
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Science, Bengaluru

Lecture - 27

Domain Extension for Perfectly-Secure Broadcast Based on RS Error-Correcting

Codes: II

Hello everyone, welcome to this lecture.

(Refer Slide Time: 00:24)

So, now, in this lecture we will continue our discussion regarding domain extension for

perfectly secure broadcast. And we will first see a warm-up protocol this will not be the

exact domain extension protocol, and this will be inefficient as well, but later on we will

see how this form of protocol is used in the domain extension protocol.

(Refer Slide Time: 00:46)

So, in this warm-up protocol for simplicity we will assume 𝑛 = 3𝑡 + 1. So, remember that

for perfectly secure broadcast and Byzantine agreement and the condition 𝑛 > 3𝑡 is

necessary and sufficient. So, 𝑛 = 3𝑡 + 1 is the minimum value of 𝑛 for any given 𝑡

satisfying the condition 𝑛 > 3𝑡.

The reason we are making this assumption 𝑛 = 3𝑡 + 1 is that it helps us during the analysis

of the communication complexity because, we can then use the fact that asymptotically

𝑡 = 𝜃(𝑛). So, I am assuming here that all of you are familiar with big-𝑂, Ω and 𝜃 notations;

they are asymptotic notations and if you are not familiar with them please refer to any

standard text on data structures and algorithm.

Also in this warm up protocol we will assume that all the operations are performed over a

finite field 𝔽, where the only restriction on the field is that it should be of size at least 𝑛 +

1. Now, in this warm-up protocol the sender will have a message 𝑚 which will be of size

(𝑡 + 1) ⋅ |𝔽| bits and it will be a broadcast protocol.

So, this is a broadcast protocol, where the goal of the sender will be to send its message

identically to all the parties and that should happen even if the sender is potentially corrupt.

And the overall communication complexity of the warm-up protocol will turn out to be

this much.

So, 𝑛2 log |𝔽| communication will happen over the pair wise channels among the parties

and apart from that the protocol will also incur a communication will also incur a broadcast

of 𝑛2 bits and that broadcast can be instantiate using any existing bit broadcast protocols.

So, that means, there are two parts of the communication complexity in this form of

protocol whatever communication happens over the point-to-point channels and whatever

communication should happen by invoking instances of bit broadcast. So, the

communication, which should happen through instances of bit broadcast that will be of

order 𝑛2.

(Refer Slide Time: 03:43)

So, there will be several phases in the protocol the first phase will be a sender dependent

phase, which will depend completely upon the sender because sender will have to send

these messages. So, remember recall that sender’s input, is a message consisting

of (𝑡 + 1) ⋅ |𝔽| bits.

So, what the sender does is the following, it divides its message into several blocks of

log|𝔽| bits and each such block of log|𝔽| bits can be interpreted as an element of the field,

because each element of the field can be represented by log|𝔽| bits. So, whatever is the

first chunk of log|𝔽| bits that is converted into a field element let us denote it by 𝑚1.

In the same way next block of log|𝔽| bits of this message 𝑚 will be interpreted as a field

element. We denote it by 𝑚2 and like that the last chunk of log|𝔽| bits for of the message

small 𝑚 will be mapped to the field element 𝑚𝑡+1. This is what sender is doing. Now the

goal of the sender is to send this message identically to everyone.

So, if we would have been in the semi honest setting where all the parties including the

sender also would have followed the protocol instructions correctly. Then sender could

have simply sent his message over the point-to-point channel to every other party. By the

way we are assuming here that there is a pair wise secure channel between every pair of

parties namely we are in the secured channel model.

So, if it if you would have been guaranteed that sender will not misbehave, then the simple

way of broadcasting senders message will be to ask the sender to send its message

individually to the first party, individually to the second party, individually to the 𝑛th party

that would have require a communication complexity of order of 𝑛 times whatever is the

size of the message, but it is not guaranteed that sender is honest sender could misbehave

it can send different 𝑚 to 𝑃1 and different 𝑚 to 𝑃2 and so on.

So, that is why to send its message what the sender does first here is the following it

computes a Reed Solomon codeword corresponding to its message. So, notice that even

though the sender’s message is a bit string, it can be mapped into a message consisting of

𝑡 field elements and then we can compute a Reed Solomon codeword corresponding to

that message namely the sender will form a message encoding polynomial whose degree

will be 𝑡 and there will be 𝑛 publicly known evaluation points 𝛼1, 𝛼2, … , 𝛼𝑖 , . . . , 𝛼𝑛.

And that message encoding polynomial will be evaluated at 𝛼1, 𝛼2, … , 𝛼𝑖, . . . , 𝛼𝑛 to get the

corresponding Reed Solomon codeword whose components are 𝑐1, 𝑐2, … , 𝑐𝑖, … , 𝑐𝑛. Now

to send the message 𝑚 sender sends this full codeword vector to every party. So, to the

first party it sends the codeword to the second party, it sends the codeword to the 𝑖th party,

it sends the codeword to the nth party it sends the code word.

Now, if sender is honest, it would have sent the same codeword copied to every other

party, but it is not guaranteed we do not know whether sender is honest or not. So, that is

why the codeword copy which 𝑃1 receives there I am using 2 level of indexes indices. So,

𝑃1′s codeword will be denoted by𝑐11, 𝑐12, . . , 𝑐1𝑛. So, the second level of indexing denotes

the codeword component and the first level of indexing denotes the copy of the sender’s

codeword as received by 𝑃1.

In the same way I am using a 2-level indexing for the copy of the codeword which 𝑃2 has

received, a 2-level indexing for the copy of the codeword which 𝑃𝑖 has received and a 2-

level indexing for the code what copy which 𝑃𝑛 has received from the sender. How much

communication this will require? Well, to send the codeword to one party it will require a

communication of order of 𝑛 log|𝔽| bits because, the code word consists of 𝑛 field

elements and each field element is represented by log|𝔽| bits.

And since sender is sending the codeword to every party the overall cost will be 𝑛 times

the cost of sending the codeword to one party and that is why the cost of this phase will be

order of 𝑛2 log|𝔽| bits. Notice that, no broadcast has happened as of now; that means, no

invocation of bit broadcast has happened to be more specific because, this communication

is happening over only the point to point channels.

Now one sender has communicated its copy of the codeword to the respective party, the

rest of the protocol will do the following. In the rest of the protocol the parties will interact,

and they will try to verify whether sender is behaving honestly and whether sender has

distributed a common codeword to sufficiently many parties. Ideally, this should be the

case if sender is honest because, sender should have sent the same common codeword to

all the parties, but as I said if the sender is Byzantine corrupted, it may not do so.

So that is why now the parties have to interact and verify whether the sender has distributed

a common codeword to sufficiently many parties. I stress sufficiently many parties and not

all parties because; we can never verify whether the sender has given the same codeword

to all the parties.

Because if say 𝑃𝑛 is corrupt, it may simply say that I have received the junk from the

sender, it can simply say it can simply produce a junk copy of the codeword claiming that

it has received from the sender even though sender has not sent it and in that case we

cannot trust whether the sender has indeed cheated 𝑃𝑛 by sending a junk codeword or

whether it is 𝑃𝑛 who is reporting incorrectly against the sender. So, that is why we can only

guarantee here that all the honest parties can verify whether they have received the same

common codeword or not.

So, that is why this sufficiently right now is in quote unquote, but basically, we will try to

ensure that sufficiently many honest parties confirm whether they have received a common

codeword from the sender or not. And if it is guaranteed that sender has distributed a

common codeword to sufficiently many honest parties, then the next goal will be to ensure

that all honest parties, apart from those sufficiently many parties also obtain that common

code word.

If that is ensured, then it will be now guaranteed that in the system all honest parties have

a common codeword received from the sender and the message corresponding to that

codeword will be the overall output for the warm up protocol. Now for this rest of the

protocol part, where the parties need to do the verification and then they need to the transfer

of the common code word, the allowed communication budget for us is this much.

Namely, the total communication of the over the point to point channel should be

𝑛2 log|𝔽| and if at all we are invoking any instance of the bit broadcast there can be at

most order of 𝑛2 such instances that is what is allowed, because that is what we require

from this warm up protocol when we plug it later in the domain extension protocol.

(Refer Slide Time: 12:23)

So, now, let us see how the verification proceeds. This will be now be a sender independent

phase and this is this happens once the sender has distributed the code words to the

respective parties. So, let us see what the; what is the interaction happen what kind of

interaction happen during the verification process?

So, recall that party 𝑃𝑖 has its own version of the local codeword as it has received from

the sender and every other party has its own version of the local code word. One simple

way of verifying whether sender has given the common codeword to sufficiently many

parties is that, ask every party to broadcast their received common codeword by invoking

instances of the bit broadcast.

That will be simply requiring an enormous amount of communication that will not satisfy

our allowed budget. So, we have to do the verification in a communication saving way.

So, to do the verification every pair of parties exchange only two supposedly common

components of their respective code words. So, for instance, if sender would have been

honest then we expect that the first component of the 𝑖th party’s codeword and the first

component of the first party's codeword should be identical.

And the 𝑖th component of the 𝑖th party’s codeword should be same as the 𝑖th component

of the first party’s code word. So, that is what party 𝑃𝑖 tries to verify. So, party 𝑃𝑖 sends

only two common components it is not sending the full vector full codeword vector to 𝑃1

and asking 𝑃1 to check whether the codeword which 𝑃𝑖 has received from sender is same

as the codeword which 𝑃1 has received from the sender.

No. They are only trying to verify the commonality of 2 supposedly common components.

In the same way with the second party 𝑃𝑖 exchange exchanges only the second component

of its codeword and 𝑖th component of its codeword with the 𝑗th party it exchanges the 𝑗th

component of its codeword and 𝑖th component of its own codeword. And with the nth

party it exchanges the nth component of its code word and 𝑖th component of its codeword.

How much communication this phase will require? This will require a total communication

of 𝜃(𝑛2 log|𝔽|) bits because, for one party only this will require 𝜃(𝑛 log|𝔽|) bits of

communication, but this pair wise exchange happens for every 𝑃𝑖. So, I have demonstrated

it only for 1 𝑃𝑖, but this pair wise exchange of two supposedly common point is happening

for every party.

So, 𝑃1 would have been exchanging two common components with 𝑃1, 𝑃2, … , 𝑃𝑖 , . . , 𝑃𝑛. 𝑃2

also would have been exchanging two common components on its received codeword with

every other party, and like that 𝑃𝑖 is anyhow exchanging two common components of its

received codeword with every other party, and like that 𝑃𝑛 also would have been

exchanging two common components on its received codeword with every other party.

So, 𝜃(𝑛) field elements for 1 party, 𝜃(𝑛) field elements for the second party, 𝜃(𝑛) field

elements for the i th party and 𝜃(𝑛) field elements for the 𝑛th party. So, that is why total

it will be 𝜃(𝑛2) field elements of communication and each field element is represented by

log|𝔽| number of bits. So, that is why this phase will incur a communication complexity

of this much these many bits.

So, we have not crossed our allowed budget; that means, till now the sender dependent

phase communication complexity was 𝑛2 field elements and so, is the communication

complexity for this phase as well. Until now no instance sub bit broadcast has been

invoked.

(Refer Slide Time: 16:59)

Now based on the pair wise consistency test, which happens here, every party will now

publicly declare the result whether the test is positive or negative. So, what does that mean?

So, recall that till now the following has happened sender had a message and it computed

Reed Solomon codeword for that message a copy of that codeword was sent to the 𝑖th

party and a copy of that codeword would have been sent to the 𝑗th party for all (𝑃𝑖, 𝑃𝑗) in

the system.

And then after that 𝑃𝑖 would have sent two common values two supposedly common

values on its copy of the received codeword to 𝑃𝑗 and 𝑃𝑗 also would have sent two

supposedly common value on its received codeword to 𝑃𝑖. Ideally if sender 𝑃𝑖 and 𝑃𝑗 are

honest then component wise 𝑐𝑖𝑖 should have been same as 𝑐𝑗𝑖 and 𝑐𝑖𝑗 should have been

same as 𝑐𝑗𝑗. So, that is what should have happened. If both if sender 𝑃𝑖 and 𝑃𝑗 are all honest,

but we do not know whether sender 𝑃𝑖 and 𝑃𝑗 are all honest or not they may or may not be.

So, now what every party does is the following it prepares a Boolean response vector based

on the values, which it receives from the other parties and 𝑃𝑗 also will prepare a Boolean

response vector. Now if we consider the 𝑖th party’s Boolean vector the 𝑗th component of

that vector determines whether pair wise consistency of 𝑃𝑖 's and 𝑃𝑗’s codeword is positive

or negative.

Namely 𝑃𝑖 will say that ok I am fine with 𝑃𝑗, which is equivalent to saying that I mark 𝑃𝑗

as 1 namely my response for 𝑗 is 1. Only if the 𝑐𝑗𝑖 component received from 𝑃𝑗 matches

my own 𝑖th component and the 𝑐𝑗𝑗 component received from 𝑃𝑗 matches my 𝑗th

component, which should ideally hold if sender 𝑃𝑖 and 𝑃𝑗 are all honest.

But if either this condition is not satisfied or this condition is not satisfied then 𝑃𝑖 will

conclude that its either the sender who is faulty and has sent different code words to me

and 𝑃𝑗 or its 𝑃𝑗 who is corrupt and he is unnecessarily exchanging incorrect components

with me due to which the checking fails, but 𝑃𝑖 cannot conclude whether it is a sender who

is corrupt or whether it is a 𝑃𝑗 who is corrupt. He will simply accuse 𝑃𝑗 that ok no, I am

not matching with 𝑗 so, that is my response for 𝑗 is 0.

So, this that is the way 𝑃𝑖 would have prepared the Boolean response vector. So, 𝑃𝑖 would

have received 2 values from 𝑃1 from 𝑃2 it would have received 2 values from 𝑃𝑗 it would

have received 2 values and from 𝑃𝑛 it would have received 2 values. The pair of values

received from 𝑃1 is compared by P y and if the pair wise consistency is satisfied then he

will mark 𝑃1 to be ok; otherwise, he will mark 𝑃1 to be not ok.

In the same way the pair of values received from 𝑃2 is verified by 𝑃𝑖 against its own

codeword and accordingly 𝑃2 is marked as 1 or 𝑃2 is marked as 0 and so on. In the same

way party 𝑃𝑗 it is also receiving a pair of values from 𝑃𝑖 and the way it marks its 𝑖th entry

namely the way it labels the 𝑖th party is as follows, it checks whether these two conditions

are satisfied if they are satisfied then he says that, I am ok with 1, otherwise you will say

I am not ok with 𝑖; it will say I am ok with 𝑖 otherwise it will say I am not ok with 𝑖.

And like that 𝑃𝑗 would have filled each of the response vector bits. Now once every party

has prepared its Boolean response vector it makes it public and when I say it makes it

public to do that, it invokes an instance of existing bit broadcast protocol. So, now 𝑃𝑖 acts

as a sender, where the sender input is this Boolean vector at in it invokes instances of any

bit broadcast protocol say the king face protocol to broadcast the first bit in its response

vector, the second bit in its response vector, the 𝑖th bit in its response vector, the 𝑗th bit in

its response vector and the 𝑛th bit in its response vector.

So, namely 𝑛 instances of bit broadcast. So, that all the parties receive an identical copy

of 𝑖th party’s bit 𝑖th party’s Boolean vector.

In the same way 𝑃𝑗 also will invoke instances of any existing bit broadcast protocol by

acting as a sender to broadcast the individual bits in its response vector. Now see here if

𝑃𝑖 for instance if its corrupt then instead of he can first fill its Boolean vector arbitrarily;

that means, even if the Boolean vector entries should be 1 it can simply say it’s 0; that

means, it may simply unnecessarily accuse 𝑃𝑗 or it may simply broadcast a garbage

Boolean vector, which has no meaning at all.

So, we cannot ensure that whether every party is broadcasting its genuine Boolean vector,

but what we know is that if 𝑃𝑖 is honest if 𝑃𝑖 is honest then it will indeed fill its Boolean

vector as per this assigned process and indeed it will broadcast its Boolean vector correctly.

So, honest parties they are guaranteed to compute their Boolean vectors as per the protocol

steps and they have guaranteed to broadcast the genuine Boolean vector. And as I said

earlier if the sender is honest, party 𝑃𝑖 is honest and party 𝑃𝑗 is honest then the 𝑗th

component in 𝑖th party’s Boolean vector and the 𝑖th component in the 𝑗th party’s Boolean

vector should be 1; that means, they should be equal.

(Refer Slide Time: 25:18)

And this phase requires instances of any existing bit broadcast protocol specifically there

are 𝑛2 instances of existing bit broadcast protocol and that will amount to a total broadcast

of 𝑛2 bits, which is within our allowed budget of the warm-up protocol.

(Refer Slide Time: 25:38)

Now, after the parties make public their response vector they will be known to everyone

and notice that till now the following communication has happened. So, parties have made

their response vectors public and each party has its own copy of the Reed Solomon

codeword received from the sender. Now based on the publicly available response vectors

the parties will construct a graph, which is called a consistency graph.

And where the nodes of the graph will be the identity of the parties namely 𝑃1, 𝑃2, 𝑃𝑗 and

𝑃𝑛 and an edge will be added between the parties 𝑃𝑖 and 𝑃𝑗 if and only if the 𝑗th component

in the 𝑖th party response vector and the 𝑖th component in the 𝑗th party’s response vector

are 1; that means, the party 𝑃𝑖 and 𝑃𝑗 are mutually consistent with each other. So, if this

condition is satisfied, we will say that 𝑖th party and the 𝑗th party are payer wise consistent

with each other.

And this means that if P and 𝑃𝑗 are honest then component wise in the 𝑖th party’s codeword

the 𝑖th component is same as the 𝑖th component in the 𝑗th part is codeword. And in the

same way component wise the 𝑗th component in the 𝑗th party’s codeword is same as the

𝑗th component in the 𝑖th party’s codeword because, that is why party 𝑃𝑖 and 𝑃𝑗 would have

broadcasted 𝑣𝑖𝑗 = 1 and 𝑣𝑗𝑖 = 1 if both of them are honest because, they would have

verified that these two conditions are satisfied.

Of course, if 𝑃𝑖 and 𝑃𝑗 are not honest; that means, if even if these conditions are not

satisfied it may happen that the corrupt party among 𝑃𝑖 and 𝑃𝑗 may unnecessarily say I am

ok with the other party that is fine. In that case, we cannot claim anything, but what we

can claim is that if at all there is an edge between a pair of honest (𝑃𝑖 , 𝑃𝑗) in the graph that

means, component wise their code words their respective local code words have the same

two components.

Namely, the 𝑖th component in their respective local code words are same and the 𝑗th

component in their respective local code words are also same. Now parties check if there

is a clique and when I say clique, I mean to say a complete graph, they check if there is a

clique or a complete graph of size at least 2𝑡 + 1 present in the consistency graph. And if

they see that there is no such clique present then they discard the sender.

When I say discard the sender, I mean to say stop the protocol at that point only do not do

anything else and simply output bit string consisting of 𝑡 + 1 log |𝔽| number of 0’s as the

overall output for the protocol. So, first of all notice that this graph will be public; that

means, all the parties will be constructing the same copy of the conflict graph, this is

because the conflict graph is computed based on the response vectors, which have been

made public using invocations of the bit broadcast.

And the bit broadcast would have ensured its consistency property would have ensured

that every honest party receives the same version of 𝑉, same version of 𝑉𝑖, same version

of the vector 𝑉𝑗 same vector version of the vector 𝑉𝑛; that means, if party 1 has added the

edge 𝑃𝑖 - 𝑃𝑗 in its copy of the consistency graph.

And if 𝑃1 is honest then it is guaranteed that every other honest party also would have

added the same edge. Now what is the logic behind discarding the sender here? If sender

is honest then all honest parties will be a part of a clique in the graph G.

Because every honest party 𝑃𝑖 will be consistent with every other honest party 𝑃𝑗 because,

an honest sender would have sent the same common codeword to all the honest parties

even to in fact, to every other party, but corrupt party might simply replace those code

words with some other junk codeword and might proceed in the protocol, but all the honest

parties will stick to the version of the codeword as sent by the honest sender.

And when every pair of honest parties 𝑃𝑖 and 𝑃𝑗 would have exchanged the common

components, they will see that they are supposedly common components are indeed

common and that is why they would have marked the other party as 1 in their respective

response vectors. So, if sender is honest, we expect that all honest parties are a part of a

clique in the graph and how many such honest parties are guaranteed at least 2𝑡 + 1.

Because we are working with the set in the setting where 𝑛 = 3𝑡 + 1. So, at most 𝑡 parties

can be corrupt who may not be pairwise consistent with the honest parties, but there are at

least 2𝑡 + 1 honest parties who are guaranteed to be pairwise consistent and they will be

a part of the clique.

So, for an honest sender this step will not be executed because this condition will not be

satisfied that implies that if at all a clique of size 2𝑡 + 1 is not found in the graph; that

means, the sender is definitely corrupt, and it has not distributed the common codeword a

common codeword to all the honest parties.

So, it is fine to simply stop the protocol assuming pretending the dealer to be corrupt and

take some default output as its message; that means, we do not care what exactly was

senders message. Since you have not behaved honestly during the protocol execution, we

will not participate further and we will treat as if you wanted to broadcast a message

consisting of all zeros that is, the logic behind this step of discarding the data.

However, it could be possible that a clique of size 2𝑡 + 1 is obtained even if the sender is

corrupt of course, for the honest sender a such a clique is guaranteed but it could be

possible that even a corrupt deal even a corrupt sender sorry not dealer even a corrupt

sender has sent the same common codeword to sufficiently many honest parties and a

clique of size 2𝑡 + 1 is obtained.

If a clique of size 2𝑡 + 1 is obtained let us call that subset of parties as CORE. Now what

we can conclude regarding code? Well, we can conclude that there are at least 𝑡 + 1 honest

parties in code even though its cardinality is 2𝑡 + 1, 𝑡 of those 2𝑡 + 1 parties may be

corrupt under adversaries control in the worst case, but even in that case there are at least

𝑡 + 1 honest parties in the CORE who are guaranteed to be honest.

And those honest parties would have genuinely performed a verification pair wise

consistency test and would have marked the other parties other honest parties within the

CORE as 1 in their respective response factors; that means, the local code words of all

honest parties.

I stress only the honest parties in CORE I am not saying all parties in CORE that is I am

stressing all honest parties in CORE have at least 𝑡 + 1 common components because, that

is why they have constituted a clique in the graph because, whenever there is an edge

between a pair of honest notes in the consistency graph; that means, they have common

components they have respective common components in their local Reed Solomon code

words.

And how many such edges are there between pairs of honest parties? We are guaranteed

that there is a clique involving at least 𝑡 + 1 honest parties. So, based on their response we

can conclude that there are 𝑡 + 1 honest parties in the CORE and their respective local

code words have at least 𝑡 + 1 common components.

Now here we trigger 1 of the properties which we have discussed regarding Reed Solomon

code words in our earlier lecture, which says that if you have 2 code words which have

𝑡 + 1 or more common components corresponding to message encoding polynomials of

degree t, then that implies that the 2 code words are the same code words.

So, what is the message encoding polynomial? In this case the message encoding

polynomial its degree is 𝑡 and we have come to the conclusion that the local code words

of all honest parties in CORE have 𝑡 + 1 or more 𝑡 + 1 or more number of common

components that automatically implies that all honest parties in the CORE have received

the same codeword from the sender.

(Refer Slide Time: 36:09)

So, that is a conclusion till now; that means, we have; that means, we have ensured here

we are ensured here that if at all a CORE is obtained then all the honest parties within the

CORE have received the same codeword from the sender. So, without loss of generality,

imagine CORE consists of the first 2𝑡 + 1 parties, but it could be any subset of 2𝑡 + 1

parties.

And it could be possible that there are some honest parties outside CORE whose local

codeword might be different from the common codeword held by the honest parties in the

CORE. So, that is why now to complete the protocol what is left is to ensure that every

party 𝑃𝑖 who is honest irrespective of whether it is a part of the CORE or not gets the same

common codeword, which is guaranteed to be held by the honest parties in the CORE.

So, we have honest parties who may be inside the CORE as well as outside the CORE.

Inside the CORE all the honest parties are guaranteed to be have the same code word, but

as I said it could be possible that there are some honest parties outside CORE whose code

words as received from the sender might be different from the common code words held

by the honest parties inside the CORE.

So, to get rid of this mismatch we now have to ensure that even the honest parties outside

the CORE gets the same common codeword. In general, our now goal is to ensure that

every honest 𝑃𝑖 irrespective of whether it is inside the CORE or outside the CORE gets the

same common codeword as held by the honest parties in CORE. Now to do this there are

several ways, but remember that we want a mechanism where the allowed budget for

communication complexity is this much.

So, to respect this allowed budget what every party 𝑃𝑖 will do is the following. Every party

𝑃𝑖 will simply ignore whatever codeword or whatever the 𝑖th component of the codeword

it has received from the sender because, it does not know whether sender was honest or

whether sender was corrupt. Party 𝑃𝑖 now knows that who are the parties in CORE because

it also would have obtained the same code by finding the clique and what it knows is that,

it is a parties in CORE who have the same common codeword specifically the honest

parties.

So, what it will do is, it will try to redefine or it will try to adopt the 𝑖th component of its

codeword to the 𝑖th component of the code words held by the honest parties in the CORE.

Now 𝑖th component of the codeword held by the honest parties in CORE is guaranteed to

be same because, all the honest parties in the CORE have the same common code word.

So, how 𝑃𝑖 redefines its 𝑖th component? Well, remember that earlier every party would

have sent two common values to 𝑃𝑖 as part of the pair wise consistency test ok all the n

parties.

Now 𝑃𝑖 will go back to that round and now it knows the identity of the parties in the CORE

it will only focus on the 𝑖th component as received from the parties in CORE. At that time

it would not know the size it would not know the identity of the core, but now it knows

the identity of the CORE.

So, it simply ignores the 𝑖th component received from the other parties who are outside

the CORE it only focuses on the 𝑖th component received from the parties in the CORE.

And now whatever 𝑐𝑖 it has obtained earlier from the sender it simply ignores it. So,

remember sender would have sent a codeword to the party 𝑃𝑖 and their 𝑖th component

would have been there. Now 𝑃𝑖 simply goes and forget that 𝑐𝑖 and changes its 𝑐𝑖 to this

value.

Namely it takes the majority of the 𝑖th component of the code words of the parties in CORE

as received earlier. Now what is the logic behind this redefining the 𝑖th component? Well

we now know that the majority of the parties in CORE because the size of CORE is 2𝑡 +

1.

So, 𝑡 + 1 are honest and at most 𝑡 could be corrupt and since all the honest parties in CORE

would have sent the same 𝑖th component because, their respective code words are same.

That will ensure that by taking by redefining the 𝑐𝑖 based on this majority rule, the

redefined 𝑐𝑖 that 𝑃𝑖 will have is same as the 𝑖th component of the common codeword held

by the honest parties in CORE.

So, this step does not require any communication no communication; because this is based

on communication which has happened earlier, but that time the identity of the CORE was

not known, but now the identity of the CORE is known.

(Refer Slide Time: 42:06)

So, at this point each party will now have the common each party will now have its

respective component of the common codeword held by the honest parties in the CORE

ok. So, imagine that a common codeword held by the honest parties in the CORE has the

component 𝑐1, 𝑐2, … , 𝑐𝑖, . . , 𝑐𝑛 because of the redefinition redefining step that we have

executed just now.

𝑃1 will be having the component 𝑐1, 𝑃𝑖 will be having the component 𝑐𝑖, 𝑃𝑛 will be having

the component 𝑐𝑛 and 𝑃𝑗 will be having the component 𝑐𝑗 ok, but that does not complete

the protocol we now have to ensure that every party 𝑃1, 𝑃2, … , 𝑃𝑖 , … , 𝑃𝑛 has this full vector

namely the common codeword held by the honest parties in the CORE.

Because that exactly is the codeword which everyone would like to have which center has

given only to the honest parties in the core. So, for this what we do is the following every

party send its redefined component to everyone else. So, 𝑃1 will send 𝑐1 to everyone, 𝑃𝑖

will send 𝑐𝑖 to everyone, 𝑃𝑗 will send 𝑐𝑗 to everyone and 𝑃𝑛 will send 𝑐𝑛 to everyone.

This will require a communication of 𝑛2 field element of course, if 𝑃𝑖 is corrupt then it

may change 𝑐𝑖 to 𝑐𝑖
′ or it may send a garbage 𝑐𝑖 to parties. So, what the parties can now do

is the following. So, let us denote the vector of values that each party now have after this

exchange as 𝑐1
′ , 𝑐2

′ , … , 𝑐𝑛
′ .

(Refer Slide Time: 43:59)

If 𝑃𝑖 is honest then 𝑐𝑖
′ will be guaranteed to be same as 𝑐𝑖, but if 𝑃𝑖 is corrupt then 𝑐𝑖

′ could

be a garbage value, but what we now know is that we are working in the setting where

𝑛 > 3𝑡.

(Refer Slide Time: 44:28)

And 𝑐1𝑐2, . . , 𝑐𝑛 corresponds to a message encoding polynomial of 𝑡 degree ok.

Specifically, we are working in the case where 𝑛 = 3𝑡 + 1. So, 3𝑡 + 1 is the length of the

codeword and what is the length of the message encoding polynomial? It has 𝑡 + 1

coefficient’s and how many parties can send incorrect redefined components, up to 𝑡. So,

this condition is satisfied; that means, whatever condition needs to be satisfied for Reed

Solomon error correction for error correcting 𝑡 errors will be satisfied.

And as a result, every party after applying the Reed Solomon decoding algorithm on the

received vector of redefined components will be able to recover back the message

corresponding to the common codeword held by the honest parties in core and this will

require a communication of only 𝑛2 bits, 𝑛2 field elements.

(Refer Slide Time: 45:41)

So, if we outline this warm up protocol it has multiple stages the first stage is the code

distribution where sender converts it message into a code word and sends the codeword to

everyone. And then the second stage is the pair wise consistency test where every pair of

parties exchange only a constant number of supposedly common points and then they

publicly prepare and then they publicly announce the response vector. For this step any

existing bit broadcast protocol can be used based on the publicly available response vectors

the parties prepare a consistency graph.

And then they check whether there exist a sufficiently large subset of parties a CORE

subset of parties of size 2𝑡 + 1, who are all pair wise consistent guaranteeing that at least

𝑡 + 1 honest parties have received a common codeword if that is the case then, based on

the communication the parties had in this pair wise consistency check phase from the

parties in CORE every party redefines the 𝑖th component of their individual code words.

This does not require any communication and once every party has their respected

redefined component, the goal will be to obtain the common codeword held by the parties

in the code for this every party exchange the redefined component followed by Reed

Solomon error correction this will require a communication of 𝑛2 field elements. So, you

can see most of the protocol only involves communication over point to point channels the

existing bit broadcast protocol instances is required only to make the response vector

public.

(Refer Slide Time: 47:32)

So, this is the reference used for the warm up protocol. In the next lecture we will see how

we can plug in this warm up protocol to get the actual domain extension protocol.

Thank you.

