
Secure Computation: Part II
Prof. Ashish Choudhury

Department of Computer Science and Engineering
Indian Institute of Science, Bengaluru

Lecture - 26
Domain Extension for Perfectly-Secure Broadcast Based on RS Error-Correcting

Codes: I

Hello, everyone. Welcome to this lecture. So, for the next few lectures we will be now

focusing on Domain Extension for Perfectly – Secure Broadcast. Earlier, we had seen domain

extension for byzantine agreement namely, the domain extension by Turpin and Coan, and at

that time I promised that later on we will see more efficient domain extension protocol.

So, we will now see the more efficient domain extension based on the properties of Reed –

Solomon error correcting codes.

(Refer Slide Time: 00:55)

So, we will start with the problem description and before going into the exact protocol for

domain extension, we will see some additional properties of Reed-Solomon error correcting

codes which will be useful, ok.



(Refer Slide Time: 01:10)

So, what exactly is the goal of domain extension for broadcast and byzantine agreement? So,

we will be focusing on the domain extension for broadcast, since the broadcast and byzantine

agreement problems are equivalent to each other in the honest majority setting, in the sense

that a protocol for one problem implies protocol for other.

So, you can imagine that if we have a if we have an efficient domain extension protocol for

broadcast then we can use it to get a domain extension protocol for byzantine agreement as

well. So, in the context of broadcast the goal for domain extension is as follows. We have

seen various bit broadcast protocols with n > 3t, ok. Say for instance the EIG protocol, the

phase-king protocol with the various communication complexities.

And, these are bit broadcast protocols where the sender’s message is a single bit. Now, what

if the input of the sender is from a bigger set? Say the sender input is no longer is just a single

bit, but rather it is a bit string of size l bits. So, there are two ways to achieve broadcast for l

bits – one option is that we run any bit broadcast protocol l times where the input for the i-th

instance of the bit broadcast will be the i-th bit of the sender, ok.

And, then the overall output for the parties will be the concatenation of the individual

outputs, which the parties receive from the various instances of the bit broadcast namely from

the l instances of the bit broadcast. However, this will require a communication complexity

which will be l times the communication cost of one instance of bit broadcast.



So, this notation BC and within the parenthesis 1 it denotes the communication complexity

for one instance of bit broadcast. Say for instance, if we are considering the EIG protocol

then BC 1 for EIG protocol is n power t plus 1; that means, if we run l instances of the EIG

protocol the overall cost will be order of n power t plus 1 times l whereas, if we use the phase

king protocol as the bit broadcast protocol, then the overall complexity will be order of n

cube times l ok.

The domain extension which is the option number 2 is basically to design a broadcast

protocol where the senders input is now of size l bits where the existing bit broadcast

protocols are executed only a constant number of times independent of the size of l, ok and

we had already seen earlier the Turpin Coan domain extension protocol there the

communication complexity of the overall broadcast protocol was this. Of course, we had seen

the Turpin Coan domain extension in the context of byzantine agreement, but as I said the

same extension will work even for the broadcast with the same complexity.

So, now, you can see that from the communication complexity expression the cost which

depends upon l, it is only over the point to point channel namely this order of n square l bits

of communication happens over the point to point channels and existing bit broadcast

protocols are executed only for a constant number of times which is independent of l.

Now, we will now see a more efficient domain extension protocol where the overall

communication complexity will turn out to be this much ok. So, now, you can see that this is

much better than Turpin Coans protocol and this communication complexity of order of nl

plus the cost of bit broadcast will be asymptotically optimal communication wise it will be

asymptotically optimal.

This is because if we substitute the cost of the bit broadcast say by the phase king bit

broadcast protocol then the overall cost turns out to be order of n times l plus order of n cube;

that means, if the message size small l is guaranteed to be say theta of n square; that means, if

you have a sufficiently large message then this expression order of nl plus order of n cube

will become order of nl namely, the term order of n cube which is coming due to this constant

number of invocations of the bit broadcast will be asymptotically subsumed in this order

notation big O of nl.

That means asymptotically I can claim that for sufficiently large l for sufficiently large l the

total cost will turn out to be order of n times l bits because whatever is the additional term



coming due to the bit broadcast instances will be subsumed asymptotically in this order of nl

expression. Now, order of nl bits of communication is obviously, an optimal communication

complexity for any broadcast protocol where the senders message is of size l bits.

Because since it is a broadcast it needs to be guarantee that the sender’s message is

communicated to all the parties at least once. Of course, in the protocol the parties may

exchange messages further, but in order that every party obtains the sender message. The

sender has to send its message to every other party and that trivially requires a

communication complexity of order of nl, sorry omega of nl, that is a minimum

communication required in any broadcast protocol where the senders message is of size l bits.

And, what is the total communication complexity we will be achieving through the more

efficient domain extension bit broadcast protocol? That will be order of nl; that means, we

will be asymptotically achieving the minimum cost which is expected from any broadcast

protocol for message size of l bits, ok.

(Refer Slide Time: 09:21)

So, before going into our exact domain extension protocol, we need to understand some more

properties of Reed – Solomon error correcting codes.

So, just to recap this is the Reed – Solomon encoding algorithm where if the sender has a

message consisting of k elements from the field , then to compute the Reed𝑚 𝑚
0
, ⋯, 𝑚

𝑘−1
𝐹

– Solomon code word a message encoding polynomial



is formed which is a k - 1 degree polynomial. And𝑓
𝑚
𝑋( ) = 𝑚

0
+ 𝑚

1
𝑋 + ⋯ + 𝑚

𝑘−1
𝑋𝑘−1

then that polynomial is evaluated at n publicly known values alpha 1, alpha 2, alpha i, alpha

N and they constitute the individual components of the code word.

That is a Reed – Solomon encoding algorithm. Now, the first property that we require later in

our domain extension protocol is the following.

Any k components of this code word vector, uniquely determine the remaining components

of the code word vector; that means, you do not need the full code word vector to identify

what exactly was the senders message. Even if I give you any k components of this code

word vector and those k components need not be the consecutive k components, they could

be any subset of the k components of this full vector. That will be sufficient to determine the

remaining components of the code word.

So, for demonstration imagine that I give you say the first k components, but as I said

whatever I am claiming here holds for any k component. So, imagine you are given only the

k components of the code word and you do not you are not given the remaining components,

they are unknown for you. Of course, you know the value of alpha 1, alpha 2, alpha i, alpha n

because they are publicly known.

And, you do not know the value of the underlying polynomial underlying message encoding

polynomial, but what you know is that the components, which are given to you they are

basically the value of the so called message encoding polynomial at the corresponding alpha

points. That is what is known to you. Now, the k components which are given to you

basically constitute k distinct points on the polynomial namely the message encoding𝑓
𝑚
𝑋( )

polynomial.

And, what was the degree of the message encoding polynomial? Well, it is a k minus 1 degree

polynomial that information is available to you what is a degree because that is a system

parameter. Now, you are given k distinct points on a k minus 1 degree polynomial and recall

that we know from Lagrange’s interpolation that any k distinct points on an unknown k minus

1 degree polynomial are sufficient to uniquely determine that unknown polynomial.

So, through the components which are given to you the k components you can interpolate the

message encoding polynomial and once the message encoding polynomial is computed, well



you can evaluate it at the remaining alpha values to find out what were the missing

components, that is all, right.

So, we will be extensively using this property. That means it is not necessary to know this full

vector of size n to determine the message encoding polynomial or this message, which was

the input for the Reed – Solomon encoding algorithm. Knowledge of any k components is

sufficient.

(Refer Slide Time: 13:27)

Now, let us see some more properties. The next property that we will be using later is the

following. If you are given two Reed – Solomon code words corresponding to two messages

and if it so happens that two Reed – Solomon code words have the same k or more number of

components ok. Then both the code words correspond to the same message and they are

actually the same code words they are not the different code words.

So, what I am saying here is the following. So, imagine you are given two codewords

and which are component-wise same at or more(𝑐
11
, 𝑐

12
, ⋯, 𝑐

1𝑛
) (𝑐

21
, 𝑐

22
, ⋯, 𝑐

2𝑛
) 𝑘

locations. Now, imagine that the first code word corresponds to a message with message𝑚

encoding polynomial . And say that the second code word corresponds to a message𝑓
𝑚
(𝑋) 𝑚'

with  message encoding polynomial .𝑓
𝑚'
(𝑋)



Now, imagine that these two code words have the same k or greater number of components,

say for simplicity these both these two code words have the first k components being the

same, ok. Then it implies that . This is because the common components of𝑓
𝑚
𝑋( ) = 𝑓

𝑚'
(𝑋)

the two codewords constitute distinct points on the two polynomials. And two different𝑘

degree polynomials can have at most common points.𝑘 − 1 𝑘 − 1

So, that is the second property of the Reed – Solomon error correcting codes which will be

useful later when we discuss the exact domain extension protocol namely. Two different RS

code words corresponding to messages of size k can have at most k minus 1 common

component common components. They cannot have more they cannot have k or more

number of common components.

(Refer Slide Time: 19:15)

So, these are the references which are used for today’s lecture. The domain extension based

on the properties of Reed – Solomon error correcting codes were first studied in this paper

and then a more efficient version of the protocol was proposed in this follow up work.

Thank you.


