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Bivariate Polynomials Over Finite Fields: II 

 

Hello everyone, welcome to this lecture. So, in this lecture we will continue our discussion 

regarding Bivariate Polynomials Over Finite Fields. 
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Namely, we will prove a lemma which I call as the privacy lemma which will be later 

useful when we will design verifiable secret sharing schemes based on bivariate 

polynomials. 
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So, imagine you are given a field and I take a value 𝑠. I want to find out all bivariate 

polynomials of degree 𝑡 in variable 𝑋 and 𝑌 where there is no restriction on the coefficients 

except that the constant term should be this value 𝑠.  

So, I am fixing the value 𝑠 it should be the constant term of the bivariate polynomial 

remaining all other terms could be remaining all other coefficients could be any element 

from the field. So, there will be several such polynomials in fact, each polynomial will 

have the following form there is no restriction on the coefficient of 

𝑋0𝑌1, … , 𝑋0𝑌𝑡, … . , 𝑋𝑡𝑌𝑡 and so, on. 

The only restriction is that the coefficient of 𝑋0𝑌0 is set to be 𝑠. So, all such polynomials 

will be constituting a set I denote that set as this set ℬ and in the superscript we have 𝑠, 𝑡. 

So, this set will denote a set of all bivariate polynomials and from now onwards I will not 

be saying that the degree is 𝑡 in both the variables or degree 𝑡 in 𝑋 and degrees 𝑡 in y. 

I will just say that the degrees of both 𝑋 and 𝑌 variable is 𝑡. So, the set of all bivariate 

polynomials of degree 𝑡 with constant coefficient being 𝑠 will be denoted by this set and 

how many polynomials will be belonging to this set? Well, there will be these many 

polynomials the |𝔽|(𝑡+1)2−1 this is because there is a total of (𝑡 + 1)2 coefficients. 

For 𝐹(𝑋, 𝑌) if I do not put any restriction on any of these coefficients, then for the first 

coefficient I can choose any element from the field as the first coefficient second 



coefficient again I can choose any element from the field and like that, but the constant 

coefficient here is fixed to be 𝑠 apart from that for each of the coefficients here I have field 

size number of options. I can take any element from the field to be the coefficient 𝑎01 

And independent of that I can take any element from the field as the coefficient 𝑎02 and 

independent of that I can take any element from the field as the coefficient 𝑎03. So, except 

the constant coefficient all other coefficients have field size number of options and if I 

ignore the constant coefficient, then I am left with these many number of coefficients 

namely (𝑡 + 1)2 − 1. 

And for each of those coefficients I have field size number of options that is why the total 

number of polynomials in this set namely the number of bivariate polynomials with 𝑠 being 

the constant term and degree being 𝑡 in both the variables will be this. 

So, let me demonstrate this with an example suppose I take 𝑡 is equal to 1, my field is ℤ3, 

ℤ3 means it will have the elements 0 1 and 2 all the operations are addition modulo 3 and 

multiplication modulo 3 and suppose I fixed the constant to 1, then there will be how many 

bivariate polynomials? Well, the field size here is 3. 

So, I will have 27 possible bivariate polynomials of degree 1 in both the 𝑋 and 𝑌 variable 

and where the constant coefficient constant term is 1 those polynomials are listed down 

here. So, you can see here this is a bivariate polynomial where all the coefficients are 0 

here 0 ⋅ 𝑋 + 0 ⋅ 𝑌 + 0 ⋅ 𝑋𝑌. Whereas this polynomial also has the constant term 1 where 

the coefficient of 𝑋0𝑌1 is 2, the coefficient of 𝑋1𝑌0 is 2 and the coefficient of 𝑋1𝑌1 is 2. 

Now imagine that I choose 𝑛 distinct nonzero evaluation points from the field I call them 

as evaluation points why I call them evaluation points? It will be clear very soon and 

among these 𝑛 evaluation points I focus on a subset of 𝑡 evaluation points. So, they can be 

any 𝑡 evaluation points the exact indices corresponding to those 𝑡 evaluation points which 

I am denoting by the set 𝐼, and now suppose I give you 𝑡 number of univariate polynomials 

in 𝑋 variable and 𝑡 number of univariate polynomials in 𝑌 variable corresponding to the 

indices in this index set 𝐼. 

And those 𝑋 and 𝑌 polynomials have the property that they are pairwise consistent. They 

are pairwise consistent in the sense that if I evaluate the 𝑖th 𝑋 polynomial and evaluate it 

at 𝑋 = 𝛼𝑗 then that value will be same as the 𝑗th 𝑌 polynomial evaluated at 𝑌 = 𝛼𝑖. If this 



condition is if these three conditions are satisfied namely you are given 𝑡 number of 𝑋 

univariate polynomials 𝑡 number of 𝑌 univariate polynomials the only condition is that 

they should correspond to the same indices within the index set 𝐼. 

And they should be pairwise consistent then for every element for every value from the 

field I can find a unique bivariate polynomial of degree 𝑡 with 𝑠 being the constant term 

which passes through this given 𝑋 univariate polynomials and 𝑌 univariate polynomials. 

So, it might look very confusing on the first look, but let me try to explain it in a simpler 

term.  

We know that for the univariate world we have seen the following property. Given 𝑡 

distinct points given 𝑡 distinct points in a 2 D plane over where the points are over the field 

and any value 𝑠 from the field there is a unique 𝑡 degree univariate polynomial, there is a 

unique 𝑡 degree univariate polynomial with 𝑠 being the constant term passing through the 

given 𝑡 points that is well known we have proved that in the context of univariate 

polynomials. 

I give you 𝑡 points in the two dimensional plane and any value 𝑠 then I can always find a 

unique 𝑡 degree univariate polynomial whose constant term will be 𝑠 and which passes 

through those given 𝑡 distinct points because when I say that its constant term will be 𝑠 

namely, I am fixing the point (0, 𝑠) on the curve and anyhow they have to pass through 

the remaining 𝑡 given points. 

So, together they constitute 𝑡 + 1 distinct points and through 𝑡 + 1 distinct points I can 

find a unique univariate polynomial. Now I am just trying to extend that concept that 

property in the context of bivariate polynomial. So, I am fixing a value 𝑠 that has to be the 

constant term of the bivariate polynomial which I want to find out and I am asking that I 

am also fixing 𝑡 pairs of 𝑋 univariate polynomials and 𝑌 univariate polynomials which are 

pairwise consistent. 

So, I am now given two criteria. The constant term of the bivariate polynomial should be 

the given value 𝑠 and they should pass through the 𝑡 number of 𝑋 univariate polynomials 

and 𝑡 number of 𝑌 univariate polynomials which are pairwise consistent. The claim is you 

can find only one such univariate only one such bivariate polynomial you cannot find 

multiple bivariate polynomials. 



(Refer Slide Time: 11:46) 

 

So, let me first demonstrate this property and then we will prove it formally. So, this is 

what we want to claim to understand a statement again let us take the field ℤ3 and suppose 

I fix the index set to be 1 and evaluation point corresponding to that index set is 2; that 

means, there would have been multiple evaluation points 𝛼1, 𝛼2, 𝛼3 well since this field 

has only 3 elements I can choose 3 distinct evaluation points. 

Then my I could be either the first evaluation point or my I could be the second evaluation 

point or the third evaluation point because the set 𝐼 corresponds to 𝑡 evaluation points and 

𝑡 is equal to 1 here. So, I am taking the case where 𝐼 is equal to 1; that means, I am focusing 

on the first evaluation point and suppose my first evaluation point is 2, I am given here 

one 𝑋 polynomial and one 𝑌 polynomial. 
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And you can see that this 𝑋 polynomial and this 𝑌 polynomial they are pairwise consistent 

namely f 1 evaluated at 𝛼1 is same as g 1 evaluated at 𝛼1. So, what will be 𝑓1 evaluated at 

𝛼1? 𝛼1 is 2. So, 𝑓1 evaluated at 2 will be (1 + 2 ⋅ 2 + 1) modulo 3 is 2 and what will be 

𝑔1 evaluated at 𝛼1? g 1 evaluated at 𝛼1 will be 𝑔1 evaluated at 2 which will be 2. 

So, the pairwise consistency is guaranteed here, and we do not have more indices in this 

index set alpha. So, we just want to have this condition being satisfied which is holding 

here. So, now, what I will show is, you take any value from this field ℤ3 corresponding to 

that value there will be 1 and 1 only one bivariate polynomial of degree 1 whose constant 

term will be the value which you want to fix. And that bivariate polynomial when 

evaluated at this evaluation point 𝛼1 being 2 will give you these two univariate 

polynomials. 



(Refer Slide Time: 14:29) 

 

So, there are several ways. So, this is the set of all 1-degree bivariate polynomial all 1-

degree bivariate polynomials with 0 being the constant. In the same way this is the set of 

all bivariate polynomials of degree 1 with 1 being the constant term. 

And this is the set of all bivariate polynomials of degree 1 with 2 being the constant term. 

Now you have fixed your evaluation point (𝛼1, 2) and you are fixing these two univariate 

polynomials which are pairwise consistent. Now among all the bivariate polynomials 

whose constant term is 0, there is 1 and only one bivariate polynomial namely this 

highlighted bivariate polynomial which when evaluated at 𝑋 = 𝛼1 and which when 

evaluated at 𝑌 equal to alpha 1 would have produced these two univariate polynomials. 

You can verify that. 

So, 0 + 2𝑌 + 𝑋𝑌 when I evaluate it at 𝑋 = 𝛼1 and 𝛼1 is 2 here. So, let us substitute 𝑋 =

2. So, it will become 0 + 2𝑌 + 2𝑌 = 0 + 4𝑌 which in the field ℤ3 turns out to be 𝑦 only 

because 4 becomes 4 modulo 3. So, indeed this polynomial evaluated at 𝑋 = 𝛼1 gives you 

this 𝑌 univariate polynomial. 

And now let us evaluate this bivariate polynomial at 𝑌 =  𝛼1 namely 𝑌 equal to 2. So, at 

𝑌 equal to 2 it will be 0 + 2 ⋅ 2 + 2𝑋 = 2𝑋 + 1. Now, let us fix 𝑠 being 1. Now there are 

several bivariate polynomials of degree 1 whose constant term is 1. In fact, here you have 

27 such polynomials. 



Now, among those 27 polynomials it is only this highlighted polynomial which when 

evaluated at 𝑋 = 2 and when evaluated at 𝑌 = 2 would have produced this 𝑓1(𝑋) 

polynomial and 𝑔1(𝑌) polynomial and in the same way let us set 𝑠 equal to 2. There are 

27 possible bivariate polynomials whose constant term is 2 and where the degree of 𝑋 and 

𝑌 is 1. 

Among all those 27 polynomials there is only one bivariate polynomial which 
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will produce 𝑔1(𝑌) namely 𝑌 and when evaluated at 𝑌 =  𝛼1 which is 2 will produce the 

polynomial 1 + 2𝑋. So, at least through demonstration it seems that this property is 

correct, but just because it works for one example one case this property need not hold for 

other cases or in general we have to prove it. That this holds in general always. 
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So, what is the statement? You are given 𝑛 distinct nonzero evaluation points among those 

𝑛 distinct non zero evaluation points you are fixed you are focusing only a subset of 𝑡 

evaluation points. Now corresponding to those 𝑡 evaluation points you are given 𝑡 number 

of univariate polynomials in 𝑋 and 𝑌 of course, of degree 𝑡 which are pairwise consistent 

corresponding to those indices in the index set which you are focusing on. 

Then the claim is that for every element from the field there is one and only one bivariate 

polynomial of degree 𝑡 in both the variables with that 𝑠 being the constant term and which 

passes through the 𝑋 and 𝑌 univariate polynomials corresponding to the indices in your 

index set 𝐼. So, as I said that this index set 𝐼 could include any of the 𝑡 evaluation points 

from 𝛼1, … , 𝛼𝑛. 

It could be the first 𝑡 evaluation points it could be the last 𝑡 evaluation points it could be 

say for instance 𝛼1, 𝛼2, 𝛼3, 𝛼4 and so, on. 
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So, we can prove the theorem for any index set of size 𝑡, but for simplicity and to avoid 

the complication of notations, let me prove it for the simpler case when the 𝑡 evaluation 

points are the first 𝑡 evaluation points, but I stress that this is without loss of generality. 

Whatever I am explaining here that holds even if those 𝑡 evaluation points are not the first 

𝑡 consecutive evaluation points. What we want to show here? We want to show that you 

take any value from the field for 𝑠 corresponding to that you can find one and only one 

bivariate polynomial of degree 𝑡 in both the variables and whose constant term is 𝑠 which 

passes through the first 𝑋 univariate polynomial the second 𝑋 univariate polynomial and 

the 𝑡th 𝑋 univariate polynomials. 

From where you get this 𝑡 univariate polynomials? Well, we are getting them because I 

am assuming that the index set of size 𝑡 which we are considering as the first 𝑡 evaluation 

points. So, corresponding to these two evaluation points you will be given 

𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑡(𝑋) you are given that you are given those 𝑡 arbitrary 𝑋 polynomials 

and you are given also 𝑡 arbitrary 𝑌 polynomials. 

Of course, all the degrees are here 𝑡 when I do not say explicitly you have to assume here 

that the degrees are 𝑡 here if it is univariate polynomial, then the degree is 𝑡 in that variable 

if the bivariate then the degrees 𝑡 in both the variables. So, you are given 𝑡 number of 𝑋 

polynomials, 𝑡 number of 𝑌 polynomials and they are pairwise consistent. Pairwise 



consistent means that 𝑓𝑖 at 𝛼𝑗 is given to be 𝑔𝑗 polynomial evaluated at 𝛼𝑖 for all 

𝛼𝑖, 𝛼𝑗  belonging to 𝛼1 … , 𝛼𝑡. 

Why 𝛼1 … , 𝛼𝑡? Because I am fixing my I to be the subset of first 𝑡 evaluation points.  

So, we want to show that for every 𝑠 from the field you can find a unique bivariate 

polynomial of degree 𝑡 with that 𝑠 being the constant term and which passes through the 

given 𝑡 𝑋 univariate polynomials and 𝑌 univariate polynomials when I say passes; that 

means, (𝑓1(𝑋), 𝛼1) constitutes or lie on this bivariate polynomial (𝑓2(𝑋), 𝛼2) lie on that 

bivariate polynomial (𝑓𝑡(𝑋), 𝛼𝑡) lie on the bivariate polynomial I means when I evaluate 

this bivariate polynomial at 𝑌 = 𝛼1, 𝑌 = 𝛼2, … , 𝑌 = 𝛼𝑡 I should get 

𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑡(𝑋). 

In the same way (𝛼1, 𝑔1(𝑌)), (𝛼2, 𝑔2(𝑌)), … , (𝛼𝑡, 𝑔𝑡(𝑌)) should also lie on that bivariate 

polynomial lie in the sense that when I evaluate this bivariate polynomial at 𝑋 =

𝛼1, 𝑋 = 𝛼2, … , 𝑋 = 𝛼𝑡 I should get 𝑔1(𝑌), 𝑔2(𝑌), … , 𝑔𝑡(𝑌)respectively. So, let us prove 

this. So, how many points on the bivariate polynomial? That bivariate polynomial 𝐹(𝑋, 𝑌) 

which you want to find out you are fixing. 

Well, you are fixing it is constant term because you want that the constant term of that 

bivariate polynomial should be 𝑠; that means, you are fixing the point 𝐹(0,0) and now you 

want that bivariate polynomial 𝐹(𝑋, 𝑌) when evaluated at 𝛼1 should give you 𝑓1(𝑋). Now 

if I evaluate this polynomial 𝑓1(𝑋) further at 𝑋 = 𝛼1, 𝑋 = 𝛼2, … , 𝑋 = 𝛼𝑡+1 then they 

contribute basically 2𝑡 + 1 distinct points on that unknown bivariate polynomial. 

So, you have already fixed one point on that unknown bivariate polynomial, but by putting 

this constraint by putting the constraint that that bivariate polynomial when evaluated at 

𝑌 =  𝛼1 should give you 𝑓1(𝑋) you are actually fixing 𝑡 + 1 more points on that bivariate 

polynomial because when I evaluate this bivariate when I evaluate this 𝑓1 polynomial at 

𝑋 = 𝛼1 that is nothing but the point 𝐹 evaluated at (𝛼1, 𝛼1). 

So, this is nothing but the point 𝑓1 evaluated at 𝑋 = 𝛼1 in the same way when I evaluate 

the when I evaluate the univariate polynomial 𝑓1 at 𝑋 = 𝛼2 that is nothing but one more 

distinct point on that unknown bivariate polynomial and like that when I evaluate this 𝑓1 



polynomial at 𝑋 = 𝛼𝑡+1 that basically gives me one more distinct point on that unknown 

bivariate polynomial. 

So, by setting this constraint that that unknown bivariate polynomial when evaluated at y 

equal to 𝛼1 should give me 𝑓1(𝑋) polynomial I am basically fixing 𝑡 + 1 distinct points 

on that unknown bivariate polynomial ok I am setting this constraint. I am basically setting 

the constraint that you are anyhow given 𝑓1(𝑋) and if you are given 𝑓1(𝑋) then basically 

all the points which I have highlighted here you are given those points. 

You are given those points and you are basically fixing those points to lie on the unknown 

bivariate polynomial. 
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In the same way you want that unknown bivariate polynomial to pass through (𝑓2(𝑋), 𝛼2) 

namely you want that unknown bivariate polynomial when evaluated at 𝑌 = 𝛼2 should 

give you 𝑓2(𝑋). Now 𝑓2(𝑋) is given to you and if 𝑓2(𝑋) is given to you then you are 

basically given the second highlighted row here right. 

Because you can evaluate 𝑓2 at 𝑋 = 𝛼1, 𝑋 = 𝛼2, … , 𝑋 = 𝛼𝑡+1 and now because of the 

second constraint you are basically fixing 𝑡 + 1 new points on the unknown bivariate 

polynomial why they are new points? Because these points are different from the 𝑡 + 1 

points which you have fixed due to the first constraint namely the points which are there 

in the first row. 



So, basically what I am trying to do here is I am trying to find out how many points on that 

unknown bivariate polynomial you are fixing because of the various constraint. We have 

fixed the constant term because of this constraint that 𝑓1(𝑋) should lie on that unknown 

bivariate polynomial we have set the first row of this matrix consisting of 𝑡 + 1 points like 

that. 

Because of the second constraint that (𝑓2(𝑋), 𝛼2)  also should lie on the unknown bivariate 

polynomial we have set or we have fixed 𝑡 + 1 new distinct points on the bivariate 

polynomial and like that you have the 𝑡th constraint due to this 𝑋 polynomial the tth 

constraint is that that unknown bivariate polynomial when evaluated at 𝑌 = 𝛼𝑡 should give 

you the 𝑡th 𝑋 univariate polynomial which is given to you and that 𝑡th univariate 𝑋 

polynomial. 

If you evaluated at 𝑋 = 𝛼1, 𝑋 = 𝛼2, … , 𝑋 = 𝛼𝑡+1 basically gives you 𝑡 + 1 distinct points 

on that unknown bivariate polynomial. Why distinct? Because they will be different from 

all the points which you have fixed till now. So, what is the summary? So, till now we 

have fixed how many points? The constant is fixed 1 point through 𝑓1(𝑋) we have fixed 

𝑡 + 1 points through f sub 2 x we have fixed 𝑡 + 1 points and through the 𝑡th 𝑋 polynomial 

we have fixed 𝑡 + 1 points. 

So, 𝑡 ⋅ (𝑡 + 1) these many points on the unknown bivariate polynomial are fixed 1 because 

of the constraint on the constant term and because of the constraint at that unknown 

bivariate polynomial passes through (𝑓1(𝑋), 𝛼1), (𝑓2(𝑋), 𝛼2), … , (𝑓𝑡(𝑋), 𝛼𝑡). Now you see 

you also have constraints on that unknown bivariate polynomial in terms of the 𝑌 

univariate polynomials. 

They also have to satisfy, or they have to also these 𝑌 univariate polynomials also should 

lie on the same unknown bivariate polynomial. So, now, the interesting part here is that 

each of this 𝑡 𝑌 univariate polynomials they basically contribute to 𝑡 distinct points on that 

unknown bivariate polynomial why so? because when I say that the first 𝑌 univariate 

polynomial should lie on that unknown bivariate polynomial then; that means, that 

𝑔1(𝛼1) is nothing but that unknown unknow bivariate at (𝛼1, 𝛼1). 

𝑔1(𝛼2) is nothing but that unknown bivariate at (𝛼1, 𝛼2) and like that 𝑔1(𝛼𝑡+1) is same as 

that unknown bivariate polynomial at (𝛼1, 𝛼𝑡+1), but I have already fixed the first 𝑡 points 



in this column because of the constraint because of the constraints imposed by the 𝑋 

polynomials. I have already fixed them because I use the constraint that 𝑓1(𝑋) lies on that 

bivariate polynomial. 

That means I have already set 𝐹(𝛼1, 𝛼1) to be whatever 𝑓1 polynomial evaluates at 𝛼1 and 

𝑓1 polynomial evaluates it to alpha 1 is given to be 𝑔1 polynomial evaluated at 𝛼1 because 

of this pairwise consistency condition. In the same way the second point along this first 

column have been already fixed because the second point on the first column is nothing 

but 𝑓2 polynomial evaluated at 𝛼1. 

And that is given to be same as 𝑔1 polynomial evaluated at 𝛼2 due to this pairwise 

consistency; that means, when I am using this constraint on that bivariate polynomial 

unknown bivariate polynomial because of that I am now getting only one new point on the 

unknown bivariate polynomial namely the 𝑔1 univariate polynomial evaluated at 𝛼𝑡+1 

which I can find out is given to be same as the unknown bivariate polynomial evaluated at 

(𝛼1, 𝛼𝑡+1),. 

In the same way if I use the second constraint imposed by the 𝑔2 univariate polynomial 

that gives me that fixes one more distinct point on the bivariate polynomial and like that 

when I use the 𝑡th constraint here it fixes the 𝑡th point highlighted here. So, now, let us 

see how many points total we have fixed on that unknown bivariate polynomial and 

whether those points imply a unique bivariate polynomial of degree 𝑡 or many more 

bivariate polynomials more than 1. 

So, it turns out that through all these constraints. So, we have three different types of 

constraints 1 constraint imposed by the constant term namely we want the constant term 

of that unknown bivariate polynomial to be the value 𝑠. 
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And because of the constraints imposed by the 𝑋 univariate polynomials we have 𝑡 ⋅ (𝑡 +

1) distinct points and now because of the constraints imposed by the 𝑌 univariate 

polynomials. 

We are fixing 𝑡 more distinct points on the bivariate polynomials. So, all together they 

contribute to (𝑡 + 1)2 distinct points on the unknown bivariate polynomial. Now what is 

the degree of that unknown bivariate polynomial its degree is 𝑡 in both the variable 𝑋 and 

both variable 𝑌 and recall that in the last lecture we had discussed that if I give you (𝑡 + 1)2 

distant points on an unknown bivariate polynomial using them you can uniquely determine 

it. 

That means, through the given (𝑡 + 1)2 distinct points you cannot interpolate multiple 

bivariate polynomials of degree 𝑡 in both the variables that is simply not possible; that 

means, once I fix the constant term 𝑠 that constant term along with this 𝑡 number of 𝑋 

univariate polynomials and 𝑡 number of 𝑌 univariate polynomials which are guaranteed to 

be pairwise consistency implies a unique bivariate polynomial it does not imply multiple 

bivariate polynomials. 

So, that is one of the properties which we will use later to prove some more interesting 

properties and as I said earlier this is nothing but a generalization of the property which 

we had proved earlier in the context of univariate polynomials in the context of univariate 

polynomials we have proved that if I give you the points say (𝛼1, 𝑦1), (𝛼2, 𝑦2), … . , (𝛼𝑡, 𝑦𝑡) 



then these 𝑡 distinct points plus the point (0, 𝑠) implies a unique 𝑡 degree univariate f of 𝑋 

polynomial. 

Such that 𝑓(0) is 𝑠 and 𝑓(𝛼𝑖) is 𝑦𝑖. For the two-dimensional case the generalization is well 

the constant term is s; that means, the (0,0) point is 𝑠 and you are given 𝑡 number of 𝑋 

univariate polynomials 𝑡 number of 𝑌 univariate polynomials; that means, you are now, 

given 𝑡 pairs of 𝑋 univariate polynomials namely (𝑓1(𝑋), 𝛼1), … , (𝑓𝑡(𝑋), 𝛼𝑡). 
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And corresponding to the same alpha indices you are also given the 𝑌 

polynomials𝑔1(𝑌), 𝑔2(𝑌), … , 𝑔𝑡(𝑌), but they are not arbitrary 𝑋 and 𝑌 polynomials they 

are pairwise consistent 𝑋 and 𝑌 polynomials. Now you might be wondering why this pair 

wise consistency is imposed. If the pair wise consistency is not imposed, then this whatever 

argument we have given here does not hold. 

So, now the claim is that these 𝑡 pairs of 𝑋 and 𝑌 polynomials along with the fact that the 

point along with the fact that the bivariate polynomial at (0,0) gives 𝑠 implies a unique 

bivariate polynomial of degree 𝑡 in both the variables passing through 𝑠 means the constant 

term being 𝑠 and passing through this 𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑡(𝑋) and 𝑔1(𝑌), 𝑔2(𝑌), . . , 𝑔𝑡(𝑌) 

respectively. 
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So, with that I end this lecture again, I use this paper to discuss the properties for today’s 

lecture. 

Thank you. 


