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Hello everyone, welcome to this lecture. So, in this lecture, we will have a Recap of the 

BGW MPC Protocol for Passive Corruptions. So, for the full details of the BGW MPC 

protocol for passive corruptions, you are referred to the secure computation part I course; 

we will see the exact reference at the end of the lecture. 
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So, the plan for the lecture is as follows; we will try to understand the principle behind the 

BGW MPC protocol, namely the shared circuit evaluation. 
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So, what is the setting of the BGW MPC protocol? So, BGW MPC protocol was invented 

by Ben or, Shafi Goldwasser and Avi Wigderson, so that is why the name BGW; it was 

published in 1988. And what is the setting considered in this MPC protocol? So, recall that 

the problem of secure computation or MPC can be studied in various domain, various 

dimensions depending upon how you are abstracting your underlying function to be 

securely computed.  

What is the type of underlying network, what is the corruption capacity of the adversary, 

whether the adversary is computationally bounded or unbounded, whether the adversary 

is corrupting in a passive fashion or malicious fashion and whether the adversary static or 

adaptive? 

So, the exact dimensions studied captured in the BGW protocol is as follows. So, it is for 

arithmetic circuits; for the synchronous communication model, where the corruption 

capacity of the adversary is threshold and adversary is computationally unbounded and the 

protocol, the BGW protocol, was designed both for passive as well as malicious or active 

corruptions. 

And it considered static adversarial setting; but the security of the BGW protocol can also 

be proved against the more powerful adaptive adversary. So, the level of security which is 

provided or achieved by the BGW protocol is perfect security, often called as 



unconditional security or information theoretic security and it is the first MPC protocol 

with these guarantees.  

So, the setup assumed in the protocol is that of private channel model, namely we assume 

that every pair of parties have a secure channel between them over which they can securely 

communicate. We can instantiate this private channel model by running a PSMT protocol 

if your underlying communication network is an incomplete graph. 
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So, let us try to understand the arithmetic circuit abstraction first. So, as I said earlier BGW 

protocol is a generic MPC protocol, where the underlying function could be any function 

and we assume that the function which is to be securely computed is a function over some 

finite field, with some abstract + and abstract ⋅ operations. 

And we make several simplifying assumptions while presenting the BGW protocol; I stress 

that all these are simplifying assumptions and they hold without loss of generality. So, 

what are those assumptions? First, every party has a single input for the function.  

So, we assume that the function 𝑓 which the parties want to securely compute is an 𝑛-ary 

function, namely it takes 𝑛 inputs; one input is going to be provided by each party. So, the 

input of the 𝑖th party will be some field element 𝑥𝑖, which will be a private input known 

only to the party 𝑃𝑖. 



And the function is a single output function, but the function output is supposed to be 

learned by everyone. So, these are two simplifying assumptions, of course the protocol can 

be easily generalized for the case when every party has more than a single field element 

as input and where the function can have different outputs for different parties. 

And the third simplifying assumption is that the function is a deterministic function; that 

means internally during the computation, internally the function 𝑓 computes its output as 

a deterministic function of its input, that means the output will remain the same if the 

inputs are same. So, as I said these are some simplifying assumptions without loss of 

generality.  

So, even if every party has more than one input or if there are several outputs of the 

function, say 𝑛 outputs where the 𝑖th output is supposed to be known only by the 𝑖th party 

or if the function is a randomized function, all those things can be easily handled by the 

BGW protocol. So, since the function 𝑓 is an arbitrary function, we assume that the 

function 𝑓 is represented by some publicly known arithmetic circuit over the field. 
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And that circuit will have some gates over the field. So, let us try to understand the various 

gates here. So, the first layer of gates in the circuit will be the input gates, namely the 

respective input values of the parties. 



Then in the circuit, we can have some addition gates over the field. So, for instance this is 

an addition gate here, where the output of the gate is the addition of the inputs, where the 

addition is the underlying + underlying addition operation of the field. The circuit can also 

have some multiplication gates over the field; it can also have some gates where a 

multiplication is performed by some publicly known constant from the field and then we 

have the output value. 

So, depending upon what exactly is the function 𝑓 which the parties want to securely 

compute; we have a corresponding arithmetic circuit representation for the function 𝑓. And 

that arithmetic circuit will be publicly known, because the description of the function 𝑓 is 

publicly known. So, the function 𝑓 is publicly known that, automatically implies that the 

circuit is also publicly known. 

Now, you might be wondering is it possible to always represent any computable function  

𝑓 as an arithmetic circuit over some finite field, and the answer is yes; this arithmetic 

circuit abstraction is without loss of generality. Why so? So, when I say the parties want 

to securely compute a function, it is as good as saying that the parties want to perform 

some computation or run some algorithm that is abstracted by a function. 

Any algorithm or computation can be represented by an Boolean circuit consisting of some 

universal gates say the NAND gates and the NAND gate can be composed of AND 

negation gates or NOT gates. So, that Boolean circuit can be easily simulated by an 

equivalent arithmetic circuit over the field; that means whatever is the computation which 

is supposed to be carried out by that underlying Boolean circuit; corresponding to that 

Boolean circuit we can always find an arithmetic circuit, which also performs the same 

computation. 

How can we do that? Well, we can say the following: we take a field and that field will 

have the additive identity element 0. So, the bit 0 in the Boolean circuit can be mapped to 

the additive identity 0 of the field; in the same way the field will have a multiplicative 

identity element 1. So, the bit 1 in the Boolean circuit can be mapped to the identity 

element 1 of the field. 

And now wherever in the Boolean circuit, we have a negation gate that can be simulated 

by performing this operation over the field; that means corresponding to every NOT gate, 

we can write down a gate over a field, namely a subtraction gate. And remember over the 



field, there is no subtraction; subtraction is nothing, but adding with the additive inverse. 

So, we can simulate the effect of ¬𝑏 as 1 − 𝑏 using an arithmetic gate over the field with 

a + gate performing this operation. 

And wherever there is a Boolean and gate involving the bits 𝑎 and 𝑏; in the Boolean circuit 

that can be simulated by an arithmetic gate, where we perform the multiplication of the 

mapped 𝑎 and mapped 𝑏. So, that means corresponding to every Boolean circuit 𝐵𝑐𝑖𝑟, I 

can write down an arithmetic circuit where the size of the Boolean circuit and the 

arithmetic circuit will be almost the same, there would not be too much of blow up. 

That means if the original Boolean circuit is an efficient side circuit; that means it 

represents an efficient computation, then the corresponding arithmetic circuit is also an 

efficient circuit representing an efficient or polynomial time computation over the field. 

So, that is why this arithmetic circuit abstraction is without loss of generality; there is we 

are I am not making any sophisticated assumption by making by assuming that the circuit 

is represented by some arithmetic circuit over a finite field. 
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It turns out that computing the function 𝑓 over the inputs of the parties is equivalent to 

evaluating this arithmetic circuit over the inputs 𝑥1 … 𝑥𝑛; why so? This is because if the 

parties make their inputs 𝑥1 … 𝑥𝑛 public; then anyone can compute the output of the 

function by evaluating each gate.  



Namely if the values of 𝑥1, 𝑥2, 𝑥3, 𝑥4 is known publicly and then since the circuit is publicly 

known, everyone can find out what will be 𝐼1, everyone will be able to find out what is 𝐼2, 

everyone will be able to find out what is 𝐼3 and then everyone will be able to find out what 

is 𝑦 which is the corresponding function output. 

So, this is called circuit evaluation in clear. Why circuit evaluation in clear? Because the 

entire computation is performed over clear values; clear values in the sense that all the 

values during the circuit evaluation right from the input to the intermediate values are 

known to everyone. So, for instance if I take this example circuit which represents the 

computation, 𝑥1 + 𝑥2 and then you have product of 𝑥3 and 𝑥4 and then that is multiplied 

by 6, this is the function 𝑓. 

Now, if the parties publicly declare their inputs to be 4, 3, 6 and 0, assuming that the all 

the inputs are over the field ℤ7; ℤ7 means it has the elements 0 to 6 and all the addition 

operations are addition modulo 7 and all the multiplication operations are multiplication 

modulus 7, then anyone can find out what is the value of 𝑦. So, the value of 𝐼1 will be 0, 

because 4 + 3 over the fields ℤ7 will be 0; 6 into 0 will be 0, 0 into 0 is 0 and 0 into 6 is 

0. So, 0 is the function output. 

So, this is called circuit evaluation in clear. So, what we understood here is that, evaluating 

sorry computing the value of the function is equivalent to evaluating the arithmetic circuit 

over the inputs of the parties. But this process of circuit evaluation in clear violates the 

privacy requirement.  

Because the inputs of all the parties are publicly known, the inputs of all the parties are 

publicly known, but MPC requires that the part inputs of the parties should be remain 

should remain as private as possible. So, this is not the way to perform secure multi party 

computation. 
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So, the BGW protocol performs the circuit evaluation in a different way and the form of 

circuit evaluation done in the BGW protocol is called as the shared circuit evaluation. So, 

here is the idea of the shared circuit evaluation assuming that adversary is a passive 

adversary. And what is a passive adversary? By passive adversary I mean that the corrupt 

parties who are under the adversary’s control, they do not deviate from their protocol 

instructions. 

Whatever instructions they are supposed to follow as per the protocol, they follow that; 

they do not deviate from that. So, it is a weaker form of the adversary compared to the 

byzantine or malicious adversaries. Of course, we want to design the BGW protocol for 

malicious adversaries, which we will design soon; but right now, I am trying to explain 

you the idea used in the BGW protocol assuming that we are in the passive corruption 

model. 

So, this is so, I am demonstrating the idea assuming we have four parties here, out of which 

𝑡 could be corrupt in a passive fashion and where 𝑡 <
𝑛

2
. You might be wondering why this 

number 𝑡 <
𝑛

2
; again in the first part of the course we have proved that, this condition is a 

necessary condition if you want to design a perfectly secure MPC protocol in the presence 

of 𝑡 passive adversaries. 



So, that is why if you have 𝑛 = 4 parties, at most one of those four parties can be passively 

corrupt; then only the BGW protocol will provide you all the guarantees. If more than one 

party gets passively corrupt and the protocol may not provide you the required security 

guarantees. So, the parties will not be knowing well in advance who will be the 𝑡 corrupt 

parties; they only will have a bound on the number of corrupt parties, but they will not be 

knowing the exact identity of the 𝑡 corrupt parties. 

So, for instance it could be the first party who get corrupt or who get corrupted during the 

protocol execution, or it could be the second party, or it could be the third party or it could 

be the fourth party. So, instead of performing the circuit evaluation in clear, the BGW 

protocol will perform shared circuit evaluation and where each gate will be evaluated in a 

shared fashion. What that, what does that mean? 

So, to begin with the inputs of respective parties will be secret shared by the corresponding 

input owner. So, what does that mean? So, 𝑃1 owns the input 𝑥1; it will act as a dealer and 

invoke an instance of 𝑡 out of 𝑛 secret sharing scheme and secret share it is input. So, it 

will give a share of 𝑥1 to second party, to the third party, to the fourth party and one share 

it keeps with itself. So, let us call the shares of 𝑥1 as 𝑥11, 𝑥12, 𝑥13 and 𝑥14; these shares are 

computed by 𝑃1, because 𝑃1 is the owner of 𝑥1. 

So, it is now not giving the value of 𝑥1 to any single party; but rather it is giving a share 

of 𝑥1 to every party and those shares are computed randomly by running an instance of 𝑡 

out of 𝑛 secret sharing scheme. In the same way the second party who owns the input 𝑥2, 

it computes four shares for its input 𝑥2 and one share it provides to each party.  

So, the first party will be provided a share 𝑥21, the second party will be provided with a 

share 𝑥22, the third party will be provided with a share 𝑥23 and the fourth party will be 

provided a share 𝑥24. Same is done for the input 𝑥3 and the same is done for the input 𝑥4. 

Now, let us stop here for a moment and try to understand how much information an 

adversary who can corrupt up to 𝑡 parties, learn about the inputs of the other honest parties.  

So, it turns out that adversary will learn at most 𝑡 shares corresponding to the inputs of the 

honest parties; but those shares correspond to an instance of 𝑡 out of 𝑛 secret sharing 

scheme and privacy property of 𝑡 out of 𝑛 secret sharing scheme guarantees that even if 



up to 𝑡 shares are given, leaked, compromised, adversary will not learn what exactly was 

the underlying secret. 

That means for instance if 𝑃1 gets corrupt; then of course 𝑃1 will know 𝑥1, because x one 

is the input of 𝑃1. So, it will know its own input, but it will not be knowing 𝑥2; because for 

𝑥2 it will only learn the share 𝑥21 and the probability distribution of 𝑥21 will be 

independent of the exact value of 𝑥2.  

So, adversary will not be able to tell what is 𝑥2, adversary similarly will not be able to tell 

what is 𝑥3; because corresponding to 𝑥3, adversary learns only a single share here and in 

the same way adversary will not be able to tell what is 𝑥4. 

Because corresponding to 𝑥4, the adversary learns only a single share. So, that means if 

the inputs are secret shared in this way by the respective input owners, then the inputs of 

the honest parties; by honest parties I mean the parties who are not under adversary’s 

control, their inputs remain private, they are not leaked. 

Now, once the inputs for the function are secret shared, the parties next maintain the 

following BGW gate invariant for each gate in the circuit. They try to evaluate the gate in 

a secret shared fashion, where the gate invariant is the following. If the inputs of the gate 

are secret if the inputs of the gate are secret shared in a 𝑡 out of 𝑛 secret shared fashion; 

then the parties, then the protocol ensure that the parties have 𝑡 out of 𝑛 secret sharing of 

the gate output. 

That means the inputs of the gate were not available in clear and so, is the output of the 

gate. For the inputs of the gate each party had a single share and even for the output of the 

gate, somehow each party will have a single share, such that the vector of shares for the 

inputs of the gate and for the output of the gate correspond to an instance of a 𝑡 out of 𝑛 

secret sharing. So, what does that mean? 

So, the first gate in this circuit is this + gate; if 𝑥1 and 𝑥2 would have been provided in 

clear, as it would have happened during circuit evaluation in clear, everyone would have 

learned what is the value of 𝐼1, but now no single party knows the full value of 𝑥1 and 𝑥2, 

but everyone has a share for 𝑥1 and a share for 𝑥2. So, using the BGW protocol, the gate 

invariant will be maintained. How exactly that gate invariant is maintained? That is the 

crux of the BGW protocol and that we will discuss later. 



But now what happen what is going to happen is, each party will locally each party will 

perform some operations on its shares of 𝑥1 and 𝑥2 and that will ensure that each party 

gets a share of the intermediate value. So, that means the collectively the vector of shares 

𝐼11, 𝐼12, 𝐼13 and 𝐼14 correspond to a 𝑡 out of 𝑛 secret sharing of the exact intermediate value 

𝐼1. 

In the same way the gate invariant will be maintained for the next gate namely for this 

multiplication gate, the parties will perform some operation on their respective shares for 

the inputs of this multiplication gate. And somehow the parties will get respectively their 

shares for the output of this multiplication gate; namely 𝑃1 will have 𝐼21, 𝑃2 will now have 

𝐼22, 𝑃3 will have 𝐼23 and 𝑃4 will have 𝐼24, such that this vector 𝐼21, 𝐼22, 𝐼23 and 𝐼24 

corresponds to 𝑡 out of 𝑛 secret sharing of the exact intermediate value 𝐼2. 

And then they go to the next gate and again following the BGW protocol; they maintain 

the invariant for the next gate and like that once all the gates are evaluated as per the BGW 

protocol in this secret shared fashion, each party will be now available with a share for the 

output of the function. 

So, 𝑃1 will have a share 𝑦1, 𝑃2 will have a share on share 𝑦2, 𝑃3 will have a share 𝑦3 and 

𝑃4 will have a share 𝑦4. And once the shares for the output value are available; the parties 

exchange the shares, their respective shares for the output value by making those shares 

public. And once all the shares of the output value are made public, the parties can apply 

the reconstruction algorithm, or the reconstruction function of the underlying secret 

sharing and learn the function output. 

So, now you might be wondering how exactly this gate invariant is maintained; well as I 

said earlier that is the crux of the BGW protocol, maintaining that invariant may require 

interaction among the parties depending upon what is the type of 𝑡 out of 𝑛 secret sharing 

is used and what is the type of the gate, those details will be coming later. Now, intuitively 

this protocol maintains the privacy property, even if 𝑡 out of the 𝑛 parties get corrupt; 

because throughout the interaction, each value except the output value 𝑦 remains secret 

shared in a 𝑡 out of 𝑛 secret shared fashion. 

That means for each value namely 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝐼1, 𝐼2, 𝐼3 right all those values each party 

will have only one share and since adversary could corrupt up to 𝑡 parties; adversary will 



have 𝑡 shares for each of those values and those 𝑡 shares will not reveal the exact value of 

those values, the exact value of those 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝐼1, 𝐼2, 𝐼3. 

So, that ensures that the privacy is maintained; this is not like your circuit evaluation in 

clear. And interestingly the BGW protocol uses the 𝑡 out of 𝑛 Shamir secret sharing 

scheme, which we had seen earlier due to its linearity property. So, we will see what the 

linearity property is; due to this linearity property while maintaining the gate invariant, the 

parties need not have to interact while evaluating the linear gates in the circuit. 
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So, what is the linearity property? So, recall the Shamir’s secret sharing scheme is as 

follows; if you have a secret 𝑠 over the field which needs to be secret shared and if you 

have a publicly known setup, namely you have 𝑛 field elements which are publicly known, 

which are distinct and nonzero, then to share a secret 𝑠 what the dealer can do is the 

following. It can pick a random 𝑡 degree polynomial whose constant term is the secret to 

be secret shared and the share for the 𝑖th party is the evaluation of the polynomial or the 

value of the polynomial at 𝛼𝑖. 

Now, imagine there is another dealer who has secret shared a value 𝑠′ using an instance of 

Shamir secret sharing; for that it has picked a random 𝑡 degree polynomial, let me call that 

polynomial as the 𝐵 polynomial. The constant term of the 𝐵 polynomial is 𝑠′ and all other 

coefficients are randomly chosen and the shares for the secret 𝑠′ is generated by evaluating 

the 𝐵 polynomial at 𝛼1, 𝛼2, … , 𝛼𝑛 



So, imagine there is a publicly known value 𝑐 from the field and every party multiplies 

that value 𝑐 with its share of 𝑠; that will give a vector of values vector of 𝑛 values, where 

the 𝑖th component of that vector will be available only with the 𝑖th party. Now, collectively 

if I view this vector of new values 𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛; what does it constitute? It 

constitutes a 𝑡 out of 𝑛 secret sharing for the secret 𝑐 ⋅ 𝑠 

This is because if 𝑠1, 𝑠2, … , 𝑠𝑖, … , 𝑠𝑛 constitutes a vector of Shamir shares for the secret s, 

namely those values were lying on the polynomial 𝐴; then I can say that the values 

𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛  lies on a 𝑡 degree polynomial 𝑐 times the 𝐴 polynomial. So, the 𝑐 times 

𝐴 polynomial will be a 𝑡 degree polynomial and this 𝑐 times 𝐴 polynomial if I evaluated 

at if I evaluate it at 𝛼𝑖, this will give me the value 𝑣𝑖. 

So, that means collectively the vector of new values 𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛 constitutes 𝑡 out 

of 𝑛 secret sharing of 𝑐 ⋅ 𝑠; that means if a value 𝑠 is already secret shared among the 

parties and if there is a publicly known constant 𝑐 from the field, then to generate a secret 

sharing a 𝑡 out of 𝑛 secret sharing of the value 𝑐 ⋅ 𝑠, the parties need not have to interact. 

They can just multiply locally their respective shares of 𝑠 with this constant 𝑐 and that will 

give them their respective shares for the value 𝑐 ⋅ 𝑠 

So, that is what we mean by linearity operate operation here. In the same way if the parties 

want to compute a secret sharing of 𝑐 + 𝑠, where 𝑐 again is a constant from the field; then 

what the parties have to do? They do not have to interact with each other; each party can 

just go and locally add the value 𝑐 to its respective share of 𝑠. So, 𝑃𝑖 can add 𝑐 to its 

respective share of 𝑠, namely 𝑠𝑖 and that this operation will result in a vector of values; 

that vector of values will now lie on a polynomial whose degree is 𝑡 and whose 𝑖th point 

is the 𝑖th component in this vector. 

And in the same way if I want to generate, if the parties want to generate a 𝑡 out of 𝑛 

Shamir sharing of 𝑠 + 𝑠′, where 𝑠 and s prime are secret shared by instances of Shamir 

secret sharing; then again, the parties need not have to interact with each other, each party 

just must locally add its share of 𝑠 and s prime. 

That will give the party its share of 𝑠 + 𝑠′; because collectively now this vector 

𝑤1, 𝑤2, … , 𝑤𝑖, … , 𝑤𝑛 lies on 𝑡 degree polynomial, whose constant term is the sum of the 

constant terms of the 𝐴 and 𝐵 polynomial. The constant term of the 𝐴 polynomial was 𝑠, 



the constant term of the 𝐵 polynomial was 𝑠′; that is why the constant term of the 𝐴 + 𝐵 

polynomial will be 𝑠 + 𝑠′ and this 𝐴 + 𝐵 polynomial when evaluated at 𝛼𝑖, will give you 

𝑠𝑖 + 𝑠𝑖
′ which is nothing, but the 𝑖th component in this new vector. 

So, that is what we mean by the linearity of Shamir secret sharing. So, the linearity property 

basically tells us that, if you have inputs which are secret shared and if you want to perform 

any linear function, a publicly known linear function of those secret shared inputs; then 

that linear function can be computed in a non interactively non interactive fashion in the 

sense that, the parties can apply the same linear function on their respective shares of the 

inputs of the function and apply the same linear function on the shares of the input, that 

will give them there is corresponding shares of the output of that function, output of the 

linear function. 

So, this linearity of the Shamir secret sharing is a very powerful property, which takes care 

of maintaining the PGW gate invariant for the linear gates in the BGW protocol; of course, 

for the multiplication gates, we must do some more work, but we will come to that part 

later. 
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So, with that I end this lecture. So, these are the references used for today’s lecture they 

are up.  

Let us start sir. 



Ok, with that I end this lecture. So, there are plenty of references available for the detailed 

description and analysis of the BGW protocol, my personal favorite is this first one. And 

as I said, we had the secure computation part I course where we discussed only the passive 

corruptions. So, whatever I have discussed in the today’s lecture, you can find them in a 

more detailed fashion in the week 4 contents of the part I course which is available at the 

following URL. 

Thank you. 


