
Secure Computation: Part II
Prof. Ashish Choudhury

Department of Computer Science and Engineering
Indian Institute of Science, Bengaluru

Lecture - 25
Domain Extension for Perfectly-Secure Broadcast Based on RS Error-Correcting

Codes: III

(Refer Slide Time: 00:25)

Hello everyone. Welcome to this lecture. So, in this lecture we will continue our discussion

regarding the efficient domain extension protocol for perfectly secure broadcast. So, we will

use the warm up protocol, that we had seen in the last lecture and using that we will see the

actual domain extension protocol. The domain extension protocol that we will discuss in

today’s lecture will have exponential running time, exponential computation time. And, later

on we will see how we can modify the protocol so, that the its running time becomes

polynomial time.

(Refer Slide Time: 01:02)

So, just a quick recap regarding the warm up protocol. So, in that protocol we assumed n =

3t + 1, that is just for simplicity, so that we can use the fact that asymptotically,𝑡 = Θ(𝑛)

during complexity analysis. In that protocol all operations are performed over a finite field F,

whose cardinality is at least n + 1. In the protocol there is a designated sender with some

message m whose size is (t + 1) log bits.|𝐹|

And, asymptotically we can say that since , that means, the sender’s message is of𝑡 = Θ(𝑛)

size bits. And, we had seen the warm up protocol where it is guaranteed that allΘ(𝑛 𝑙𝑜𝑔 |𝐹|)

the parties identically receives the sender’s message, even if the sender is potentially corrupt.

And, the communication complexity of that protocol has two parts. The communication done

over the pair wise channels and which does not require any invocation of the existing bit

broadcast protocol.

So, that part of the communication is bits and in addition the protocol also requires𝑛2 𝑙𝑜𝑔 |𝐹|

the parties to broadcast total of order of bits using any existing reliable bit broadcast𝑛2

protocol. So, that part of the complexity is denoted by the notation .𝐵𝐶(𝑛2)

So, let me quickly go through the warm up protocol, the various stages. So, the first stage was

the code word distribution where sender converts its message m into a message consisting of

t + 1 elements from the field. And, corresponding to that it computes a Reed-Solomon code

word.

And, in order to send its message to every party, it actually sends the code word

corresponding to its message to all the parties. And, this step requires a communication of 𝑛2

bits over the point to point channels. If the sender is honest, not under the control of𝑙𝑜𝑔 |𝐹|

the adversary, then it will send the identical code word to all the parties. But, it is not

guaranteed that sender is always honest, sender also could get under the control of the

adversary.

So, in the rest of the protocol the parties verify whether the sender has sent a common code

word to sufficiently many parties. And, if it has sent a common code word to a sufficiently

many parties then that code word is somehow get transferred to all the parties, who may not

have received the same code word from the sender if sender would have been honest.

So, this happens through various steps. So, the second stage of the protocol was the pair wise

consistency check, where every pair of parties exchange common components of the received

code words ok. So, if there is a sender, then it would have sent some code word to P i and

some code word to P j. Then, ideally if the sender is honest and if P i and P j are also honest,

then P i and P j should have received the same code word from the sender. To verify the

same, every pair of parties Pi and Pj exchange the supposedly common components of the

received code words.

So, they are not exchanging the entire code words because that will blow up the

communication complexity. Rather every pair of parties exchange only two common

components, two supposedly common components of their received code words. And, this

requires a communication of bits over the point to point channels. The third stage𝑛2 𝑙𝑜𝑔 |𝐹|

is public announcement of the pair wise consistency check. And, it is this particular step

which requires the invocation of existing bit broadcast protocol.

Namely, in this stage what happens is every party Pi, once it receives the supposedly common

components from Pj, it checks those components against its own components. And, if they

match then Pi is ok with Pj, otherwise Pi says that I am in conflict with Pj. So, whether Pi is

in conflict with Pj or not, that is captured through a response vector which is a Boolean

response vector, where an entry will be 1 against j, if Pi is fine with Pj and the entry will be 0

corresponding to Pj, if the pair wise consistency fails.

And, that vector now needs to be made public. And, to make that vector public each Pi will

make public its response vector by using any bit broadcast protocol, where Pi itself now acts

as a sender and its message will be its response vector and bit by bit it broadcast the entire

response vector, so that all the parties receive an identical copy of Pi's response vector ok.

So, this stage will require a total broadcast of bits through any existing bit broadcast𝑛2

protocol. Now, based on the response vector which are now publicly available, the parties

construct a consistency graph to check which pair of parties are fine with each other with

respect to the supposedly common components of their respective code words. Namely, we

add an edge between the node representing party Pi and the node representing party Pj, if Pi

has no conflict with Pj and Pj has no conflict with Pi in their respective response vectors.

And, then we check whether sufficiently many parties are pair wise consistent with each

other. Namely, we check whether there exist a clique of size at least 2t + 1 which should be

present in the consistency graph, if sender has behaved honestly. Because, if sender has

behaved honestly then it should have sent the common code word to all the honest parties in

the system and there are at least 2t + 1 honest parties guaranteed in the system.

So, those 2t + 1 parties will definitely constitute a clique. Of course, there could be more than

2t + 1 parties who can be pair wise consistent. But, if at all sender is honest then it should be

guaranteed that at least 2t + 1 parties are pair wise consistent. So, that is what the parties

check by checking whether there exist a clique of size at least 2t + 1. Clique means a

complete graph of size at least 2t + 1.

If such a clique exists then the set of clique parties is considered as the CORE set of parties.

And, in that clique at least t + 1 parties are guaranteed to be honest, at least t + 1 parties are

honest in that clique. Of course, not all the honest parties necessarily be a part of the clique,

that can happen say for instance if the sender is corrupt and it has sent an identical code word

to only t + 1 honest parties in the system and the rest of the honest parties in the system have

got a different code word.

Even in that case it may so happen that we get a clique of size 2t + 1, because the corrupt

parties may say in their response vector that they are not in conflict with the honest parties.

So, t + 1 honest parties along with t corrupt parties can constitute a clique of size 2t + 1, that

also is one possibility. If a CORE is not found then that definitely implies that the sender is

corrupt and the parties stop the protocol there itself.

And, they take a default message on the behalf of the sender assuming that sender wanted to

broadcast a string consisting of number of 0s.𝑡 + 1() log 𝑙𝑜𝑔 |𝐹|

However, if a clique is obtained, that guarantees that all the honest parties in CORE have

received a common code word. And, then the goal will be to somehow ensure that even the

honest parties outside CORE, if there exist any such honest party, they should also get the

same code word.

So, for this in the same stage, the parties redefine the ith component of their received code

words. They forget what exactly was the code word they would have received from the

sender. They redefine their ith component based on whatever communication they had from

the parties in CORE during the pair wise consistency check, that will ensure that each Pi gets

the ith component of the common code word held by the parties in CORE.

And, this stage does not require any communication because everything happens locally on

the consistency graph. And, then the last stage is where every party Pi exchanges its

redefined component of the common code word held by the parties in CORE. And, then the

parties apply the Reed-Solomon error correction on the redefined components to ensure that

every party whether they are part of code or not, irrespective of that they get the common

code word held by the honest parties in CORE.

And, this stage requires a communication of bits over the point to point𝑛2 log 𝑙𝑜𝑔 |𝐹|

channel. So, that was the warm up protocol.

(Refer Slide Time: 11:55)

Now, let us see that how we can plug in that warm up protocol to get a domain extension

protocol. In our domain extension protocol, sender will have a bigger message now. Its

message will be consisting of bits, where is at least , ok. Now, the𝑙 𝑙 (𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

sender’s goal is to send this message identically to all the parties and it should be guaranteed

that even if the sender is potentially corrupt, all the honest parties at the end of the protocol

receive an identical message output, an identical message on the behalf of the sender.

It should not happen that if the sender is corrupt then an honest Pi outputs one string of length

l bits and another honest party Pj outputs a different string of length l bits, that should not

happen. So, to do that sender does the following. It divides its message m into chunks of size

ok. And, for each such block, each such chunk, it runs an instance of the(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

warm up protocol that we had discussed till now. So, the first chunk of (𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

bits, suppose I represent its components as .𝑚
1,1

, ⋯, 𝑚
1,𝑡+1

So, the first block of bits, it is further converted into t + 1 field(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

elements. Like that, the ith block of sender’s message will have bits,(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

which are converted into t + 1 field elements. And, like that the Bth block where B =

, we will have those many blocks in sender’s message, those many blocks of𝑙
(𝑡+1)log𝑙𝑜𝑔 |𝐹|

size bits.(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

So, we have the message blocks And for each such block, sender will be𝑚(1), ⋯, 𝑚 𝐵().

running one instance of the warm up protocol. So, for instance for the first block sender will

convert the t + 1 field elements in its block into a code word by treating the message block

as the input for Reed-Solomon encoding algorithm. The code word will be distributed.𝑚(1)

The parties will perform the pair wise consistency check. Then, the parties will publicly

announce the response vector. A consistency graph will be formed. It will be checked

whether a clique of size 2t + 1 is there or not. If it is there then the code word components

will be redefined and then the parties will somehow ensure that through the help of the

redefined code word components, all the honest parties end up getting the code word held by

the honest parties in CORE 1.

In parallel for the ith block the same computation will be performed; code distribution, pair

wise consistency check, announcement of the response vector, consistency graph formation,

CORE formation, CORE checking. And, then if the CORE is present then ensuring that the

common code word held by all the honest parties in COREi gets transferred to all the honest

parties.

And, in parallel a similar computation will be performed for the Bth block through Bth

instance of the warm up protocol. Now, if any of these B instances of the warm up protocol a

clique is not obtained, that automatically implies that the sender is corrupt. And, we can

discard the sender for the overall protocol, for the overall domain extension protocol and we

can take a message consisting of l number of 0s on the behalf of the sender as the output.

Of course, an honest sender will never be discarded because, an honest sender sends an

identical code word in each of the individual instances of the warm up protocol. So, for each

individual instance of the warm up protocol, a clique of size 2t + 1 will be obtained ok. And,

it is easy to see that this protocol will satisfy the termination property because the warm up

protocol terminates.

So, each of the instances of the warm up protocol terminates. This extension protocol also

satisfies the validity property, because if sender is honest then through the first instance of the

warm up protocol the output of all the honest parties will be , in the ith instance of the𝑚(1)

protocol, the output of all the honest parties will be and in the Bth instance of the warm𝑚(𝑖)

up protocol, the output of all the honest parties will be . And, the overall output of all the𝑚(𝐵)

parties will be then , which is nothing, but the sender’s message.𝑚(1)||𝑚 2()⋯||𝑚(𝐵)

So, validity is satisfied and consistency is also satisfied. Well, if the sender is discarded then

consistency is trivially satisfied, because all the honest parties will be outputting a string

consisting of number of 0s. But, if the sender is not discarded then at the end of the first𝑙

instance of the warm up protocol, all the honest parties will have a common output consisting

of bits.(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

In the ith instance of the warm up protocol, all the honest parties will have a common output.

And, through the Bth instance of the warm up protocol, all the honest parties will have a

common output. And, the overall output of all the parties is a concatenation of the individual

outputs obtained from the individual instances of the warm up protocol. So, consistency is

also satisfied.

But, now let us see how much communication complexity this domain extension protocol

will have. So, the complexity of this domain extension protocol will be B times the cost of

one instance of the warm up protocol.

(Refer Slide Time: 19:13)

And what is the cost of one instance of the warm up protocol? By substituting that value and

by substituting the value of B, namely the number of blocks that we have here or the number

of instances of the warm up protocol that we are running here, the overall cost turns out to be

this much. Now, remember that t + 1 is asymptotically . So, this t+ 1, I can treat as .Θ(𝑛) Θ(𝑛)

So, one n gets cancels out in the numerator.

So, this part of the communication becomes n times l, that is fine that is very good; over the

point to point channel n times l bits of communication is involved. But, how much broadcast

is needed through existing bit broadcast protocol, that is not independent of l that depends

upon l. This factor, the amount of broadcast required to be done through the existing bit

broadcast protocol that is not independent of l, that depends upon l.

And, that loses the whole purpose of the domain extension. The whole purpose of the domain

extension protocol was that we wanted to have a broadcast protocol, where the number of

instances of the bit broadcast is independent of the sender’s message namely l. But, that is not

happening right now ok.

So, even though it looks like that we are very close to the goal of achieving a communication

complexity of n times l asymptotically, we have not achieved the actual goal. Because, we

still have a broadcast complexity namely the number of instances of the bit broadcast, that we

require which is proportional to the size of the sender’s message.

(Refer Slide Time: 21:10)

However, we observe the following here. So, this is the naive way of dividing the sender’s

message into blocks of size bits and running Bs instances of the warm(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

up protocol. We observe that the instances of the bit broadcast is required only in 1 stage in

all the B instances, namely to make public the response vectors. So, there are B such

instances of warm up protocol and that is why there are B response vectors computed by

every party one for one instance of the bit broadcast.

So, in order to reduce the communication complexity or in order to reduce the broadcast cost,

namely the number of instances of the bit broadcast. The idea here is that we can club

together this highlighted step for all the B instances of the warm up protocol. Namely, each

party will now prepare a single response vector based on the response vector that it has

computed for the B instances.

And, each party will broadcast now a single response vector instead of broadcasting B

response vector. Accordingly, each party will be constructing now a single consistency graph,

a single graph for all the B instances of the warm up protocol. And, based on that a single

CORE set will be identified. Let us see how that can be possible.

(Refer Slide Time: 22:57)

So, this is the way sender has divided its message into big B number of blocks, where each

block consists of bits. The first two stages of the warm up protocol will(𝑡 + 1) log 𝑙𝑜𝑔 |𝐹|

be common for all the B invocations of the warm up protocol. Namely, for the first message

block , the sender will compute the corresponding code word and it will distribute the𝑚(1)

corresponding code word. And, then every pair of parties will exchange two supposedly

common points on their respective local code words.

In the same way, if we take the ith block, corresponding to that sender will compute the

Reed-Solomon code word, and distribute to the respective parties. And, every pair of parties

will exchange the two supposedly common points on their respective local code words. And,

like that for the Bth block, a Reed-Solomon code word will be computed. The sender will

distribute that code word to respective parties and every pair of parties will exchange two

supposedly common points in their respective local code words.

That part will happen for all the B instances and these two stages will require a

communication of order of nl bits that we have already seen. Now, after this the clubbing

happens as follows. Each party Pi will be now constructing a combined Boolean response

vector across all the B instances of the warm up protocol. So, locally it would have

constructed B number of response vectors ok.

And, in each of the response vectors, Pi will be either pair wise consistent with the jth party

or it might be in conflict with the jth party depending upon whether the corresponding

supposedly common components between Pi and Pj’s local code words are same or not. So,

for instance, for the first instance of the warm up protocol, there will be a status between P i

and P j whether they are in conflict or not.

In the same way, for the ith instance of the warm up protocol the response vector of Pi will

indicate whether Pi is in conflict with P j or not. And, in the same way for the Bth instance of

the warm up protocol, Pi would have prepared a response vector where the jth entry will

indicate whether Pi is in conflict with Pj or not. Now, ideally, if the sender is honest and if

both Pi and Pj are honest, then Pi should not be in conflict with Pj in any of these B instances.

That means Pi should be consistent with Pj in the first response vector, Pi should be

consistent with Pj in the ith response vector, Pi should be consistent with Pj in the Bth

response vector. Whereas, if Pi and Pj are in conflict in any of the B response vectors; that

means, the sender is corrupt. And, it has not distributed a common code word to Pi and P j in

at least one of the B instances of the warm up protocol.

So, using that intuition what we are now doing I,s we are asking party P i to construct B

response vectors locally, but combine them into a common single response vector which

should indicate whether Pi is in conflict with P j in any of the B warm up protocol instances

or not. So, in the combined response vector Pi and P j will not be in conflict, if they are not in

conflict in any of the B instances of the warm up protocol.

But, even if there exists one instance of the warm up protocol, where Pi is in conflict with Pj;

then in the combined response vector Pi will be in conflict with Pj. So, in which particular

instance of the warm up protocol Pi and Pj are in conflict, that is not important. So, that is the

idea behind constructing this one combined Boolean response vector. And, now even though

there are B instances of the warm up protocol running, each party Pi will broadcast a single

combined response vector to indicate its status with other parties across all the B instances of

the warm up protocol ok.

So, now this stage will require a broadcast of only bits using any existing bit broadcast𝑛2

protocol ok. Now, based on the combined response vector broadcasted by every party, a

single consistency graph is prepared where the condition remains the same. Namely, we will

say that parties Pi and Pj are fine with each other, if in their respective combined response

vectors they are fine with each other. Namely, Pi's response against P j is 1 and Pj’s response

against Pi is 1.

And, then parties check whether they are exist a CORE set, a single CORE set in this

combined consistency graph by checking whether a clique of size at least 2t + 1 is there or

not ok. If the clique is not obtained in this single consistency graph, then it implies sender is

definitely corrupt.

So, discard the sender and take a message consisting of a string of l number of 0s on the

behalf of the sender. Whereas, if a CORE is obtained; that means, in each of the B instances

of the warm up protocol, the honest parties in the CORE have received a common code word

from the sender for that particular instance. Namely, for the first instance the honest parties in

the CORE have received a common code word from the sender.

And, like that even in the ith instance of the warm up protocol, the honest parties in the same

CORE have received a common code word from the sender. And, like that even in the Bth

instance of the warm up protocol, all the honest parties in the CORE have received the same

common code word from the sender, that is guaranteed if a CORE is obtained.

Now, as we have done for one instance of the warm up protocol, what we can do is, in each

individual instance of the warm up protocol parties will redefine their respective components

of the code words that they would have received in that particular instance of the warm up

protocol, based on the communication they have from the parties in CORE.

And, then by exchanging that redefined components and using the Reed-Solomon error

correction, across all the B instances it will be ensured that the common code word which is

held by the honest parties in CORE across these individual B instances of the warm up

protocol gets available, is made available to all the honest parties, irrespective of whether

they are in CORE or not.

So, with this modification namely combining the response vector across all the instances and

then broadcasting a single response vector from by each party, the communication

complexity turns out to be the following. The communication over the point to point channel

will be B times, the communication complexity for one instance of the warm up protocol.

Namely, for code distribution, pair wise checking and redefining the components of the code

words and exchanging them and applying Reed-Solomon code words. So, that stage will have

a communication complexity of B times bits. But, the communication which𝑛2 log 𝑙𝑜𝑔 |𝐹|

will be done using instances of the bit broadcast will be only because, each party now𝑛2

broadcast only a single Boolean response vector.

(Refer Slide Time: 32:47)

And, now if we substitute the value of B, the overall communication turns out to be plus𝑛𝑙

broadcast of bits using invocations of any existing bit broadcast protocol. And,𝑛2

asymptotically this becomes for a sufficiently large l ok.𝑂(𝑛𝑙)

And, that will be the optimal communication you expect from any broadcast protocol because

in order that sender’s message is available to everyone, sender has to communicate its

message to all the n parties. And, that trivially involves a communication of) bits. And,Θ(𝑛𝑙

the overall cost of the protocol that we have designed is . However, the downside of𝑂(𝑛𝑙)

this domain extension protocol is that it requires the parties to perform exponential amount of

computation.

Because, to check whether a CORE is present in the system or not, we have to check whether

a clique of size at least 2t + 1 is present in the consistency graph and finding clique requires

performing exponential amount of computation. So, even though communication wise we

have now got a very good communication efficient bit broadcast protocol, the amount of

computation which is required in the protocol is exponential time. So, now our next goal will

be to somehow modify the protocol; so, that the protocol does not require performing

exponential amount of computation.

(Refer Slide Time: 34:42)

So, with that I end this lecture. The reference used for today’s discussion is this paper

Thank you.

