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Hello everyone. Welcome to this lecture. So, in this lecture we will discuss about 

polynomials over Fields and Lagrange interpolation. So, what are polynomials over fields? 



 

 

Imagine you are given a field 𝔽 with the abstract + and ⋅ operations, then a 𝑡-degree 

polynomial over this field will have the form as follows. So, it will have 𝑡 + 1 coefficients 

and all this + and ⋅ operations are the + and ⋅ operations of your finite field. 

Now, well the field need not be finite, it could be an infinite field. So, all this + and ⋅ 

operations are the field operations. So, for instance if we consider the field ℤ7 where the 

operations are addition modulo 7 and multiplication modulo 7. Then, consider this 

polynomial 𝑓(𝑋), where the coefficients are 6, 2 and 3. So, ℤ7 will have the elements 0, 

1, 2, 3, 4, 5 and 6. 

Then, if you want to find out the value of the polynomial at 𝑋 = 1, then 𝑓(1) will be 6 +

2 + 3. And, since all the summation and multiplication operations, all the addition and the 

multiplication operations are then modulo 7, the result will be 4. If we want to compute 

the value of this polynomial at 𝑋 = 8, then there are two ways to do that. Either we can 

substitute the value of 𝑋 = 8, solve and finally, do mod 7 that will give us the answer. 

But what we can do is that the element 8 in this field will be same as the element 1, because 

8 will be same as 8 modulo 7 in this field which will be the element 1. So, the value of the 

polynomial at 𝑋 = 8 will be the same as the value of the polynomial at 𝑋 = 1. And, we 

have already calculated the value of the polynomial at 𝑋 = 1. Next, we want to define the 

root of a polynomial over the field. 

So, an element 𝑣 from the field is called the root of the polynomial if the value of the 

polynomial at that element 𝑣 or 𝑋 = 𝑣 turns out to be the additive identity element. So, 

this 0 is the additive identity element. So, for instance if we take again the same polynomial 

𝑓(𝑋), then it has only one root namely the value 𝑋 = 6. Whereas, if we take this 

polynomial 𝑔(𝑋), then it has 4 roots namely 𝑋 = 0, 𝑋 = 1, 𝑋 = 2 and 𝑋 = 3. All turn out 

to be the root. 
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The next thing that we want to discuss is the Lagrange’s polynomial interpolation. So, 

before going through the statement, we know that if we are given 𝑑 + 1 or more distinct 

points in a 2-dimensional plane, on a 2-dimensional plane; then there is a unique d degree 

polynomial passing through them, passing through all the 𝑑 + 1 points. But, if you are 

given 𝑑 or lesser number of distinct point, then we cannot find a unique polynomial passing 

through all the given points. 

But if 𝑑 + 1 or more distinct points are given, then we can always compute a unique d 

degree polynomial passing through those given points. So, the Lagrange polynomial 

interpolation extends that result for the case when your polynomial is over a field. So, the 

statement of the theorem is as follows. You are given 𝑑 + 1 distinct points. Why they are 

distinct? Because, the 𝑋 components of these points are distinct. Then, the statement says 

that there exists a unique polynomial 𝑓(𝑋) whose degree is 𝑑 and which passes through 

this given 𝑑 + 1 points. 

And the idea behind the proof of this theorem is that, given such 𝑑 + 1 distinct points we 

can compute the unknown 𝑑 degree 𝑓(𝑋) polynomial. To compute that unknown 

polynomial, the idea is to express that unknown polynomial as a linear combination of 

some 𝑑 degree polynomials. Specifically, 𝑑 + 1 number of 𝑑 degree polynomials using 

the combiners 𝑦1, 𝑦2, … , 𝑦𝑖, … 𝑦𝑑+1. 
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Now, what are these 𝑑 degree polynomials 𝛿1, 𝛿2, … , 𝛿𝑑+1? Well, if we take the first 

polynomial 𝛿1(𝑋), then the value of that polynomial at 𝑥1 will be 1. And the value of that 

polynomial at the remaining 𝑥 values will be 0. So, basically every 𝑥𝑖 except 𝑥1 is the root 

of 𝛿1(𝑋) polynomial. 

In the same way, if I consider the 𝑖th 𝛿 polynomial, namely 𝛿𝑖. Then, all the 𝑥 values 

among these 𝑑 + 1 𝑥 values except the value 𝑥𝑖 will be the root of that polynomial. And, 

like that if I consider the 𝑑 + 1th delta polynomial, then all the 𝑥 values in this set 

{𝑥1, … 𝑥𝑑+1} will be the root of this polynomial except 𝑥𝑑+1. At 𝑥𝑑+1 the value of the 

polynomial should be 1. So, for the moment assume we have such 

polynomials 𝛿1, 𝛿2, … 𝛿𝑑+1. 

Then, it is easy to see that our unknown 𝑓(𝑋) polynomial will be this, because indeed if 

we have this system of polynomials  𝛿1, 𝛿2, … 𝛿𝑑+1. And, then if I evaluate this polynomial 

at 𝑋 = 𝑥𝑖, then 𝛿1 evaluated at 𝑥𝑖 will turn out to be 0, 𝛿2 evaluated at 𝑥𝑖 will turn out to 

0. So, we will have 0 + 0 + 0 + 0, but when we go to this 𝑖th term. Then, 𝛿𝑖 polynomial 

evaluated at 𝑥𝑖 will be 1 and 1 multiplied with 𝑦𝑖 will be 𝑦𝑖, because 1 is the multiplicative 

identity element. 

And then again, all the remaining other terms will be 0, 0, 0 and hence 𝑓(𝑥𝑖) is indeed 𝑦𝑖. 

And it is easy to see that the degree of 𝑓(𝑋) is 𝑑, because it is a summation of several 𝑑 

degree polynomials. So, now, the question is what will be the form of the 𝛿𝑖 polynomial? 



 

 

So, if we want the 𝛿𝑖 polynomial to have these two properties, namely the value of that 

polynomial should be 1 at 𝑋 = 𝑥𝑖. And all other 𝑋 values in the set {𝑥1 to 𝑥𝑑+1}, except 

𝑥𝑖 should be the root then this should be the 𝛿𝑖 polynomial. 

So, you can see 𝑥1 is the root, 𝑥2 is the root, 𝑥𝑖−1 is the root, 𝑥𝑖+1 is the root, 𝑥𝑑+1 is a 

root. The only term which is missing in the numerator is 𝑋 − 𝑥𝑖, that is not there. 
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Now, let us see some more properties of 𝑡-degree polynomials which will be useful for us. 

So, let me denote the set of all 𝑡-degree polynomials over a field with 𝑠 being the constant 

term by this notation 𝒫𝑠,𝑡. And any polynomial in this set will consist of 𝑡 + 1 coefficients, 

where the constant term or the coefficient for the constant term is fixed. It is 𝑠. 

But 𝑎1 could be any element from the field, 𝑎2 could be any element from the field and 𝑎𝑡 

could be any element from the field. So, it is easy to see that the number of such 

polynomials is nothing but |𝔽|𝑡, because for 𝑎1 we have |𝔽| number of options. Because 

we could have these many candidate 𝑎1 coefficients and independent of 𝑎1, the number of 

candidate 𝑎2 coefficients also is |𝔽| and so on. 

So, if you want to see an example, take this field 𝔽. And suppose 𝑡 is equal to 2 and 𝑠 is 

equal to 1. So, what will be the set of all possible 2-degree polynomials whose constant 

term is 1? Well, that set is this. So, this constant term 1 can be treated as a 2 degree 



 

 

polynomial, because I can treat this polynomial as the constant term being 1. Then, the 

coefficient of 𝑋 is 0 and the coefficient of 𝑋2 is 0. 

In the same way, the polynomial 1 + 𝑋2 can be interpreted as a polynomial, where the 

coefficient of 𝑋 is 0 and the coefficient of 𝑋2 is 1 and so on. And the constant term is fixed. 

So, you see the constant term is fixed to 1 and the degree does not go beyond 2. So, this 

will be the collection of polynomials and all the coefficients are from the set ℤ3 which will 

have the element 0, 1 and 2. Now, the next result is the following which is again a very 

standard result. 
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So, if we take a 2-dimensional plane and if I give you one point on the straight line. And 

now, if I ask you how many straight lines can I have passing through this circle point 

whose constant term is s? There is only one straight line. If I ask you how many straight 

lines can I have passing through the circle point whose constant term is 𝑠′? Again, there is 

only one straight line. If I ask you how many straight lines can I have passing through this 

circle point whose constant term is 𝑠′′? Again, there is only one straight line. 

So, we can extend that result for the case of finite field for any degree polynomial. So, 

imagine you are given 𝑡 distinct points, 𝑡 arbitrary distinct points. Why they are distinct? 

Because, the 𝑋 components are all distinct and all of all the 𝑋 components are non-zero. 

Then, the claim is that you take any value from the field, there is only a single 𝑡-degree 

polynomial whose constant term will be 𝑠 and which passes through the given 𝑡 points. 



 

 

So, pictorially I am fixing the 𝑡 points, where all the 𝑡 points are distinct. And now, I am 

asking how many polynomials of degree 𝑡 can be there whose constant term is 𝑠 and which 

passes through these 𝑡 points? Well, there can be only one such polynomial, because that 

polynomial must pass through (0, 𝑠) as well. Namely, the point (0, 𝑠) lies on that 

polynomial and anyhow I am giving you 𝑡 more points also to lie on that polynomial. 

So, all together, we have 𝑡 + 1 points and through 𝑡 + 1 points, we can have only one 𝑡-

degree polynomial passing. In the same way, if I ask you how many polynomials can be 

there whose degree is 𝑡, whose constant term is, say 𝑠′, and which passes through these 

given 𝑡 points? The answer is there is only one such polynomial, say 𝑔(𝑋). 
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Now, based on these properties of 𝑡-degree polynomials, let us see an experiment which 

is a randomized experiment. It is a randomized experiment, in the sense that even if the 

input of the experiment is same, the output could be different with different probabilities. 

So, the input is a value from the field. Now, to generate the output the experiment picks a 

random 𝑡-degree polynomial. 

So, a random 𝑡-degree polynomial with 𝑠 as constant term and then to generate the output, 

it evaluates that polynomial at 𝑛 publicly known distinct points. So, 𝑓 is computed at 𝛼1, 

𝑓 is computed at 𝛼2, 𝑓 is computed at 𝛼𝑛, where all these 𝛼 components are distinct, 

different from 0 and that is the output for this experiment.  



 

 

So, we can see why this is a randomized experiment. If I run this experiment 2 times, again 

if I run it 2 times with the same input s. Then, the outputs 𝑦1, … , 𝑦𝑛 will be different with 

different probabilities because, the outputs are the points on the polynomial which is 

selected here randomly. 

So, the probability that the polynomial turns out to be the same during both the invocations 

of this experiment is small. It is of course, non-zero, but it is small; assuming that your 

field is sufficiently large. So, pictorially the output of the experiment is select determined 

as follows. The input is fixed, to generate the output a random curve is picked whose 

constant term is 𝑠 and the value of that and 𝑛 points on that curve are given as the output. 

Again, if you want to run the experiment with input 𝑠, next time probably you would have 

chosen the polynomial 𝑓′(𝑋) and then the outputs would have been different. The 𝛼 

components remain the same throughout the experiment. So, the components does not 

change, it is fixed once for all and it will be publicly known. Now, we want to analyze 

here that how much information about the input 𝑠 is learnt through any subset of 𝑡 output 

values? 

So, what I am asking here is the following. Suppose you can see only 𝑡 output values in 

this experiment. You do not know the value of s, but you know the steps of the experiment. 

You know that I would have picked a random polynomial whose degree would have been 

𝑡 and whose constant term would have been my input. And I would have given you 𝑡 

output values, because you can see only 𝑡 output values, not the full vector of 𝑛 values. 

Now, the question is how much information about my input you learn in this experiment? 

So, pictorially I am asking you the following question. So, imagine that you observe the 

first 𝑡 output values. Now, based on those 𝑡 output values and anyhow the components 

𝛼1 … , 𝛼𝑡 are also known to you; can you tell whether my input was 𝑠1 or my input was 𝑠2 

or whether my input was any other value from the field? The claim is the following. 

With equal probability the 𝑡 output values could result for the input being 𝑠 as well as the 

input being 𝑠′. More specifically, if we consider an instance of this experiment where the 

input would have been 𝑠. And, if we consider another instance of the same experiment 

where input would have been 𝑠′, then with equal probability you would have seen the 

values 𝑦1 … 𝑦𝑡 as the first 𝑡 output values that is the claim here. 



 

 

So, formally if we take the probability over all possible 𝑡-degree polynomials 𝑓(𝑋) which 

are randomly selected from this set. The probability that the randomly chosen polynomial 

from this set evaluates to 𝑦1, 𝑦2 … , 𝑦𝑡 at 𝛼1, 𝛼2, … , 𝛼𝑡 is equal to 1 over the size of the 

number of 𝑡-degree polynomials with 𝑠 being the constant term. 

This is because when we are taking the probability over all candidate 𝑓(𝑋) polynomial, 

there is only 1 𝑓(𝑋) polynomial in this bigger set of all 𝑡-degree polynomials with 𝑠 being 

the constant term, such that polynomial evaluated at 𝛼1 would have given you 𝑦1, that 

polynomial evaluated at 𝛼2 would have given you 𝑦2. And, that polynomial evaluated at 

𝛼𝑡 would have given you 𝑦𝑡. 

This is because (𝛼1, 𝑦1), (𝛼2, 𝑦2), … , (𝛼𝑡, 𝑦𝑡); it constitutes 𝑡 points and that point though 

those 𝑡 points along with 0, 𝑠 determines a unique 𝑡-degree polynomial. So, among all 

possible polynomials from this set of polynomials there is exactly 1 𝑓(𝑋) polynomial 

which satisfies this condition. For all other 𝑓(𝑋) polynomials in this set the condition will 

not be satisfied. 

Now, what is the probability that in this experiment indeed that specific polynomial 𝑓(𝑋) 

is selected here? Remember, the polynomial from the set is picked randomly. So, among 

all the polynomials with degree 𝑡 and 𝑠 being the constant term, the probability that 

experiment would have selected that special polynomial 𝑓(𝑋) whose constant term is 𝑠 and 

which evaluates to 𝑦1, … , 𝑦𝑡 at 𝛼1, … 𝛼𝑡 is 1 over the sample space. 

The sample space is the set of all such polynomials and the favorable element or the 

favorable number of polynomials is only 1 polynomial. And, now due to the same reason 

we can argue that if we now take the probability over the set of all 𝑡-degree polynomials 

selected randomly, whose constant term being 𝑠′. The probability that any such randomly 

chosen polynomial would have evaluated to 𝑦1, 𝑦2, … 𝑦𝑡 is also the same as 1 over the 

number of 𝑡-degree polynomials with 𝑠′ being the constant term. 
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But if you see closely, the number of 𝑡-degree polynomials with 𝑠 being the constant term 

and the number of 𝑡-degree polynomials with 𝑠′ being the constant term is same. 

Namely,
1

|𝔽|𝑡. So, that shows the following that if there is an observer who observes or who 

learns the output of this experiment, it learns only a subset of 𝑡 output values, instead of 

all 𝑛 output values. 

Then, from the viewpoint of that observer, the probability distribution of those 𝑡 output 

values it does not depend on 𝑠. Those 𝑡 output values could occur as the output of the 

experiment for s; with the same probability with which those output values would have 

occurred as the output, if 𝑠′ would have been the input of the experiment. 
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So, let me demonstrate this with an example to make it clearer. So, let us take specific 

values for 𝑛, 𝑡 and the concrete field and the concrete value of the candidate secret or 

candidate 𝑠. The 𝑠 here is called as the secret. So, imagine the value of 𝑠 is 13; that means, 

someone runs this experiment with the input 13. 

Now, there are many polynomials of degree 2 with 13 being the constant term. 

Specifically, there are 17 square number of such polynomials. Among all such 

polynomials, one such polynomial is picked randomly in the experiment. So, suppose we 

also fix the evaluation points 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 to 1, 2, 3, 4 and 5 respectively. As I said 

that the polynomial 𝑓(𝑋) is picked randomly, suppose in the experiment this polynomial 

is selected. 

The probability that this polynomial is selected is
1

172, because as I said there are 172 

candidate polynomials. So, the probability that this polynomial is selected is 
1

172. Now, if 

the experiment would have selected this polynomial, then the output would have been the 

out value of this polynomial at 𝑋 = 1, 𝑋 = 2, 𝑋 = 3, 𝑋 = 4, 𝑋 = 5. 

Now, suppose I do not give you the 5 output values, but I give you only 2 output values 

say and those 2 output values could be depending upon your choice. You just ask me 2 

output values. So, suppose you asked for the first and the third output value. So, I gave 

you 𝑦1 equal to 8 and 𝑦3 equal to 10. And now I ask you can you tell me what was my 



 

 

input? My input was 13. Can you tell me what was my input? I will now show you that 

the following hold. From your view point you know that my input is an element from this 

field ℤ17. 

That means, from your viewpoint the candidate 𝑠 could be 0, it could be 1, it could be 2 or 

it could be an element 16 as well. And I am challenging you to tell me what my input was, 

given that you have seen the output values 𝑦1 equal to 8 and 𝑦3 equal to 10. And of course, 

you know all the alphas, you know the steps of my experiment as well. 

I will show that for every candidate value of 𝑦, every candidate value of 𝑠, and as I have 

said that there are 17 candidate values of 𝑠, you cannot rule out any of them. With equal 

probability it could be the case that I have run the experiment with input 0. And, if I would 

have run the experiment with input 0, I could have produced outputs 𝑦1 equal to 8 and 𝑦3 

equal to 10 and given to you. 

And, with the same probability it could be it will be the case that, I could have run my 

experiment with input 1 and produced the outputs 𝑦1 equal to 8 and 𝑦3 equal to 10. And, 

like that with the same probability, it will be the case that I could have run the experiment 

with input 16 and produce the outputs 𝑦1 equal to 8 and 𝑦3 equal to 10. So, let us see. 

So, now this computation you are doing in your mind, because your goal is to find out 

what exactly was my input. So, you think your mind, you are doing this mental calculation; 

is it possible that professor’s input is 0? Well, there is a probability that professor’s input 

is 0, provided he would have selected the polynomial16𝑋 + 9𝑋2. 

Because, indeed this candidate polynomial when evaluated at 𝛼1 would have given 8 and 

when evaluated at 𝛼3 would have given 10 which matches with the output values that the 

professor has given you. So, you cannot rule out the candidate 0 from your viewpoint. 

Now, you are asking the following question: is it possible that professor has run the 

experiment with input 1? And, the answer is yes, it is quite possible that the professor has 

run the experiment with input 1; provided he has selected this polynomial. That means, if 

professor input would have been 1 and if he would have selected this polynomial. And, 

then if you would have evaluated this polynomial at 𝛼1 and 𝛼3, you would have seen the 

outputs 8 and 10. 



 

 

And, like that there is a possibility that the professor has run the experiment with input 2, 

where his polynomial was this value. And this polynomial evaluated at 𝛼1 and 𝛼3 would 

have given the outputs 8 and 𝑡 as you have observed. And, now like this I can complete 

the table and then you can see what is happening here is, this is the computation which 

you have done. 

And you cannot rule out any value, any candidate value of 𝑠. You have seen outputs 8 and 

10. You do not know the polynomial that I have selected. You do not know my input and 

now you have done a mental calculation. And, as per your mental calculation every 

candidate 𝑠 could have resulted in an output 𝑦1 equal to 8 and 𝑦3 equal to 10 in this 

experiment. 

And that is why just seeing the 2 values namely 𝑦1 equal to 8 and 𝑦3 equal to 10 is 

incomplete for you, is insufficient for you to determine what exactly was my input in this 

experiment. So, this is a very nice property which we will utilize later on heavily in the 

course. So, with that I end this lecture. 

Thank you. 


