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Lecture - 35
Bivariate Polynomials Over Finite Fields: 11

Hello everyone, welcome to this lecture. So, in this lecture we will continue our discussion

regarding Bivariate Polynomials Over Finite Fields.

(Refer Slide Time: 00:32)

Lecture Overview ®

O Bivariate polynomials aver a finite field

% Privacy lemma

Namely, we will prove a lemma which | call as the privacy lemma which will be later
useful when we will design verifiable secret sharing schemes based on bivariate

polynomials.
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So, imagine you are given a field and | take a value s. | want to find out all bivariate
polynomials of degree t in variable X and Y where there is no restriction on the coefficients

except that the constant term should be this value s.

So, | am fixing the value s it should be the constant term of the bivariate polynomial
remaining all other terms could be remaining all other coefficients could be any element
from the field. So, there will be several such polynomials in fact, each polynomial will
have the following form there is no restriction on the coefficient of
Xv1, ., X0vE, L, XtYt and so, on.

The only restriction is that the coefficient of X°Y? is set to be s. So, all such polynomials
will be constituting a set | denote that set as this set B and in the superscript we have s, t.
So, this set will denote a set of all bivariate polynomials and from now onwards | will not

be saying that the degree is t in both the variables or degree t in X and degrees t in y.

I will just say that the degrees of both X and Y variable is t. So, the set of all bivariate
polynomials of degree t with constant coefficient being s will be denoted by this set and

how many polynomials will be belonging to this set? Well, there will be these many

polynomials the |F|*+1*~1 this is because there is a total of (¢t + 1) coefficients.

For F(X,Y) if I do not put any restriction on any of these coefficients, then for the first

coefficient | can choose any element from the field as the first coefficient second



coefficient again | can choose any element from the field and like that, but the constant
coefficient here is fixed to be s apart from that for each of the coefficients here I have field

size number of options. I can take any element from the field to be the coefficient a,;

And independent of that | can take any element from the field as the coefficient a,, and
independent of that | can take any element from the field as the coefficient a,3. So, except
the constant coefficient all other coefficients have field size number of options and if 1
ignore the constant coefficient, then | am left with these many number of coefficients

namely (¢t + 1)% — 1.

And for each of those coefficients | have field size number of options that is why the total
number of polynomials in this set namely the number of bivariate polynomials with s being

the constant term and degree being t in both the variables will be this.

So, let me demonstrate this with an example suppose | take t is equal to 1, my field is Z5,
Z5 means it will have the elements 0 1 and 2 all the operations are addition modulo 3 and
multiplication modulo 3 and suppose | fixed the constant to 1, then there will be how many

bivariate polynomials? Well, the field size here is 3.

So, I will have 27 possible bivariate polynomials of degree 1 in both the X and Y variable
and where the constant coefficient constant term is 1 those polynomials are listed down
here. So, you can see here this is a bivariate polynomial where all the coefficients are 0
here 0- X 4+ 0-Y + 0 - XY. Whereas this polynomial also has the constant term 1 where

the coefficient of X°Y1 is 2, the coefficient of X1Y? is 2 and the coefficient of XY is 2.

Now imagine that | choose n distinct nonzero evaluation points from the field I call them
as evaluation points why 1 call them evaluation points? It will be clear very soon and
among these n evaluation points | focus on a subset of t evaluation points. So, they can be
any t evaluation points the exact indices corresponding to those t evaluation points which
| am denoting by the set I, and now suppose | give you t number of univariate polynomials
in X variable and t number of univariate polynomials in Y variable corresponding to the

indices in this index set I.

And those X and Y polynomials have the property that they are pairwise consistent. They
are pairwise consistent in the sense that if | evaluate the ith X polynomial and evaluate it

at X = a; then that value will be same as the jth Y polynomial evaluated at Y = a;. If this



condition is if these three conditions are satisfied namely you are given t number of X
univariate polynomials t number of Y univariate polynomials the only condition is that

they should correspond to the same indices within the index set I.

And they should be pairwise consistent then for every element for every value from the
field I can find a unique bivariate polynomial of degree t with s being the constant term
which passes through this given X univariate polynomials and Y univariate polynomials.
So, it might look very confusing on the first look, but let me try to explain it in a simpler

term.

We know that for the univariate world we have seen the following property. Given t
distinct points given t distinct points in a 2 D plane over where the points are over the field
and any value s from the field there is a unique t degree univariate polynomial, there is a
unique t degree univariate polynomial with s being the constant term passing through the
given t points that is well known we have proved that in the context of univariate

polynomials.

| give you t points in the two dimensional plane and any value s then | can always find a
unique t degree univariate polynomial whose constant term will be s and which passes
through those given t distinct points because when | say that its constant term will be s
namely, | am fixing the point (0, s) on the curve and anyhow they have to pass through

the remaining t given points.

So, together they constitute ¢ + 1 distinct points and through t + 1 distinct points | can
find a unique univariate polynomial. Now | am just trying to extend that concept that
property in the context of bivariate polynomial. So, | am fixing a value s that has to be the
constant term of the bivariate polynomial which I want to find out and | am asking that |
am also fixing t pairs of X univariate polynomials and Y univariate polynomials which are

pairwise consistent.

So, I am now given two criteria. The constant term of the bivariate polynomial should be
the given value s and they should pass through the ¢t number of X univariate polynomials
and t number of Y univariate polynomials which are pairwise consistent. The claim is you
can find only one such univariate only one such bivariate polynomial you cannot find

multiple bivariate polynomials.
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So, let me first demonstrate this property and then we will prove it formally. So, this is
what we want to claim to understand a statement again let us take the field Z5 and suppose
| fix the index set to be 1 and evaluation point corresponding to that index set is 2; that
means, there would have been multiple evaluation points a;, a,, a; well since this field

has only 3 elements I can choose 3 distinct evaluation points.

Then my | could be either the first evaluation point or my I could be the second evaluation
point or the third evaluation point because the set I corresponds to t evaluation points and
t isequal to 1 here. So, I am taking the case where I is equal to 1; that means, | am focusing
on the first evaluation point and suppose my first evaluation point is 2, I am given here

one X polynomial and one Y polynomial.
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And you can see that this X polynomial and this Y polynomial they are pairwise consistent
namely f 1 evaluated at a; is same as g 1 evaluated at a;. So, what will be f; evaluated at
a,? aq is 2. So, f; evaluated at 2 will be (1 4+ 2 -2 4+ 1) modulo 3 is 2 and what will be

g1 evaluated at @, ? g 1 evaluated at a; will be g, evaluated at 2 which will be 2.

So, the pairwise consistency is guaranteed here, and we do not have more indices in this
index set alpha. So, we just want to have this condition being satisfied which is holding
here. So, now, what | will show is, you take any value from this field Z5 corresponding to
that value there will be 1 and 1 only one bivariate polynomial of degree 1 whose constant
term will be the value which you want to fix. And that bivariate polynomial when
evaluated at this evaluation point a; being 2 will give you these two univariate

polynomials.
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So, there are several ways. So, this is the set of all 1-degree bivariate polynomial all 1-
degree bivariate polynomials with 0 being the constant. In the same way this is the set of

all bivariate polynomials of degree 1 with 1 being the constant term.

And this is the set of all bivariate polynomials of degree 1 with 2 being the constant term.
Now you have fixed your evaluation point (a4, 2) and you are fixing these two univariate
polynomials which are pairwise consistent. Now among all the bivariate polynomials
whose constant term is 0, there is 1 and only one bivariate polynomial namely this
highlighted bivariate polynomial which when evaluated at X = «; and which when
evaluated at Y equal to alpha 1 would have produced these two univariate polynomials.

You can verify that.

So, 0 + 2Y + XY when | evaluate it at X = a; and a, is 2 here. So, let us substitute X =
2. So, it will become 0 + 2Y + 2Y = 0 + 4Y which in the field Z5 turns out to be y only
because 4 becomes 4 modulo 3. So, indeed this polynomial evaluated at X = a; gives you

this Y univariate polynomial.

And now let us evaluate this bivariate polynomial at Y = a; namely Y equal to 2. So, at
Yequalto2itwillbe 0+ 2 -2+ 2X = 2X + 1. Now, let us fix s being 1. Now there are
several bivariate polynomials of degree 1 whose constant term is 1. In fact, here you have

27 such polynomials.



Now, among those 27 polynomials it is only this highlighted polynomial which when
evaluated at X = 2 and when evaluated at Y = 2 would have produced this f;(X)
polynomial and g, (Y) polynomial and in the same way let us set s equal to 2. There are
27 possible bivariate polynomials whose constant term is 2 and where the degree of X and
Yis 1.

Among all those 27 polynomials there is only one bivariate polynomial which
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will produce g, (Y) namely Y and when evaluated at Y = «; which is 2 will produce the
polynomial 1+ 2X. So, at least through demonstration it seems that this property is
correct, but just because it works for one example one case this property need not hold for

other cases or in general we have to prove it. That this holds in general always.
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Q Without loss of generality, let I = {1, ¢}

So, what is the statement? You are given n distinct nonzero evaluation points among those
n distinct non zero evaluation points you are fixed you are focusing only a subset of t
evaluation points. Now corresponding to those t evaluation points you are given t number
of univariate polynomials in X and Y of course, of degree t which are pairwise consistent

corresponding to those indices in the index set which you are focusing on.

Then the claim is that for every element from the field there is one and only one bivariate
polynomial of degree t in both the variables with that s being the constant term and which
passes through the X and Y univariate polynomials corresponding to the indices in your
index set I. So, as | said that this index set I could include any of the t evaluation points

from ay, ..., a,.

It could be the first t evaluation points it could be the last t evaluation points it could be

say for instance a,, a,, a3, @, and so, on.
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So, we can prove the theorem for any index set of size t, but for simplicity and to avoid
the complication of notations, let me prove it for the simpler case when the t evaluation

points are the first t evaluation points, but | stress that this is without loss of generality.

Whatever | am explaining here that holds even if those t evaluation points are not the first
t consecutive evaluation points. What we want to show here? We want to show that you
take any value from the field for s corresponding to that you can find one and only one
bivariate polynomial of degree t in both the variables and whose constant term is s which
passes through the first X univariate polynomial the second X univariate polynomial and

the tth X univariate polynomials.

From where you get this ¢t univariate polynomials? Well, we are getting them because |
am assuming that the index set of size t which we are considering as the first t evaluation
points. So, corresponding to these two evaluation points you will be given
fi(X), f,(X), ..., f:(X) you are given that you are given those t arbitrary X polynomials

and you are given also ¢t arbitrary Y polynomials.

Of course, all the degrees are here t when | do not say explicitly you have to assume here
that the degrees are t here if it is univariate polynomial, then the degree is t in that variable
if the bivariate then the degrees t in both the variables. So, you are given t number of X

polynomials, t number of Y polynomials and they are pairwise consistent. Pairwise



consistent means that f; at a; is given to be g; polynomial evaluated at a; for all

a;, a;j belonging to a; ..., a;.
Why a; ..., a;? Because | am fixing my I to be the subset of first t evaluation points.

So, we want to show that for every s from the field you can find a unique bivariate
polynomial of degree t with that s being the constant term and which passes through the
given t X univariate polynomials and Y univariate polynomials when | say passes; that
means, (f;(X), ;) constitutes or lie on this bivariate polynomial (f,(X), a,) lie on that
bivariate polynomial (f;(X), a;) lie on the bivariate polynomial | means when I evaluate
this  bivariate  polynomial at Y =a;,Y=a,,..,Y=a; | should get

f1(X);f2(X); th(X)

In the same way (a4, g1 (V)), (a2, g2(1)), ..., (as, g:(¥)) should also lie on that bivariate
polynomial lie in the sense that when | evaluate this bivariate polynomial at X =
a, X = ay,...,X = a; | should get g,(Y), g,(Y), ..., g:(Y)respectively. So, let us prove
this. So, how many points on the bivariate polynomial? That bivariate polynomial F(X,Y)

which you want to find out you are fixing.

Well, you are fixing it is constant term because you want that the constant term of that
bivariate polynomial should be s; that means, you are fixing the point F(0,0) and now you
want that bivariate polynomial F(X,Y) when evaluated at a; should give you f; (X). Now
if | evaluate this polynomial f;(X) further at X = a1, X = a3, ..., X = a;44 then they

contribute basically 2t + 1 distinct points on that unknown bivariate polynomial.

So, you have already fixed one point on that unknown bivariate polynomial, but by putting
this constraint by putting the constraint that that bivariate polynomial when evaluated at
Y = «, should give you f; (X) you are actually fixing t + 1 more points on that bivariate
polynomial because when | evaluate this bivariate when | evaluate this f; polynomial at

X = a; that is nothing but the point F evaluated at (a4, a;).

So, this is nothing but the point f; evaluated at X = a, in the same way when | evaluate
the when | evaluate the univariate polynomial f; at X = a, that is nothing but one more

distinct point on that unknown bivariate polynomial and like that when | evaluate this f;



polynomial at X = a;.,, that basically gives me one more distinct point on that unknown

bivariate polynomial.

So, by setting this constraint that that unknown bivariate polynomial when evaluated at y
equal to a4 should give me f; (X) polynomial I am basically fixing ¢t + 1 distinct points
on that unknown bivariate polynomial ok | am setting this constraint. | am basically setting
the constraint that you are anyhow given f; (X) and if you are given f; (X) then basically

all the points which I have highlighted here you are given those points.

You are given those points and you are basically fixing those points to lie on the unknown

bivariate polynomial.
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In the same way you want that unknown bivariate polynomial to pass through (f5(X), a;)
namely you want that unknown bivariate polynomial when evaluated at Y = a, should
give you f,(X). Now f,(X) is given to you and if f,(X) is given to you then you are
basically given the second highlighted row here right.

Because you can evaluate f, at X = a;,X = a5, ..., X = a;,, and now because of the
second constraint you are basically fixing t + 1 new points on the unknown bivariate
polynomial why they are new points? Because these points are different from the ¢t + 1
points which you have fixed due to the first constraint namely the points which are there

in the first row.



So, basically what | am trying to do here is | am trying to find out how many points on that
unknown bivariate polynomial you are fixing because of the various constraint. We have
fixed the constant term because of this constraint that f; (X) should lie on that unknown
bivariate polynomial we have set the first row of this matrix consisting of t + 1 points like
that.

Because of the second constraint that (£, (X), a,) also should lie on the unknown bivariate
polynomial we have set or we have fixed t + 1 new distinct points on the bivariate
polynomial and like that you have the tth constraint due to this X polynomial the tth
constraint is that that unknown bivariate polynomial when evaluated at Y = «, should give
you the tth X univariate polynomial which is given to you and that tth univariate X

polynomial.

If you evaluated at X = a4, X = a5, ..., X = a4 basically gives you t + 1 distinct points
on that unknown bivariate polynomial. Why distinct? Because they will be different from
all the points which you have fixed till now. So, what is the summary? So, till now we
have fixed how many points? The constant is fixed 1 point through f; (X) we have fixed
t + 1 points through f sub 2 x we have fixed t + 1 points and through the tth X polynomial

we have fixed t + 1 points.

So, t - (t + 1) these many points on the unknown bivariate polynomial are fixed 1 because
of the constraint on the constant term and because of the constraint at that unknown
bivariate polynomial passes through (f; (X), a1), (f2(X), a3), ..., (f:(X), a;). Now you see
you also have constraints on that unknown bivariate polynomial in terms of the Y

univariate polynomials.

They also have to satisfy, or they have to also these Y univariate polynomials also should
lie on the same unknown bivariate polynomial. So, now, the interesting part here is that
each of this t Y univariate polynomials they basically contribute to t distinct points on that
unknown bivariate polynomial why so? because when | say that the first Y univariate
polynomial should lie on that unknown bivariate polynomial then; that means, that

g1 (ay) is nothing but that unknown unknow bivariate at (a4, a;).

g1 (ay) is nothing but that unknown bivariate at (a4, a,) and like that g, (a;41) IS same as

that unknown bivariate polynomial at (a4, a¢,1), but I have already fixed the first ¢ points



in this column because of the constraint because of the constraints imposed by the X
polynomials. | have already fixed them because I use the constraint that f; (X) lies on that

bivariate polynomial.

That means | have already set F (a4, ;) to be whatever f; polynomial evaluates at o, and
f1 polynomial evaluates it to alpha 1 is given to be g; polynomial evaluated at «, because
of this pairwise consistency condition. In the same way the second point along this first
column have been already fixed because the second point on the first column is nothing

but £, polynomial evaluated at «; .

And that is given to be same as g, polynomial evaluated at a, due to this pairwise
consistency; that means, when | am using this constraint on that bivariate polynomial
unknown bivariate polynomial because of that | am now getting only one new point on the
unknown bivariate polynomial namely the g, univariate polynomial evaluated at a;,4

which | can find out is given to be same as the unknown bivariate polynomial evaluated at

(a1, Ati1)s-

In the same way if | use the second constraint imposed by the g, univariate polynomial
that gives me that fixes one more distinct point on the bivariate polynomial and like that
when | use the tth constraint here it fixes the tth point highlighted here. So, now, let us
see how many points total we have fixed on that unknown bivariate polynomial and
whether those points imply a unique bivariate polynomial of degree t or many more

bivariate polynomials more than 1.

So, it turns out that through all these constraints. So, we have three different types of
constraints 1 constraint imposed by the constant term namely we want the constant term

of that unknown bivariate polynomial to be the value s.
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And because of the constraints imposed by the X univariate polynomials we have t - (t +
1) distinct points and now because of the constraints imposed by the Y univariate

polynomials.

We are fixing t more distinct points on the bivariate polynomials. So, all together they
contribute to (¢t + 1)? distinct points on the unknown bivariate polynomial. Now what is
the degree of that unknown bivariate polynomial its degree is t in both the variable X and
both variable Y and recall that in the last lecture we had discussed that if | give you (t + 1)
distant points on an unknown bivariate polynomial using them you can uniquely determine
it.

That means, through the given (t + 1)? distinct points you cannot interpolate multiple
bivariate polynomials of degree t in both the variables that is simply not possible; that
means, once | fix the constant term s that constant term along with this ¢t number of X
univariate polynomials and t number of Y univariate polynomials which are guaranteed to
be pairwise consistency implies a unique bivariate polynomial it does not imply multiple

bivariate polynomials.

So, that is one of the properties which we will use later to prove some more interesting
properties and as | said earlier this is nothing but a generalization of the property which
we had proved earlier in the context of univariate polynomials in the context of univariate

polynomials we have proved that if | give you the points say (a4, y1), (@2, V2), -..., (@t, Vi)



then these t distinct points plus the point (0, s) implies a unique t degree univariate f of X

polynomial.

Suchthat £(0) iss and f(«;) is y;. For the two-dimensional case the generalization is well
the constant term is s; that means, the (0,0) point is s and you are given t number of X
univariate polynomials t number of Y univariate polynomials; that means, you are now,

given t pairs of X univariate polynomials namely (f; (X), @1), ..., (f: (X), ap).
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And corresponding to the same alpha indices you are also given the Y
polynomialsg, (Y), g,(Y), ..., g:(Y), but they are not arbitrary X and Y polynomials they
are pairwise consistent X and Y polynomials. Now you might be wondering why this pair
wise consistency is imposed. If the pair wise consistency is not imposed, then this whatever

argument we have given here does not hold.

So, now the claim is that these t pairs of X and Y polynomials along with the fact that the
point along with the fact that the bivariate polynomial at (0,0) gives s implies a unique
bivariate polynomial of degree t in both the variables passing through s means the constant
term being s and passing through this f; (X), f,(X), ..., f;(X) and g,(Y), g2(Y),.., g:(Y)

respectively.
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So, with that | end this lecture again, | use this paper to discuss the properties for today’s

lecture.

Thank you.



