitment property.

(Refer Slide Time: 04:01)

In parallel in the same input stage party 𝑃2 is going to act as a dealer and run or invoke an

instance of the sharing phase protocol of the polynomial based VSS to secret share its input

𝑥2 due to which every party will now have a share of the input 𝑥2. Similarly the third party

will act as a dealer and invoke the sharing phase protocol of the VSS scheme to secret

share 𝑥3 and similarly party 𝑃4 in parallel will invoke the sharing phase protocol to secret

share the input 𝑥4 and that will complete the input stage of the protocol at the end of the

which all the inputs will be (𝑛, 𝑡) secret shared.

If the dealer is honest, then it will be also additionally guaranteed that the (𝑛, 𝑡) secret

sharing is a random secret sharing namely the probability distribution of the shares

corresponding to the corrupt parties in that instance will be independent of the underlying

secret which has been shared by the honest dealer.

So, for instance in this example I am considering 𝑃1 to be corrupt. So, 𝑃1 will be knowing

all the shares of 𝑥1 because it itself is acting as the dealer, but the share which it receives

for corresponding to 𝑥2, 𝑥3, 𝑥4 they will be independent of 𝑥2, 𝑥3, 𝑥4. So, 𝑃1 will

completely be clueless what exactly is 𝑥2 what exactly is 𝑥3 and what exactly is 𝑥4.

Now, once the input stage is over the parties go to the computation stage where they start

evaluating each gate in the circuit in a topological order by maintaining the BGW gate

invariant and the gate invariant is the following. If the inputs of the gate are (𝑛, 𝑡) secret

shared, then through the steps of the BGW protocol it will be guaranteed that even the gate

output is randomly anti secret shared among the parties.

Now, maintaining this invariant may require communication interaction among the parties

or it may not require interaction among the parties depending upon the type of the gate.

So, again what it means here? So, in the topological order suppose this is the first gate. So,

everyone will try to evaluate this first gate which is the addition gate and currently the

inputs for this plus gate are 𝑥1 and 𝑥2.

But no one knows the value of 𝑥1 and 𝑥2 completely of course, the respective input owners

they know the values of 𝑥1 and 𝑥2, but rather, but what we can say now is that the inputs

𝑥1 and 𝑥2 are rather currently secret shared. So, as per the steps of the BGW protocol the

gate invariant will guarantee that after the evaluation of this plus gate every party obtains

a share for this out for the output of this plus gate namely 𝑃1 will have a share 𝐼11, 𝑃2 will

have a share 𝐼12, 𝑃3 will have some share 𝐼13 and 𝑃4 will have some share 𝐼14.

So, that together 𝐼11, 𝐼12, 𝐼13 and 𝐼14 constitute an (𝑛, 𝑡) secret sharing for the value 𝐼1 then

the parties go to the next gate and they evaluate it using the steps of the BGW protocol and

at the end of the evaluation of this gate every party will have a share corresponding to the

output of this gate.

Then they go to the next gate and then again, the invariant will ensure that every party

obtains a shares corresponding to the output of this gate and then they go to the final gate

and again by maintaining the invariant they obtain a share for the output value. Now, once

all the gates are evaluated the parties go to the output stage where now every party can

make public is its share corresponding to the output of the function there could be up to 𝑡

parties who may make public incorrect shares and identity of the corrupt shares may not

be known.

(Refer Slide Time: 08:18)

So, what the parties can do now is that they can apply the Reed Solomon error correction

and they will try to reconstruct the correct output 𝑦 and terminate the protocol. So, the

BGW protocol uses the polynomial based (𝑛, 𝑡) VSS the verifiable secret sharing scheme

based on polynomials because of its linearity property.

(Refer Slide Time: 08:43)

So, what exactly is this linearity property let us quickly go through it. So, if we are using

any polynomial based VSS scheme, then it guarantees the correctness and the strong

commitment property the correctness guarantees that the shares of the honest parties lie on

some 𝑡 degree polynomial.

And a strong commitment property also guarantees that the shares of the honest parties at

the end of the sharing phase also lie on a 𝑡 degree polynomial; that means, if some value

is secret shared using this polynomial based VSS, then irrespective of whether the dealer

for that sharing instance is honest or corrupt the shares of the honest parties are guaranteed

to lie on some 𝑡 degree polynomial.

So, now imagine there is some value 𝑠 which is (𝑛, 𝑡) secret shared when I say (𝑛, 𝑡) secret

shared means that there exists some 𝑡 degree polynomial whose constant term is that value

which is shared, and every party has the value of that sharing polynomial at 𝛼𝑖. Namely

the party 𝑃𝑖 sorry to be more precise the party 𝑃𝑖 has the value of that sum is sharing

polynomial at 𝛼𝑖.

So, say there is some value 𝑠 which is secret shared in this fashion and say the underlying

secret sharing polynomial is 𝐴 polynomial which is a 𝑡 degree polynomial and suppose

there is some value 𝑐 in the field which is publicly known now if every party just multiplies

its share of 𝑠 with this value 𝑐 and then if we focus on the resultant vector of shares this

resultant vector of shares constitute a vector of shares lying on a 𝑡 degree polynomial which

is 𝑐 times the 𝐴 polynomial.

Why? Because if we evaluate this new polynomial at 𝛼𝑖 we get the 𝑖th component in the

new vector and what will be the constant term of this new 𝑡 degree polynomial? The

constant term of this new 𝑡 degree polynomial will be 𝑐 times the constant term of the 𝐴

polynomial the constant term of the 𝐴 polynomial is 𝑠 that is why the constant term of this

new 𝑡 degree polynomial is 𝑐 ⋅ 𝑠; that means, the new vector of shares constitutes a vector

of (𝑛, 𝑡) secret sharing for the value 𝑐 ⋅ 𝑠.

In the same spirit if we have two sorry if we have a value 𝑠 which has been secret shared

using this polynomial based VSS and if there is some value 𝑐 from the field and now every

party adds its respective share of 𝑠 with the value c. Then we obtain a vector of values

where the party 𝑃𝑖 will have the 𝑖th component of the vector and together this vector now

constitutes an (𝑛, 𝑡) secret sharing for the value 𝑐 + 𝑠.

Because this new vector of values lie on a new 𝑡 degree polynomial namely this polynomial

𝐴 plus a constant polynomial C and the constant term of this new 𝑡 degree polynomial is

𝑐 + 𝑠. And finally, if there are two values 𝑠 and 𝑠′ and if every party locally adds its

respective share of 𝑠 and 𝑠′ then that will give that party is share of 𝑠 + 𝑠′ because together

this new vector of values lie on a new 𝑡 degree polynomial whose constant term is 𝑠 + 𝑠′

and 𝑖th party will have the 𝑖th component of this new vector.

So, this is what is linearity property what this shows here is that if you have a value or

more than one value which is secret shared using 𝐴 polynomial based VSS in an (𝑛, 𝑡)

secret shared fashion. And if you want to compute some linear function of those secret

shared values then you can compute that non interactively.

Namely, say for instance if 𝑠 is secret shared and 𝑠′ is secret shared and if there is an

addition gate in the circuit whose inputs would have been 𝑠 and 𝑠′ then during the VGW

gate invariant the parties need not have to interact each party can locally go and add its

share of 𝑠 with its share of 𝑠′ that will give that party its share of 𝑠 + 𝑠′ and so on; that is,

what is the linearity property here.

(Refer Slide Time: 13:45)

Now, by exploiting this linearity property we can quickly get the following result. Imagine

you have a set of parties connected by pair wise private channels and imagine you have a

function which is represented by and imagine you have a function which is now a linear

function over the field namely the function is of this form where 𝑐1, 𝑐2, … , 𝑐𝑛 are publicly

known constants and this function is represented by the following circuit.

Then there exists a perfectly secure MPC protocol, which allows the parties to securely

compute this function even if there are up to
𝑛

3
 computationally unbounded maliciously

corrupt parties.

(Refer Slide Time: 14:31)

And the protocol is very straight forward during the input stage every party will invoke an

instance of the secret sharing phase protocol. The sharing phase protocol of a verifiable

secret sharing scheme based on polynomials. So, for instance, 𝑃1 will act as a dealer it will

run the sharing phase protocol of the VSS and say the resultant shares are 𝑥11, 𝑥12, . . , 𝑥1𝑛,

which are distributed to the respected parties, during the sharing phase protocol.

(Refer Slide Time: 15:13)

In the same spirit party 𝑃2 acts as a dealer and this can happen in parallel. So, we do not

need to depend on or we do not need to wait for the VSS instance of party 𝑃1 to get over

and then start the VSS instance for 𝑃2 though all these VSS instances can be executed in

parallel. So, in parallel 𝑃2 can act as a 0 with input 𝑥2 and trigger or invoke an instance of

the sharing phase protocol of the polynomial based VSS and that will ensure that its input

𝑥2 is (𝑛, 𝑡) secret shared.

(Refer Slide Time: 15:48)

In parallel 𝑃3 act as a dealer and do the same does the same and 𝑃4 acts as a dealer and has

the same.

(Refer Slide Time: 15:54)

(Refer Slide Time: 16:02)

Now, once all the inputs are secret shared, we have only one linear gate in the circuit. So,

parties can use the linearity property and obtain their respective shares for this for the

output of this linear gate and then they can make public their respective shares of the output

of the circuit. The corrupt parties may make public incorrect shares.

(Refer Slide Time: 16:21)

So, what the parties can do is they can apply the Reed Solomon decoding algorithm on the

vector of shares corresponding to the output gate and reconstruct back the function output.

That is the simple BGW protocol for linear functions.

(Refer Slide Time: 16:33)

Let us do the quick analysis of the round and communication complexity. So, interaction

is needed in this protocol during the input stage for verifiably secret sharing the inputs. So,

the number of rounds in the input stage is basically the same as the number of rounds in

the sharing phase protocol of the underlying VSS scheme and the communication required

will be n times the communication required for one instance of the sharing phase protocol.

During the computation stage no interaction is involved and again interaction is involved

during the reconstruction stage when the parties exchange their shares of the function

output and that will require the number of rounds, which will be same as the number of

rounds for the reconstruction function of the underlying secret sharing scheme.

(Refer Slide Time: 17:32)

So, that is a very simple MPC protocol perfectly secure MPC protocol for linear functions

in the next lecture we will do an analysis security analysis of the protocol. There are plenty

of references for detailed description and a very rigorous form on analysis of the perfectly

secure BGW protocol my personal favorite is this first reference.

Thank you.

