
Secure Computation: Part II

Prof. Ashish Choudhury

Department of Computer Science and Engineering

Indian Institute of Information Technology, Bengaluru

Lecture - 02

Reliable Broadcast and Byzantine Agreement

Hello everyone, welcome to this lecture. In this lecture, we will discuss about Reliable

Broadcast and Byzantine Agreement. These are two very important problems in distributed

computing.

(Refer Slide Time: 00:33)

So, we will formally state the problem statement of reliable broadcast and Byzantine

agreement, and we will see the relationship between these two problems.

(Refer Slide Time: 00:44)

So, let us start with the problem of reliable broadcast often called as the RB problem. So,

what we are given here? We are given a synchronous system of 𝑛 parties, and when I say

synchronous system, I mean to say that channel through which the parties are connected

with each other have bounded delays; that means, there is strict upper bound on the

message delays, and everyone will be knowing within how much time an expected

message is supposed to be delivered.

We also assume a pair-wise secure channel model here; that means, we assume that

between every pair of parties there is some secured channel already available through

which the parties that corresponding pair of parties can exchange messages securely. So,

for instance if this is the 𝑖th party and if this is the 𝑗th party, then we assume that there is

a secure channel between 𝑖th party and 𝑗th party.

Any message which 𝑖th party receives over this channel will be known to have come from

this entity 𝑃𝑗; that means, the identity of the senders will be known. And if 𝑃𝑖 and 𝑃𝑗 are

honest parties, honest in the sense that they are not under the control of the adversary, then

since this is a secure channel, no one can figure out what exactly is getting communicated

over this channel between the 𝑖th party and the 𝑗th party.

So, in some sense, we are assuming here that we have 𝑛 parties who are part of a complete

network. The underlying communication model is modeled as a complete network of 𝑛

nodes where 𝑖th party is the 𝑖th node of the network. And one of these 𝑛 parties is a

designated sender party. Say, this party is the sender party; it will be known as part of the

protocol specification who is the designated sender.

(Refer Slide Time: 03:03)

And there is some input available with this sender from some domain. Again, the domain

will be known, but what exactly is the sender’s message will not be known beforehand.

So, in its simplest form the message 𝑚 could be just a single bit, or it could be an

enormously large message and we are in the Byzantine corruption setting. So, we assume

that among these 𝑛 parties at most 𝑡 could be controlled by a Byzantine adversary.

And the most important part here is that that sender could also be potentially corrupt. This

need not be always the case, but among those 𝑡 parties, sender could be one of the entities.

Now, we want to design a protocol, let us denote it by𝜋𝑅𝐵. And when I say protocol, it will

basically be a sequence of instructions for each party and that protocol should achieve

three security properties.

The first property is the Termination or the Liveness property, which demands that each

honest party should obtain an output after some fixed time 𝑇 which will be publicly known.

That means, it should not be the case that the protocol never terminates at all, and the

parties keep on running the protocol forever.

There should be some well-known, fixed time within which all the parties complete their

respective instructions of the protocol and obtain an output. That is called the termination

property, termination requirement. It is often called as the liveness requirement. The

second requirement from this protocol is that of Consistency. So, what does this broadcast

in the term reliable broadcast signify?

The term broadcast signifies that the sender would like to send its message identically to

everyone. It is like some broadcaster is relaying or broadcasting a live telecast of a cricket

match right. So, it should not happen that the broadcaster is showing different viewers,

different version of the match. All the viewers of that broadcaster should see the same

version of the live telecast right, even if the broadcaster gets potentially corrupt.

So, that requirement is captured through the consistency property which demands that each

honest party and when I say honest party, I mean to say the parties not under the control

of the adversary. So, remember we have 𝑛 parties out of which at most 𝑡 could be corrupt

and at least 𝑛 − 𝑡 will be honest.

So, at most 𝑡 corrupt parties and at least 𝑛 − 𝑡 honest parties, the exact identity of the 𝑡

corrupt parties and the exact identity of the honest parties need not be known, but the

parameter 𝑡 and 𝑛 − 𝑡 will be publicly known. So, the consistency requirement is that each

honest party, after time 𝑇, should have a common output, call it 𝑚∗, even if the sender is

corrupt during the protocol execution.

So, if during the protocol, sender is corrupt and it is trying to send different versions of its

message to different honest parties, still there should be interaction happening according

to the protocol 𝜋𝑅𝐵 among the honest parties, which should ensure that after interaction

everyone is on the same page and has a common output 𝑚∗ that is a consistency

requirement.

And this 𝑚∗ could be different from 𝑚 if the sender is corrupt. I stress this, because if the

sender is corrupt then it in the first place may not have a 𝑚 at as its input, it might start

with some garbage input. We require that even if sender starts with a garbage input, at the

end of the protocol everyone should have a common output that is a consistency

requirement.

And the third requirement is the Validity requirement. The validity requirement demands

that this common output 𝑚∗, which all the honest parties are going to obtain after the time

𝑇, should be equal to the senders message or senders input 𝑚 if sender was honest during

the protocol execution right. So, you see for the consistency and validity property one is

required with respect to a corrupt sender, one is required with respect to a honest sender.

We require that if the sender is honest, then let the parties execute the protocol. They

interact among themselves to find out whether sender is cheating or not. At the end of time

𝑇 everyone should output 𝑚 if the sender is honest during the protocol execution. And

consistency requirement demands that even if the sender was corrupt during the protocol

execution through the interaction at the end of time 𝑇, everyone should output an identical

message call it 𝑚∗ which need not be the sender’s input.

Now, why is this validity property is required or stated as one of the requirements of the

RB protocol? Because, if we do not have this validity requirement then this reliable

broadcast problem is very easy to solve. Everyone can just output a default 𝑚∗, say 0,

everyone that will ensure that termination is satisfied because everyone just has to output

a bit; they do not need to interact they do not even need to talk with each other.

And consistency is by default satisfied because everyone is outputting a default value. It

is a validity property which makes the problem more interesting. If everyone just outputs

by default 0, then that 0 may not be the sender’s message 𝑚; sender may have the bit 1.

We would require that through interaction the parties should identify that the sender’s

message was 1 and they output 1, instead of outputting a default value. So, if we do not

have this validity requirement then the problem is very trivial to solve. So, that is a reliable

broadcast problem.

(Refer Slide Time: 10:58)

A related problem is the Byzantine agreement problem; we use the short form BA. And

here also the system model is same as for the previous problem. We have a synchronous

system of 𝑛 parties in the secure channel model and each party has a private input. So, I

am denoting the input as 𝑣1, 𝑣2, … , 𝑣𝑖 … , 𝑣𝑛 from some publicly known domain. So, in the

simplest form the domain could be the set {0, 1}; that means, the input of each parties just

a bit, but it is a private bit; that means, when the protocol starts executing 𝑃1 will not know

the input bit of the other parties and so on.

At most 𝑡 parties among these 𝑛 parties could be byzantine corrupted, but the exact identity

of those 𝑡 byzantine corruptions will not be known beforehand, and we want a protocol.

Let us call that protocol as 𝜋𝐵𝐴 which should satisfy three properties. Again, the first

property is the Termination or Liveness property, which demands that it should not happen

that the parties keep on running the protocol forever. There should be some fixed known

time, say 𝑇′, within which each honest party should obtain an output.

By the way, all these properties are with respect to honest parties. We do not care whether

the corrupt parties keep on running the protocol forever; and we can never stop them from

doing so, because we have absolutely no control over what the corrupt parties are going to

do, what output they are going to consider whether they are going to consider any output

at all.

But we will require that the honest parties which are not compromised which are not under

the control of the adversary should have some well-defined behavior. So, one of the well-

defined behaviors is that they should have an output after some predetermined time; that

means, it should not happen that they also keep on running the protocol forever.

And this time 𝑇′ it varies from one protocol to another protocol. So, we may as. So, later,

we will see varieties of byzantine agreement protocols. So, one BA protocol may have a

different 𝑇′ compared to another BA protocol and so on. So, that is the termination or the

liveness requirement.

A second requirement is the Consistency requirement, which demands that each honest

party should have a common output after time 𝑇′call it 𝑣∗. And that is why the term

agreement. We want to ensure that even if the parties start with different inputs they should

come on a common count, they should come to a common conclusion, they should be on

the same page. So, they should have a common output 𝑣∗ after the time 𝑇′.

And again, we now have this interesting property the Validity property, which makes the

problem very interesting. The validity requirement states that if the inputs of all honest

parties were same at the beginning. See the input was 𝑣 then all the honest parties should

stick to that output, it should not change from 𝑣 to any other value. Again, if we do not put

this validity requirement, the BA problem is very trivial to solve everyone just outputs a

default value.

If the domain is the set {0, 1} then a one-line code, a one-line BA protocol, could be

“output 0”, everyone outputs 0 that is all, no interaction. And everyone will terminate this

protocol and consistency will be satisfied, but it will not satisfy the validity requirement.

Because if everyone by default outputs 0 and if all the honest parties had their input 1, then

the validity condition is not satisfied. It is the validity requirement which makes the

problem very interesting.

Now, this BA problem is often called as the Distributed Consensus problem in the

community. Why is it called distributed consensus? Because we have 𝑛 systems and we

have because we have 𝑛 parties and each party has a different state, different input, to

begin with. So, you can imagine that the private inputs of the parties are nothing but their

respective states.

So, this parties could be the database, they could be system components, they could be

parts, they could be processes of operating system and so on. So, we have 𝑛 entities each

of them has its own private state. And we would require we would like to have a protocol

executed among those 𝑛 entities which ensures that they come to a consensus.

That means the output a common output after some fixed time. Even if they start

potentially with different states different inputs, but if all the good components if all the

good system components of all the honest parties start with a common input, they were

having the same state than the state should not get changed. The output should remain the

same as it was, if at all the good components all the honest components were having the

were having in the same state.

So, you must have heard about this term blockchains. Blockchain technology is basically

a form of distributed consensus because, on a very high level, what happens in the

blockchain protocol is that you have several copies of blockchain available at different

locations. We would require a protocol which allows the entities to interact among

themselves.

And after every update in the blockchain if any update happens in one copy of the

blockchain, through this interaction, through this protocol, through this consensus

mechanism, that update is reflected across all the other copies of the blockchain. So, that

is nothing but doing some form of distributed consensus only. So, that is why byzantine

agreement is a very fundamental problem in distributed computing, where we would

require 𝑛 components to come to a common state come, to a common conclusion, by

running a protocol among themselves.

(Refer Slide Time: 19:03)

So, there are various types of RB and BA protocols. So, the first category of protocols is

called as a perfectly secure protocol. So, when we say perfectly secure RB or perfectly

secure BA protocols, that means that the corrupt parties are computationally unbounded;

that means, we make absolutely no assumption regarding the computing power of the 𝑡

corrupt parties.

As a result, no cryptographic tools can be deployed; and all the three security properties

namely the consistency, liveness and validity property are achieved in an error free fashion

through perfectly secure protocols. A slightly weaker category of protocols is the

statistically secure protocols, where adversary is still computationally unbounded; that

means, no cryptographic tools are allowed.

But now, all the security properties need not be achieved in an error free fashion; that

means, now you are allowed a very small negligible, but non-zero probability in the

protocol output; that means, the three properties namely the liveness and the consistency

and validity these properties should be achieved with high probability.

See if you are wondering what the negligible probability is, on a very high level it is such

a small quantity that it can be ignored for all practical purposes say of order
1

2128
. And the

last category of protocols is the cryptographically secure protocols where you are allowed

to use cryptographic tools, because we make the assumption here that adversary the set of

t corrupt parties is under the control of a computationally bounded adversary.

That means, adversary can now no longer perform an exponential number of computations.

And here also all the security properties, the three security properties should hold with a

high probability, but there is always a non-zero probability non-zero error probability

which is allowed in the protocol outcome.

So, you might be wondering that why I should go for statistically secure protocol or

cryptographically secure protocol because security wise, they are secure against a less

powerful adversary and not only that, they give me security guarantees which are not 100

percent but with high probability.

So, of course, I should opt for perfectly secure protocols where the security guarantees are

100 percent. But, later, as the course proceeds, we will see that the resources required for

perfectly secure protocols are typically more than statistically secure and cryptographically

secure protocols. When I say resources, I mean the running time of the protocol and the

number of messages which are exchanged and the number of corruptions which can be

tolerated in the protocol.

So, later, as the course proceeds, we will see what resources are required by perfectly

secure protocols. It is the tradeoff you must make if you want full security against the most

powerful form of adversary. So, you have to deploy more resources. If your resources are

very critical then, but you are fine to tolerate very small error probability, then go for

statistically secure protocol or cryptographically secure protocols.

(Refer Slide Time: 23:11)

Now, let us see the relationship between the RB and the BA problems. From the problem

descriptions they might sound very similar, but they are not. But there is a very nice

relationship between the RB and the BA problem. So, imagine you are given an RB

protocol. So, imagine there is an RB protocol, we do not know the details, but imagine

there is a sequence of steps which satisfies these three requirements.

Now, given this we can design another protocol solving the byzantine agreement problem

that is a derive that is a relationship in one direction. And we can show the relationship in

another direction as well, namely if there is a byzantine agreement protocol then using that

byzantine agreement protocol, we can solve the reliable broadcast problem as well.

This relationship in both the directions holds as long as the number of corruptions in the

system is strictly less than
𝑛

2
 and the system is synchronous;; that means, given an RB

protocol you can convert it into a BA protocol and vice versa.

(Refer Slide Time: 24:56)

 Let us see how we can obtain protocol for one task given a protocol for the other task. So,

let us see the direction from RB to BA. So, imagine you have a 𝑡-secure RB protocol;

when I say 𝑡-secure RB protocol I mean to say it satisfies all the three requirements of RB

Reliable Broadcast, even if up to 𝑡 parties in the system get corrupt during the protocol

execution.

And imagine 𝑡 <
𝑛

2
; that means, after time 𝑇 everyone will have some output that output

will be a common output even if the sender is corrupt. And that common output will be

the sender’s message if the sender would have been honest all these three properties are

satisfied. Using this protocol 𝜋𝑅𝐵, I can design the following BA protocol 𝜋𝐵𝐴.

So, recall, in the BA problem every party has its own input we do not have any designated

sender. We have every party with its own input whereas, in the RB problem only one of

the parties has the input namely the sender. Now, in this BA protocol which I am designing

my first step is the following: I ask each party 𝑃𝑖 to act as a designated sender and invoke

an instance of this protocol 𝜋𝑅𝐵 namely the reliable broadcast protocol to broadcast its

input 𝑣𝑖.

So, this step will be done by every party 𝑃𝑖. (Refer Slide Time: 26:53)

So, this is like for 𝑖 = 1, … , 𝑛; that means, 𝑃1 will be acting as a sender where 𝑣1 is the

input of the sender for the instance of the reliable broadcast protocol and everyone will be

running an instance of this reliable broadcast protocol assuming 𝑃1 to be the designated

sender where the sender’s input is 𝑣1.

(Refer Slide Time: 27:14)

In parallel there is another instance of RB protocol which will be executed where 𝑃2 will

be serving as the designated sender with its input 𝑣2. And, like that there will be in parallel

𝑖th invocation of the RB protocol getting executed in parallel where 𝑃𝑖 will be the sender

with its input 𝑣𝑖.

(Refer Slide Time: 27:37)

And, in parallel there will be the 𝑛th instance of the RB protocol, where 𝑃𝑛 will be serving

as the designated sender. So, basically what we are doing here is run 𝑛 parallel instances

of 𝜋𝑅𝐵 where in the i𝑡h instance 𝑃𝑖 is the sender with its input 𝑣𝑖.

(Refer Slide Time: 28:12)

Now, remember that among these 𝑛 invocations of RB up to 𝑡 invocations could be by the

corrupt senders. So, at most 𝑡 instances of 𝜋𝑅𝐵 correspond to corrupt senders. And the

parties will not be knowing who the corrupt sender is, who the honest sender is, they are

just participating in parallel invocations of 𝜋𝑅𝐵. Of course, they will be knowing who the

sender for one instance for one specific instance of RB is.

So, we can always assume that when multiple invocations of the same protocol are getting

executed, to distinguish between the messages of one instance from another instance, we

associate tag the identifier of the instance and so on. So, those details we can always

assume. Now, what is the liveness guarantee of 𝜋𝑅𝐵? The liveness guarantee of 𝜋𝑅𝐵 is that

after time 𝑇 the instance will be over, and each honest party will obtain an output.

So, that means, the first instance of 𝜋𝑅𝐵 will be over at time 𝑇, the second instance of 𝜋𝑅𝐵

will be over at time 𝑇 and like that the 𝑛th instance of 𝜋𝑅𝐵 will also be over at time 𝑇. So,

it is not the case that all the 𝑛 instances keep on running forever. Moreover, we know that

from the consistency property of 𝜋𝑅𝐵, all the honest parties will have the same output from

the first instance of RB.

So, the instance of RB where 𝑃1 as was acting as the sender will produce a common output

for all the 𝑛 parties that is coming from the consistency property of RB. Like that, if I

consider the 𝑛th instance of 𝜋𝑅𝐵 invoked by the sender 𝑃𝑛, that will produce a common

output for all the honest parties; again, coming from the consistency property. So, that

means, if I consider the output vector, why output vector?

Because there are 𝑛 instances of 𝜋𝑅𝐵, so there are 𝑛 outputs which each party is going to

obtain. I can visualize the 𝑛 outputs which each party is obtaining as a vector. So, through

the consistency property of 𝜋𝑅𝐵, it is guaranteed that all the output vectors will be same.

So, it would not be the case that 𝑃1 outputs one output vector and 𝑃2 outputs another output

vector. No, that is not going to happen because the consistency requirement the

consistency property of 𝜋𝑅𝐵 ensures that even if the sender of that 𝜋𝑅𝐵 instance is corrupt,

every honest party will have a common output in that instance.

Moreover, from the validity property of 𝜋𝑅𝐵, if I consider the 𝑖th instance of 𝜋𝑅𝐵 then the

output which every party has obtained in that instance will be the input 𝑣𝑖 of 𝑃𝑖; because

in the 𝑖th input 𝑃𝑖 would have invoked the instance of 𝜋𝑅𝐵 to broadcast its input 𝑣𝑖 for the

BA.

So, that means that the two properties that we have now guaranteed are the following. The

output vectors that each party is going to have will be common and, among these output

vectors, if I focus on the component corresponding to the honest parties’ input, that will

be the input that honest party has for the BA problem.

Now, we must provide an output decision rule for the 𝜋𝐵𝐴 protocol because the BA

protocol requires a common output from all the honest parties. So, the output that each

party produces in this 𝜋𝐵𝐴 protocol is the following: they simply output the majority value

of their vector. This should be 𝑣1
∗, … , 𝑣𝑛

∗ .

So, they see if there is a value which occurs majority number of the times, they output that

value. If there is no majority in this vector, then this set 𝑣∗ to some default value in the

domain. Now, my claim is that this BA protocol that we have designed satisfies the

termination property. Why does it satisfy the termination property? Because each honest

party will terminate the 𝑛 instances of 𝜋𝑅𝐵 that will take time 𝑇, and after that they just

have to find the majority of the output vector.

So, this 𝜋𝐵𝐴 protocol will also get over after time 𝑇. So, since termination is satisfied, this

𝜋𝐵𝐴 protocol will satisfy the consistency requirement. Why will it satisfy the consistency

requirement? Because the output vector of all the honest parties will be common, we have

already argued that; and what is the output of the BA protocol? The majority of that

common output vector.

So, everyone will be applying the same majority rule to their respective output vector

which is common across all the honest parties which ensures the consistency property of

the BA. And this BA protocol will satisfy the validity property as well. Why? Because if

all honest parties 𝑃𝑖 had the same input, say 𝑣, then through the majority rule 𝑣∗ will be

nothing but 𝑣.

This is because we have argued that the validity property of 𝜋𝑅𝐵 ensures that the RB

instances for the honest sender parties will produce the output 𝑣. So, for instance if 𝑃1, 𝑃2

and 𝑃𝑛−𝑡 are the honest parties then the first 𝑛 − 𝑡 components in the output vectors of

each party will be 𝑣. The remaining 𝑛 − 𝑡 could be any value, but since we are assuming

𝑡 <
𝑛

2
, that means majority of the values in the output vectors of all the parties will be 𝑣

and that is why 𝑣∗ will be 𝑣 and that is why the validity property of the BA protocol will

be retained.

(Refer Slide Time: 36:30)

Now, let us see the relationship in the other direction. Assume you are given a Byzantine

agreement protocol which is 𝑡-secure and imagine𝑡 < 𝑛. We do not even need 𝑡 < 𝑛/2;

that means, the 𝐵𝐴 protocol satisfies the termination property, it gives you the consistency

property, it gives you the validity property.

Using that, we want to design a reliable broadcast protocol where some designated party

is the sender. Now, in the reliable broadcast protocol the first step is to let the sender send

its message to all the parties. So, remember in the reliable broadcast problem, no other

party has any input except the sender. So, the first step is to let the sender send its message

to everyone.

(Refer Slide Time: 37:25)

If the sender is corrupt, then it can send different versions of its message to different honest

parties. But if it is honest, it will send the same message to everyone. Since the system is

synchronous, it will be guaranteed that after time Δ which will be publicly known, that is

the channel delay, every party will get some message from the sender. Of course, if sender

gets crashed; so, remember sender could be potentially corrupt.

And it could be corrupted in a byzantine fashion and byzantine corruption subsumes crash

failures. So, it could be the case that sender just sent 𝑚 to one of its neighbors and then it

simply gets crashed. So, the convention that we follow while designing or while writing

synchronous protocols is the following.

If a party is expecting a message from a sender party and if within time Δ, within the

channel delay, that expected message does not turn out, then the receiving party will

substitute it with some default value and proceed to the next steps; it does not wait

indefinitely.

So, considering the scenario, if the sender party sends its message to one party and then

suddenly crashes and it does not send anything to the other parties, then the other parties

will assume as if the sender wanted to send some default value 𝑚′. The default value will

be publicly known, it will be specified as part of the protocol description. So, we do not

write separate codes. So, separate else if then statements for handling the cases when no

message or no expected message turned out within the expected timeout are not written.

Whenever an expected message does not turn out within the expected timeout the receiving

party substitutes it with some default value thinking this is the message which the sender

would have tried to send me and goes to the next step.

(Refer Slide Time: 39:34)

So, the first step of this RB protocol was that the sender sends its message to everyone.

And, as I said, if it is corrupt, it may send different versions of its message to different

honest parties. But if it is honest if the sender is honest, it will send an identical copy of its

message to everyone. Now, after the time Δ every party has some message on the behalf

of the sender. If the sender is honest, all of them have the same message; if the sender is

corrupt, they might have different versions of sender’s message.

But as part of the RB protocol, they must come to a common conclusion on what the

sender’s message is. So, it is very simple. What they can do is they can simply now run a

BA protocol and we are assuming that there exists a BA protocol satisfying the termination

consistency and validity properties of BA. So, that BA protocol every party runs.

And what is the input of the 𝑃𝑖 in that instance of the BA protocol? It is the senders’

versions of the message which 𝑖th party has received. So, 𝑃1 participates with input 𝑚1,

𝑃2 participates with input 𝑚2, 𝑛th party participates with input 𝑚𝑛 and so on. Now, the

termination guarantee of BA is that it produces some output after time 𝑇′.

So, whatever output the BA protocol produces for the honest parties, that is considered as

the output for the RB protocol by the parties. So, it is easy to see that the termination

property of BA implies termination property of RB, because this protocol will get over by

time 𝑇′ + Δ for everyone. The consistency property of BA guarantees consistency

property of RB.

Why? Even if sender is corrupt; suppose, sender is corrupt and sends different versions of

its message to different honest parties. The instance of 𝜋𝐵𝐴 which the parties are running

will ensure that they come to a common conclusion regarding the sender’s message which

sender would have sent to different honest parties.

And the validity of BA guarantees the validity of RB. Why? Because if sender is honest,

then it will send the same message 𝑚 to every honest party. So, everyone will have

received 𝑚 from an honest sender and everyone would have participated with input 𝑚 in

the instance of BA and the validity of BA guarantees that if all the honest parties have the

same input then they stick to that output at the end of the protocol which will be implying

the validity of RB.

(Refer Slide Time: 42:53)

So, that is the relationship between the RB problem and the BA problem. If one problem

can be solved, the other can be solved and vice versa. So, the relationship between RB and

BA, which I have discussed in today’s lecture, you can find it in either these two textbooks

or even in this Ph.D. thesis. The problem description of RB and BA you can also find them

in one of these two textbooks.

Thank you.

