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Lecture - 34
Bivariate Polynomials Over Finite Fields: I

So, in the next few lectures we are going to discuss about Bivariate Polynomials Over Finite

Fields and their properties which will be later useful for designing polynomial based

verifiable secret sharing schemes.

(Refer Slide Time: 00:35)

So, in this lecture specifically, we will discuss about the Lagrange’s interpolation in the

context of bivariate polynomials over a finite field.
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So, what are bivariate polynomials over a field? So, imagine you are given a field F with the

plus and dot operations. Then a t, t degree bivariate polynomial over the field is of the

following form ok. So, it is called bivariate because, it is a polynomial in two variables say X

and Y. Well, they can be any two variables, you can call them Y and Z or any variables.

So, I am calling the two variables as the variable X and a variable Y. And, we will be

specifically using a bivariate polynomial where the degree of the X variable will be t and the

degree of the Y variable will be t in the overall bivariate polynomial. So, the expansion of

this summation, you can interpret it as follows.
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So, you will have the constant coefficient a00, then you will have a term for X power 0 Y

power 1, its coefficient will be a01. Then, you will have a term with X power 0 Y power 2, its

coefficient will be a02. And, like that you will have a term with X power 0 Y to the power t,

its coefficient will be a0t. And, then you will have similarly terms like this.

And, then all the way to terms where you have X power t Y power 0, a term with X power t

Y power 1 and a term with X power t Y power t ok. So, you can imagine it as a

two-dimensional generalization of univariate polynomials. All of us are familiar with

univariate polynomials in one variable of degree t.

Now, we are extending that concept to two-dimensional polynomials, where the

two-dimensions are represented by two variables X and Y. And, all these coefficients a00,

a01, up to att will be elements of finite fields. And, all the plus operations and the dot

operations here in the expansion are your field plus and dot operations ok.

So, let us see some examples here. So, imagine you consider the field Z5. So, Z 5 will have

the elements 0, 1, 2, 3 and 4 and where all the addition operation is addition modulo 5 and

multiplication operation is multiplication modulo 5. Then, a bivariate, this is a bivariate

polynomial where you have the coefficients 2 1 3 1 3 4 and 2 respectively ok.

So, now if I want to find out the value of this polynomial, let us say at X equal to 1 and Y

equal to 1, then I can substitute the value in this polynomial and, remember all the plus and



multiplication operations are performed modulo 5, then the value of this bivariate polynomial

at X equal to 1 and Y equal to 1 will be 1. If I want to evaluate or find the value of this

bivariate polynomial at X equal to 2 and Y equal to 3, it will turn out to be 3 ok.

Now, imagine you are given a bivariate polynomial in two variables, as soon as I substitute

the value for one of the variables; the bivariate polynomial collapses or reduces to a

univariate polynomial. So, again for instance if I take the same example here, if I substitute Y

is equal to 1 in this bivariate polynomial, then you can see that the resultant polynomial will

be now a polynomial only in the variable X.

So, it is a univariate polynomial in X and since we are performing all the operations modulo

5, then in the field Z 5; element 5 is same as the element 0. So, that is why this 5 will vanish

off, 5 times X also will vanish off and 6 will be 6 modulo 5 which is 1. So, the value of this

bivariate polynomial at Y is equal to 1 will result in a univariate polynomial X square. On the

other hand, if I take the same bivariate polynomial and evaluate it at X equal 2, then I will

obtain a univariate polynomial in Y.

And, since we are performing all the operations modulo 5, the resultant polynomial will be

this. So, in general if we are given a t, t degree bivariate polynomial say F(X, Y); then F(X,

alpha i) will be a t degree univariate polynomial in X, where alpha i is some element from the

field. In the same way, if I substitute X equal to alpha i in a t, t degree bivariate polynomial,

then it collapses or reduces to a t degree univariate polynomial in Y ok.
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Now, we want to discuss the Lagrange’s interpolation for bivariate polynomials, but before

going into that let us quickly recall the Lagrange’s interpolation in the context of univariate

polynomials. So, we know that if we are given t plus 1 distinct points over a field, then I can

always find I can always interpolate a unique t degree polynomial over the field passing

through those given t plus 1 distinct points.

And, that unique polynomial can be obtained through several mechanisms, by solving a

system of linear equations or by using this nice Lagrange’s interpolation formula, where the

idea is to express that unknown curve f(X) as a linear combination of several t degree

polynomials.

So, the idea here is to express that unknown polynomial which you want to find out, which

you want to pass through the given t + 1 points, as a linear combination of several t degree

polynomials, to be more specific, t + 1 numbers of t degree polynomials, where the y

components of the given points serve as the linear combiners.

And, these t degree polynomials have some special properties. So, forδ
1

𝑋( ),  ⋯, δ
𝑡+1

𝑋( )

instance if I take the polynomial , then all the alpha components except alpha 1 will beδ
1

𝑋( )

the root of that polynomial whereas, at alpha 1 the polynomial should give you theδ
1

𝑋( ) 

value 1.

In general, if I take the ith delta polynomial then all the alpha components except alpha i

should be the root and at alpha i this polynomial should give the value 1. So, you canδ
𝑖

𝑋( )

see that each of these delta polynomials have t roots, that is why it is a t degree polynomial.

So, now, if we have these special delta polynomials, then it is easy to see that indeed f(X) is a

t degree polynomial.

Why it is a t degree polynomial? Because, it is summation or a linear combination of several t

degree polynomials and, indeed f(X) at alpha i will evaluate to y i, because all the delta

polynomials except the ith delta polynomial will vanish,δ
1

𝑋( ),  ⋯,  δ
𝑖−1

𝑋( ),  δ
𝑖+1

𝑋( ),  δ
𝑖

𝑋( )

will give the value 0 at X equal to alpha i. And, its only this ith term which will survive.

And, what will be the ith term if I substitute X equal to ? Well, it will give yi multipliedα
𝑖

with 1 which will be same as yi ok. Now, what is the form of this polynomial? We wantδ
𝑖

𝑋( )



that all the alpha components except should be the root. So, is the root, is the root,α
𝑖

α
1

α
2

is the root, is the root, is the root. And, we also want that at , it should giveα
𝑖−1

 α
𝑖+1

α
𝑡+1

α
𝑖

the value 1.

So, that is why in the denominator you have this term. I would like to stress that since this

polynomial is over a field, you should not treat it as numerator over denominator. So, the

denominator here will be a non-zero element from the field, say the denominator is ci. Then,

the polynomial is basically the numerator multiplied with inverse of ci ok.δ
𝑖

𝑋( )
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Now, we want to extend this Lagrange’s interpolation for bivariate polynomials and in fact,

we can extend, we can have a version of Lagrange’s interpolation for in fact, polynomials in

three variables, polynomials in four variables or polynomial in any number of variables. But,

in the context of verifiable secret sharing, we will be dealing only with polynomials in two

variables where, the degree of both the variables will be t.

So, what exactly the Lagrange’s interpolation formula for bivariate polynomial state? So,

there are two versions here. So, let us try to understand the first version. So, to understand

this, again let us go back to the case of the univariate polynomials. In the case of univariate

polynomials, we have seen that if you are given t + 1 distinct points, then you can always

pass a unique t degree polynomial passing through those t + 1 distinct points ok.



Now, I am not giving you t+1 distinct points, but rather I am giving you t + 1 polynomials,

where each polynomial has degree t and each of these polynomials is a polynomial in X

variable. So, you are given t + 1 number of t degree univariate polynomials in X ok. If you

are given such t degree univariate polynomials and the statement is that you can always find

the unique bivariate polynomial of degree t in each variable which when evaluated at

would have given you those univariate polynomials.α
1
, ⋯, α

𝑡+1

That means, pictorially you can imagine that say I am giving you one t degree univariate

polynomial, another t degree univariate polynomial. And, like that I am giving you t + 1

number of univariate polynomials. They may be same, they may be different, just they are

arbitrary t degree univariate polynomials in the X variable.

Then, using this t plus 1 number of univariate polynomials, I can always form a unique

bivariate polynomial of degree t in each variable, such that when I evaluate this bivariate

polynomial at Y is equal to , it will give me the ith univariate polynomial which I was givenα
𝑖

right.

So, on a very high level, it is a generalization of your Lagrange’s interpolation formula in one

variable right to two dimensions. So, in one dimension for the case of univariate polynomials

the statement was if I give you t + 1 points, you can find one polynomial, one unique

polynomial in one variable, passing through those points. Now, the points themselves are

polynomials in X variable. So, you have one polynomial , another polynomial ,𝑓
1
(𝑋) 𝑓

2
(𝑋)

another polynomial .𝑓
𝑡+1

(𝑋)

So, my statement is that through , I can find a unique(α
1
,  𝑓

1
(𝑋)) ⋯,  (α

𝑡+1
,  𝑓

𝑡+1
(𝑋))

bivariate polynomial F(X, Y) of degree t in both X and Y, that is the statement here. And,

again the idea here is to express that bivariate polynomial which we want to interpolate as a

linear combination of t + 1 number of bivariate polynomials of degree t in each variable,

where somehow these univariate polynomials serve as the linear𝑓
1

𝑋( ),  ⋯,  𝑓
𝑡+1

(𝑋)

combiners right.

So, more specifically we want to express that unknown bivariate polynomial F(X, Y) in this

form ok. And, here these delta polynomials will be some special polynomials, each of these

delta polynomial will be a t degree polynomial and it will have some special properties. So,



for instance if I take the first delta polynomial, then all the alpha components except alpha 1

should be the root of this delta 1 Y polynomial. And, this delta 1 polynomial evaluated at Y

equal to alpha 1 should give me a value 1.

So, since this delta 1 polynomial has t number of roots that automatically implies that its

degree will be t. In the same way, if I take the ith delta polynomial, it should have the

property that when evaluated at alpha i, this polynomial should give me the value 1. And, all

the remaining alpha values should serve as the root of this delta i polynomial.

So, again it has t number of roots; so, that is why its degree will be t. And, like that if I take

the t + 1th Y polynomial, then it should give me the value 1 at the t + 1th evaluation point

and all the remaining t evaluation point should be the root. So, that automatically implies that

the degree of this t + 1th Y polynomial is also t. And, now you can see that each of these

terms here is nothing but a bivariate polynomial of degree t in each variable.

Because, say for instance if I take this first term, then has degree t and has also𝑓
1

𝑋( ) δ
1

𝑌( )

degree t. And, if I multiplied these 2 t-degree univariate polynomials in X and Y, that will

actually result in a bivariate polynomial of degree t in each variable. So, each of these terms

is actually a bivariate polynomial of degree t in both the variables.

And, that automatically implies that this F(X, Y) polynomial is also a bivariate polynomial of

degree t in both the variables. Now, let us see what will be the value of this F(X, Y)

polynomial whether this is the correct polynomial or not. So, if I evaluate it at say , thenα
1

the first term here will be multiplied with evaluated at . But, evaluated𝑓
1

𝑋( ) δ
1

𝑌( ) α
1

δ
1

𝑌( )

at is nothing but 1. Now, if I take the second term for this F(X, Y) it will vanish.α
1
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Because, in the second term there will be contribution of polynomial andδ
2

𝑌( ) δ
2

𝑌( ) 

evaluated at will give you the value 0. So, the second term will be 0, the third term will beα
1

0, the fourth term will be 0. And, like that t + 1th term will be 0; that means, if I evaluate this

polynomial at , indeed I get and all other terms simply give you the value 0. Likeα
1

𝑓
1

𝑋( )

that you can verify that indeed this F(X, Y) is the correct polynomial.

Because, if I evaluate it at alpha i then it will give you the ith univariate polynomial which

you are given. So, that shows that ok, this is definitely a bivariate polynomial of degree t in

both the variables which satisfies the constraint that it passes through these univariate

polynomials. But, the theorem statement also says that there is only one such unique bivariate

polynomial in both the variables, passing through this given t + 1 univariate polynomials. We

have shown definitely one such polynomial is there.

Now, to show the uniqueness part; that means, there is only one such F(X, Y) polynomial and

you do not have any other polynomial (X, Y) which also passes through these univariate𝐹'

polynomials. Well, we can show the uniqueness part very easily. We can prove it by

contradiction.

So, imagine that there is other polynomial as well, then it turns out that the difference of these

two polynomials will be a 0 polynomial which automatically implies that polynomial is𝐹'



same as the F polynomial, that automatically implies that you have only one such unique

polynomial possible. So, I am not going through the uniqueness part that is very easy to

prove.
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So, now, what will be the form for these delta polynomials which have these properties?

Well, we already now know what should be the form of the delta polynomials as per our

requirement. So, the requirement from polynomial was that should not be the rootδ
𝑖
(𝑋) α

𝑖

and should be the roots.α
1
,  ⋯, α

𝑖−1
,  α

𝑖+1, ⋯,α
𝑡+1

That means, all the evaluation points among thes t + 1 evaluation points except the ith

evaluation point should be the root. So, that is why in the numerator you will have these

terms and we also want that at , this polynomial should give you the value 1. So, thatα
𝑖

δ
𝑖
(𝑋)

is why in the denominator, we will have the product like this. And, since all the evaluation

points are distinct; that means, the denominator is a non-zero element; that means, its inverse

exists and that is why this is a valid polynomial.
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Now, let us see the other version of the Lagrange's interpolation for bivariate polynomials.

Well, actually this is not a different statement, it is just a different way of interpreting the

univariate polynomials. In the previous statement, we interpreted the given univariate

polynomials as polynomials in X variable. Now, the statement is that imagine you are given t

+ 1 number of univariate polynomials in Y variable.

It is just a renaming of the variables, previously you were given t + 1 number of univariate

polynomials in X variable. Since, its a variable I can interpret them as a polynomial in Y

variable as well. Then, the statement says that I can always pass a unique bivariate

polynomial of degree t in both the variables passing through these given univariate

polynomials. Namely, passing through , .(α
1
,  𝑔

1
(𝑌)) ⋯,  (α

𝑡+1
,  𝑔

𝑡+1
(𝑌))

And, again the idea remains the same; we have to express that unknown polynomial as a

linear combination or as a summation of several bivariate polynomials; to be more specific t

+ 1 number of bivariate polynomials which will have these forms. And, here if I take the ith

delta polynomial in X, should not be its root. So, at it should give the value 1 and for allα
𝑖

α
𝑖

the remaining evaluation points, all the remaining evaluation points should be the root of this

polynomial.𝑔
𝑖
(𝑌)
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Now, what will be the form of the g i Y polynomial? Will it be the same as the form of the

delta i X polynomial? It is same as the delta i X polynomial that we had seen in the previous

slide except that now we have to interpret the X variable as the Y variable right.

(Refer Slide Time: 26:15)

So, now, let us see a demonstration for the Lagrange’s interpolation. So, for the purpose of

demonstration I choose this field and say t is equal to 1 ok. Now, suppose I take two

evaluation points alpha 1 and alpha 2, those evaluation points are distinct non zero elements.

So, I can take them to be any pair of distinct elements from the field. Suppose, I take them to



2 and 3 and suppose I am given two arbitrary univariate polynomials of degree 1, because t is

equal to 1, in X variable.

Now, my goal is to find the unique bivariate polynomial of degree 1 in both the variables

passing through these given univariate polynomials. Namely, that bivariate polynomial when

evaluated at the first evaluation point alpha 1, should give me the first univariate polynomial.

And, this bivariate polynomial when evaluated at second evaluation point alpha 2 should give

me the second univariate polynomial.

So, what I will do? I will apply the Lagrange’s interpolation. So, this is my polynomialδ
1
(𝑌)

and this is my polynomial. Since, I am performing all the operations over the field;δ
2
(𝑌)

now you can see in the denominator I have 2 minus 3, which is minus 1, and minus 1 over the

field Z 5 is nothing but 5 minus 1 which is 4 ok. And, division by 4 is nothing but

multiplying the numerator with the multiplicative inverse of 4.

So, what will be the multiplicative inverse of 4? The multiplicative inverse of 4 will be 4

because, 4 into 4 is 16, 16 modulo 5 is 1. So, basically this term is nothing but 3 X into 4 into

Y plus 2 and so on. And, remember all the plus and multiplication operations are performed

modulo 5. So, after solving this will be the resultant bivariate polynomials of degree 1 in both

the variables.

So, you might be saying that how can it be a bivariate polynomial of degree 1 in both the

variable, because we do not have a term like X times Y, namely X power 1 Y power 1. Well,

we do have a term here whose with the coefficient 0 ok. In fact, we also have a term yeah so,

yeah. So, this is the actual bivariate polynomial ok. Now, again let us take the same case,

where we have t is equal to 1 and now suppose my evaluation points are 1 and 4.

The first evaluation point is 1, the second evaluation point is 4 and you are given two

arbitrary univariate polynomials in variable Y, both of degree 1. And, my goal is to find the

unique bivariate polynomial of degree 1 in both the variables which when evaluated at the

first evaluation point gives me the first given univariate polynomial.

And, when evaluated at the second evaluation point gives me the second univariate

polynomial. Namely, I want to pass them through alpha 1 comma g 1 Y and alpha 2 g 2 Y.

So, now, the Lagrange’s interpolation will be this. So, this one polynomial will be your delta

sub 1 X polynomial and this polynomial will be your delta sub 2 polynomial.



And, then if I solve further where all the operations are considered over the field Z 5, this will

be the resultant bivariate polynomial. You can verify that, indeed if I evaluate this polynomial

at X equal to alpha 1, if I evaluate it at X equal to alpha 1 and alpha 1 is 1; that means, I have

to substitute X equal to 1 here.

So, it will give me 2 plus 4 Y plus 3 into 1 is 3 and 3 plus 2 is 5, 5 vanishes. So, what is left is

4 Y and 4 Y is nothing but 0 plus 4 Y. In the same way, if I evaluate this polynomial at the

second evaluation point namely at X equal to alpha 2 and alpha 2 is equal to 4 in this case.

That means, if I substitute the value of X equal to 4 here, then I will get 2 plus 4 Y plus 3

times 4 which is 12, 12 modulo 5 is 2. So, 2 plus 2 is 4, 4 plus 4 Y that is the requirement ok.
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Now, let us also consider another property of bivariate polynomials here. Namely, the matrix

view of the bivariate polynomials which will later be useful when we will discuss the VSS

schemes. So, imagine you are given a bivariate polynomial of degree t in both the variables.

So, how many coefficients are there in this formula? There are total t plus 1 square

coefficients ok; because, your i ranges from 0 to t and j ranges from 0 to t. Now, imagine you

are given n distinct evaluation points alpha 1 to alpha n all distinct.

So, if I evaluate this bivariate polynomial by changing X from alpha 1 to alpha n and Y from

alpha 1 to alpha n, basically I get a matrix of n cross n values. And, why I am calling it as a

matrix, because if I focus on the value in the ith row here, then it has a special property.



It has a special property in the sense that, the values here among these n square values, if I

focus on the values in the ith row then they basically lie on a univariate polynomial in X

variable, namely the polynomial F(X, alpha i), which I denote by fi(X) polynomial.

I will often call it as the ith row polynomial because, when I evaluate this polynomial fi(X) at

X equal to alpha 1, alpha 2, alpha n, I get the values along the ith row in this matrix. Well,

this is not a matrix in true sense, but we can imagine it as a matrix with n rows and n

columns. And, what I am claiming here is that if I focus on the values along the ith row, then

all of them lie on the univariate polynomial F(X, alpha i) which I denote as f sub i X.

So, for instance all these values F(alpha 1, alpha 1), F(alpha 2, alpha 1), F(alpha j, alpha 1),

F(alpha n, alpha 1), all of them lie on f1(X).

Because, f 1 of X as per my definition is nothing but the bivariate polynomial evaluated at Y

equal to alpha 1. And, remember as soon as I substitute the value of Y, then the bivariate

polynomial collapses or reduces to a univariate polynomial of degree t in the X variable.

So, I am calling the univariate polynomial which I obtain by substituting Y equal to alpha i as

the ith row polynomial. The term row signifies here that if I further evaluate that polynomial

at X equal to alpha 1, alpha 2, alpha n, then basically I will obtain the values which are there

along the ith row of this matrix.
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And, in the same way what I can do is, I can have a column view as well; that means, if I now

consider the jth column here, the jth column of the matrix; then those values also lie on some

t degree polynomial. They basically lie on the univariate polynomial evaluated at X equal to

alpha j. So, it will be a univariate polynomial of degree t in the Y variable, I call it as the jth

column polynomial and represented by ok.𝑔
𝑗
(𝑌)

So, if this polynomial which is F(alpha j, Y), then when I further evaluate that𝑔
𝑗
(𝑌)

polynomial at Y equal to alpha 1, I will get the first value along the jth column. If I evaluate

at Y equal to alpha 2, then I get the second value along the jth column. If I evaluate at Y

equal to alpha i, I obtain the ith value along the jth column. And, I evaluate it at Y equal to n

then I obtain the nth value along the jth column ok.

So, this will be an important way of viewing the points on the bivariate polynomials. Now, it

turns out that any subset of points in this matrix uniquely determine the bivariate(𝑡 + 1)2

polynomial. It something similar to what we have for the univariate polynomials.

For the univariate polynomials, we know that if I give you t + 1 points on that univariate

polynomial, then you can always find it out uniquely. You can always apply the Lagrange’s

interpolation formula and uniquely find it out or you can solve a system of linear equations.

Because, that unknown univariate polynomial will have t + 1 coefficients and the t + 1 points

basically gives you t + 1 equations in t + 1 variables using which you can solve. In the same

way, how many coefficients are there in this bivariate polynomial? We have (𝑡 + 1)2 

coefficients.

So, now, if I do not tell you the bivariate polynomial; that means, I do not tell you the value

of the coefficients, but instead I give you points from this matrix. Any(𝑡 + 1)2 (𝑡 + 1)2

, they need not be the consecutive values, they need not lie on the same row, column(𝑡 + 1)2

etcetera.

They are just arbitrary subset of distinct points from this matrix. The claim is that(𝑡 + 1)2

those points are sufficient to uniquely determine the bivariate polynomial, because using

these distinct points, you can form equations in the unknown(𝑡 + 1)2 (𝑡 + 1)2 (𝑡 + 1)2 

coefficients which you have. And, then by solving a system of linear equations over the finite



field, you can find out the value of each of these coefficients and hence the bivariate

polynomial.

Another property which will be later useful in the context of verifiable secret sharing is this

pair wise consistency property. You can see here that there is this highlighted value; it is a

common value which appears both on the ith row polynomial as well as on the jth column

polynomial.

That means, if I evaluate the ith row polynomial at X equal to alpha j, then I will get this

highlighted value. And, at the same time if I take the jth column polynomial and evaluate it at

alpha i, then also I will obtain this highlighted value ok. So, this is a property which holds for

any bivariate polynomial of degree t in both the variables ok.
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So, with that I end this lecture. So, there are some nice references from where you can find

out the properties of bivariate polynomials. In fact, there are several other properties for

bivariate polynomials, but we do not require all of them; in the context of VSS whatever we

require, we have discussed some of them. And, in the follow up lecture, we will discuss more

of those properties. So, all the properties which I have discussed in today’s lecture, you can

find in this paper ok.

Thank you.


