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Hello everyone. Welcome to this lecture. So, in this lecture we will see (𝑛, 𝑡)-star structure 

and a polynomial time algorithm for finding (𝑛, 𝑡)-star structure in a graph. The main 

reason for studying (𝑛, 𝑡)-star structure is that later we will use it to get to get an to get a 

domain extension protocol with polynomial computation cost. 
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So, recall the domain extension protocol that we had discussed in the last lecture with 

asymptotically communication cost of order of 𝑛ℓ bits. There the parties need to check 

whether there exist a clique of size at least 2𝑡 + 1 in the consistency graph and that step 

requires the parties to perform exponential amount of computation. The main motivation 

for studying (𝑛, 𝑡)-star is that we will instead check whether a core exists or not by 

checking whether an (𝑛, 𝑡)-star is present in the graph or not. 
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So, let us first formally define what do we mean by (𝑛, 𝑡)-star structure. The traditionally 

in a graph a star is defined as follows. We have a central node, a single central node to be 

more specific and that central node has an edge with every other node in the graph. The 

other nodes, the non-central nodes they may or may not have an edge among themselves; 

that is not required, but the central node has an edge with every other non-central node. 

Now, when we say (𝑛, 𝑡)-star structure in a graph then we are basically talking about 2 

sets, a set 𝒞 and a set 𝒟 and they should have the following properties. The set 𝒞 should 

have at least 𝑛 − 2𝑡 vertices, where 𝑡 is a parameter here for the (𝑛, 𝑡)-star. You have n 

vertices in total and 𝑡 is a parameter and we say that a pair of nodes 𝒞, 𝒟 constitute an 

(𝑛, 𝑡)-star if the following conditions hold. 

The set 𝒞 should have at least 𝑛 − 2𝑡 vertices,  and it should constitute a clique. Namely, 

all the vertices within the subset 𝒞 should have an edge among themselves. So, it is like 

saying the following, in traditional graph we have a single central node, but now we have 

𝑛 − 2𝑡 central nodes.  

All of them have an edge among themselves and then we have non-central nodes denoted 

by the set 𝒟, whose cardinality should be at least 𝑛 − 𝑡, such that the subset of nodes in 𝒞 

should be a subset of nodes in 𝒟. 

And, every node in 𝒞 should have an edge with every node in 𝒟. However, it is not 

required, it is not necessary that the parties in 𝒟 should have an edge among themselves; 

that means, there could be few parties in 𝒟 who are not in 𝒞 and they have no edge among 

themselves, that is fine. The only requirement is that every party in 𝒞 or every node in 𝒞 

to be more specific, every node in 𝒞 should have an edge with every node in 𝒟. 

So, as an example here we have a (7, 2)-star. We have 7 nodes and you can see that I can 

take this triangle {1, 2, 3} as the central clique and the subset {1, 2, 3, 4, 5} as the bigger 

subset 𝒟. So, every node within the subset 𝒞 has an edge with every other node in the 

subset 𝒞; that means, they constitute a clique. And, you see between every node in 𝒞 and 

every node in 𝒟 there is an edge. However, not all the nodes in 𝒟 have an edge among 

themselves. 

So, for instance there is no edge between the node 4 and 5, even though they are part of 𝒟. 

So, that is the definition of an (𝑛, 𝑡)-star. It is not necessary that every graph has an (𝑛, 𝑡)-



star. The graph may or may not have an (𝑛, 𝑡)-star. Now, the next question is how do we 

check whether a given graph has an (𝑛, 𝑡)-star or not and that too in polynomial amount 

of time? Of course, we can have an exponential time algorithm to check whether a given 

graph as an (𝑛, 𝑡)-star or not. 

Check every candidate 𝒞 and 𝒟 subsets of size 𝑛 − 2𝑡 and 𝑛 − 𝑡 and check whether these 

conditions are satisfied or not. If at all a graph has an (𝑛, 𝑡)-star then for 1 candidate 𝒞 and 

1 candidate D, you will get that all these conditions are satisfied and you will be able to 

find your (𝑛, 𝑡)-star t. But, going over all candidate subsets 𝒞 and 𝒟 will require 

exponential amount of computation. We are not interested in that algorithm, we want a 

polynomial time algorithm. 
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So, before going into the polynomial time algorithm we will see a related structure in the 

graph; this is complement of (𝑛, 𝑡)-star. So, a complement of (𝑛, 𝑡)-star will also be a pair 

of subsets of nodes 𝒞 and D. The cardinality of 𝒞 should be at least 𝑛 − 2𝑡. The cardinality 

of 𝒟 should be at least 𝑛 − 𝑡. The subset C, the set 𝒞 should be a subset of D. But, now 

there should be no edge between any node in 𝒞 and any node in 𝒞 ∪ 𝒟. So, an example of 

complement of (7, 2)-star is this graph. 

So, I can take the set 𝒞 to be {1, 2, 3}. So, you can see this triangle graph {1, 2, 3} has no 

edge; well it is not a triangle graph. If I take the subset {1, 2, 3} then it there is no edge 

between 1 and 2, 2 and 3 and 1 and 3 and I can take {1, 2, 3, 4, 5} as the subset D. So, 



there is no edge between any node in 𝒞 and any node in 𝒞 ∪ 𝒟. Of course, there might be 

now edges between a pair of nodes in 𝒟, who do not constitute a part of 𝒞. 

So, for instance 4 and 5, they are constitute a part of 𝒟, but not a part of 𝒞 and there is an 

edge between them. So, if you see closely the definition of (𝑛, 𝑡)-star and complement of 

(𝑛, 𝑡)-star; we can clearly say that if your graph 𝐺 has an (𝑛, 𝑡)-star then in the 

complementary graph G, you will have a complement of (𝑛, 𝑡)-star. 

So, this 𝐺 complement denoted by this 𝐺̅ denotes the complement of graph 𝐺. And 

complement of graph G means, if you have the edge between 𝑣𝑖 and 𝑣𝑗  in graph 𝐺, then 

the edge (𝑣𝑖, 𝑣𝑗) will not be there in 𝐺̅ and this is an if and only if. That means, whichever 

edges for every distinct, for every distinct (𝑣𝑖, 𝑣𝑗); if there is an edge between those 2 

nodes in the graph 𝐺 then that edge will be missing in 𝐺̅ and vice versa. So, it is like your 

set complement. 
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Now, before going into the algorithm for finding the (𝑛, 𝑡)-star, we will also go through 

the concept of matching in a graph which will be required in the algorithm. So, what is the 

matching? So, you are given a simple graph here and for simplicity assume the graph is 

undirected. So, simple graph means between every pair of nodes you have at most one 

edge. You do not have multiple edges between 𝑣𝑖 and 𝑣𝑗  in the graph. 



You cannot have more than one edge, that is not allowed in a simple graph. So, assume 

you are given a simple graph and a subset of edges 𝑀. Then, that subset of edges 𝑀 is 

called a matching if node two edges in 𝑀 are incident with the same vertex; that means, 

node two edge in 𝑀 share a common vertex or in other words vertices of all the edges in 

𝑀 are distinct. So, let us see some examples of matching. 

So, suppose this is a simple graph, then I can take this collection of edges; I can consider 

this collection of edges as a matching. The edge D requirement, B architecture, C 

implementation and A testing right. And, if you see the end points of this collection of 

edges they are all distinct. Whereas, if I would have taken the edges A and requirement 

and requirement and C, then that does not constitute a matching because there are two 

edges sharing a common vertex. 

Now, if you are given a matching, then with respect to that matching a vertex in the graph 

is called matched, if it is the end point of some edge in that matching. Namely, there should 

exist some edge present in that matching such that one of the end points of that edge is the 

node 𝑣. If such an edge 𝑒 exists, then we say that the vertex 𝑣 is matched; otherwise we 

say that the vertex 𝑣 is not matched. 

So, for instance if I take this matching, then D is matched, requirement is matched, B is 

matched, architecture is matched, C is matched, implementation is matched, A is matched 

and testing; that means, all the nodes are matched here actually. But, that need not be 

always the case, that depends upon your graph and matching that you are considering. 
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Now, there are different types of matching. Maximum matching means a matching with 

the largest cardinality. So, for instance if I take this simple graph, then if I take the edges 

(𝑎, 𝑏) and (𝑐, 𝑑) then it constitutes a maximum matching. Whereas a maximal matching 

means a matching which cannot be further extended. What does that mean? That means, I 

cannot add furthermore edges in this matching 𝑀; so, that the resultant collection 𝑀′ is 

also a matching. In that sense 𝑀 is maximal; that means, it cannot be expanded further. 

So, for instance in the same graph if I take just the edge b, c it is maximal because to b, c 

I cannot add the edge (𝑎, 𝑏). If I add the edge (𝑎, 𝑏) along with b, c it does not constitute 

a matching. And, in the same way to the edge b, c I cannot add the edge (𝑐, 𝑑) because 

that does not constitute a matching. So, in that sense the edge b, c is maximal, but that is 

not maximum. 

In the same way the edge (𝑐, 𝑑) is not maximal because if I include the edge (𝑎, 𝑏) in this 

collection of edges which is just the edge (𝑐, 𝑑) then I still get a matching whose size is 

more than this 𝑀. So, that is why the edge (𝑐, 𝑑) is not a maximal matching. So, now, we 

can simply say that every maximum matching is maximal, but other way around need not 

be true. For instance, this matching is also a maximum matching whereas, this collection 

of edges is a maximal matching, but not maximum. 

Now, there are well known polynomial time algorithms to find out the maximum matching 

in a graph, a maximal matching in a graph and so on. This course is not about graph theory. 



So, you are referred to any standard text on graph theory to know more about those 

algorithms. We will assume that we have polynomial time algorithms for finding maximal 

and maximum matching in a given graph. 
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Now, coming to our main goal, we want to find out whether there exists an (𝑛, 𝑡)-star in 

my given graph or not. So, the algorithm is as follows. It takes as input a graph and it 

outputs either an (𝑛, 𝑡)-star or the message star is not present in the graph and the algorithm 

ensures the following. 

It ensures that if in your graph it is guaranteed that a clique of size at least 𝑛 − 𝑡 is present, 

then the output is always an (𝑛, 𝑡)-star, that does not mean the following. It could be 

possible that there is an (𝑛, 𝑡)-star in the graph, but your graph does not have a clique of 

size 𝑛 − 𝑡. In that case, it might be possible that you obtain the message star not present. 

So that means, the negative answer, star not present cannot be trusted always. 

It could be possible that even though a star is present in the graph, the algorithm may end 

up saying that a star is not present. However, you can trust or you are guaranteed that if in 

your graph a clique of size at least 𝑛 − 𝑡 is guaranteed, then the output will always be a 

star. You will not get the error message. And, looking ahead when we will use this 

algorithm in our domain extension protocol, polynomial time domain extension protocol, 

this property is sufficient. 



We do not always want to ensure that the party should always obtain a star if it is present 

in the graph. It is fine if they do not get the message star, if they get the message star not 

present when the graph does not have a clique of size 𝑛 − 𝑡. Looking ahead, it will be 

ensured in the domain extension protocol, that if the sender is honest in the broadcast 

protocol, then in the consistency graph a clique of size at least 𝑛 − 𝑡 will be present. 

And, now when the parties run this star finding algorithm, they will always obtain one 

(𝑛, 𝑡)-star. They will not get the message that star is not present and they will not discard 

the sender. So, that is why this algorithm is not a full-fledged algorithm for finding an 

(𝑛, 𝑡)-star. It will give you an (𝑛, 𝑡)-star provided it is guaranteed that the graph has a 

clique of size at least 𝑛 − 𝑡. However, it could be possible that the graph does not have a 

clique of size 𝑛 − 𝑡, but it has a star and the algorithm fail to find that, that is quite possible. 

So, how the algorithm operates? The algorithm operates over the complement of the graph 

and checks whether there is a (𝑛, 𝑡)-star complement in 𝐺̅. If there is a (𝑛, 𝑡)-star 

complement in 𝐺̅, that automatically implies that the same (𝑛, 𝑡)-star complement 

constitutes a (𝑛, 𝑡)-star in the original graph 𝐺. So, the algorithm operates over the 

complement of your graph. And it computes few sets and based on that it tries to find out 

whether a (𝑛, 𝑡)-star complement is present in the graph or not. 

So, the first step is it finds a maximum matching in the graph using any polynomial time 

algorithm. It finds a maximum matching in the 𝐺̅ graph. Now, based on this matching 𝑀, 

there will be a subset of matched nodes and a subset of unmatched nodes. So, let 𝑁 denote 

a subset of matched nodes and N complements denotes the unmatched nodes. Now, among 

the unmatched nodes we further identify triangle heads. 

Namely, a triangle head is an unmatched node 𝑣𝑖 which has edges with the end points of 

an edge present in your matching, maximum matching; that means, imagine (𝑣𝑗 , 𝑣𝑘) is a 

part of the maximum matching; that means, both are matched nodes. And, 𝑣𝑖 is an 

unmatched node, but it has an edge with 𝑣𝑗  and it has an edge with 𝑣𝑘. So, that is why we 

are calling it as a triangle head. It is a part of a triangle; it is a head of a triangle. 

So, the collection of such triangle heads we are denoting by 𝑇. Now, we set our 𝒞 set to be 

the set of all nodes except the matched nodes and the triangle heads; that means, you ignore 



the matched nodes and the triangle heads, remaining all other nodes you include it in your 

set 𝒞.  

And, now let 𝐵 be the set of nodes, 𝐵 be the set of matched nodes to be more specific, it 

𝐵 be the set of matched nodes that have neighbors in 𝒞. Now, once you have computed 

your set 𝐵, you set your set 𝒟 to be the set 𝑉 ∖ 𝐵; that means, you exclude all the nodes 

from the set 𝐵. So, now, you got your set 𝒞, you got your set 𝒟; you check whether the 𝒞 

is of size at least 𝑛 − 2𝑡 and 𝒟 is of size at least t. 

If both these conditions are satisfied, then you output your 𝒞 and 𝒟, otherwise you output 

the message that star is not present. And, then it can be proved, i if your graph 𝐺 has a 

clique of size at least 𝑛 − 𝑡, then this algorithm star on the 𝐺̅ graph will output a (𝑛, 𝑡)-

star complement. And this (𝑛, 𝑡)-star complement will be an (𝑛, 𝑡)-star in the graph 𝐺, we 

can prove this. I will not go into the proof, I will share the reference where you can find 

the proof. The proof is very easy. 

(Refer Slide Time: 22:05) 

 

Now, let us see a demonstration for this algorithm. This is the graph 𝐺, which I am 

considering. We have 7 vertices and we have 2 nodes, we have 𝑡 = 2. So, now, 𝑛 − 𝑡 is 5. 

Does this graph have a clique of size 5? And the answer is yes. If I focus on this collection 

of nodes 1, 2, 3, 4, 5 then it is a complete graph of 5 nodes. You have an edge between 1 

and 2, 1 and 3, 1 and 4, 1 and 5, 2 and 3, 2 and 4, 2 and 5, 3 and 4, 3 and 5 and between 4 

and 5. 



So, now let us see how this algorithm star 𝐺̅ will work on this graph. So, the 𝐺̅ graph will 

be the graph on your right-hand side. So, you can see there is no edge involving the nodes 

1, 2, 3, 4, 5; because all those edges were present in graph 𝐺. So, that is why they will be 

now absent in 𝐺̅ and there was no edge between 4 and 6 in the graph 𝐺, that is why there 

is an edge between 4 and 6 and so on. 
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Now, what is the first step? The first step is to find the maximum matching. So, there are 

many maximum matchings in this graph. Suppose, the algorithms outputs this maximum 

matching the edge (1, 6) and (3, 7). And, it is easy to see that this is the maximum matching. 

To this collection 𝑀, you cannot add any more edge; so, that the expanded set still 

constitutes some matching. 

Now, with respect to this maximum matching what are the matched nodes? The end points 

are 1, 3, 6, 7 and the unmatched nodes are 2, 4, 5. Now, let us see whether we have any 

triangle head. So, triangle head means all the unmatched nodes which have an edge with 

the end points of a matching in the maximum matching; that means, which have neighbors 

in the collection N. In this case, we do not have any triangle head. 

So, for instance 2 is not a triangle head, because 2 does not have an edge with 3, 2 does 

not have an edge with 7, 2 does have an edge with 2 does have an edge with 6, but 2 does 

not have an edge with 1. So, that is why 2 does not constitute a triangle head. 



If you would have if there would have been an edge between 2 and 1 and then 2 and 6 

along with the edge, blue colored edge 1, 6 that would have labeled 2 as a triangle node, 

triangle head, but that is not the case here. So, 2 is not a triangle head, in the same way 4 

is not a triangle head, 5 is not a triangle head. So, the subset of triangle head is empty. 
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So, now 𝒞 will be  𝑁̅ ∖ 𝑇. Namely, you ignore all the vertices from 𝑁 and triangle head. 

So, there is no vertices to be ignored from the triangle head, but you have to ignore all the 

matched nodes. So, you are left with 2, 4, 5. Now, let us see whether we have any element 

present in the set 𝐵. 

So, the set 𝐵 will have all the matched nodes which have neighbors with the nodes in 𝒞. 

So, what are the matched nodes? 1, 3, 6, 7. So, 1 does not have a neighbor with 2, 4, 5, 3 

does not have a neighbor with 2, 4, 5, but 6 have a neighbor in 2, 4, 5. Namely, 6 has an 

edge with the node 2; so, 6 is a part of the set 𝐵 and 7 also have a neighbor in 2, 4 5.  

So, this edge is present. So, that is why 7 is a part of subset 𝐵. Now based on this, the value 

of the subset 𝒟 will be 1, 2, 3, 4, 5. And, output of the algorithm will be a star, where the 

𝒞 component of the star is 2, 4, 5 and the 𝒟 component is 1, 2, 3, 4, 5. 

So, now you can check that in the graph 𝐺, indeed the collection 2 to 4 and 4 to 5, it is a 

triangle. So, it is a complete graph of 3 nodes and 2, 4, 5 is a part of the bigger set 1, 2, 3, 



4, 5. So, 1, 2, 3, 4, 5 constitutes the 𝒟 set and there is an edge between every node in 𝒞 

and every node in 𝒟. So, that is the way the star algorithm will operate. 
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So, as I studied I have as I have discussed I have not given you the full proof that indeed 

the output of the algorithm will be an (𝑛, 𝑡)-star; if the graph is guaranteed to have a clique 

of size at least 𝑛 − 𝑡. The exact proof is available in this PhD thesis. 

Thank you. 


