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Hello everyone. Welcome to this lecture. In today’s lecture, we will discuss about error 

correcting codes. Specifically, we will discuss about Reed-Solomon Error Correcting 

Codes which are also known as RS codes, after the name of Reed and Solomon; attributed 

to Reed and Solomon who invented this code. We will be using these error correcting 

codes extensively later during the discussion, during the design of our MPC protocols. 
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So, let us first start discussing about (𝑁, 𝑘) 𝑡-error correcting codes, what exactly is their 

purpose, how they operate, the syntax, the semantics and the underlying properties. So, we 

will be considering error correcting codes, where all the operations will be done over some 

finite field. And remember in the last lecture we have seen what exactly a finite field is. 

So, it is a set of elements with two operations, + and ⋅ which satisfy certain axioms. Now, 

we will be working with a finite field. And there are plenty of candidates for instantiating 

a finite field. Now, what exactly is the goal of an (𝑁, 𝑘) 𝑡-error correcting code? The goal 

is basically to reliably communicate a message over a noisy channel, where the size of the 

message is 𝑘 namely. It consists of 𝑘 elements, 𝑘 symbols from the field 𝔽. 

So, you can imagine that we have a sender who has a message consisting of 𝑘 elements 

from the set 𝔽. So, you can imagine that the sender’s message is basically 𝑘 ⋅ log |𝔽|, 

because each element from the field can be represented as log |𝔽| number of bits. So, if 

sender has a message which is a binary string consisting of 𝑘 times log of bits; it can be 

abstracted, it can be modelled as if the sender has 𝑘 number of elements from the field. 

The reason we are considering the bits as elements of a field is that we will be designing 

our error correcting code, where all the operations will be done, over the field. Now, this 

error correcting code will have two operations: an encoding operation and a decoding 

operation. So, the encode operation is a deterministic algorithm which takes as input the 

message 𝑚 and it produces an output which we call as code word. 



This consists of 𝑁 elements from the field, where 𝑁 is definitely at least as large as the 

message. Namely, the number of components in the code word is at least the same as the 

number of components in the message. Now, there is a noisy channel through which the 

sender is connected to a receiver. And this noisy channel has the property that when a code 

word is communicated any 𝑡 components may get corrupt.  

Which 𝑡 components? Their exact locations will not be known whether it is the first 𝑡, 

whether it is the last 𝑡, whether it is every alternate component. No, it would not be known, 

but it will be known that up to 𝑡 components may get corrupt whenever the code word 𝑐 is 

communicated over this noisy channel. 

So, that is denoted by saying that the distance between the sent code word and a received 

code word is at most 𝑡. And distance means the number of locations or the number of 

components in which 𝑐 and 𝑐′ may differ. So, let us denote the code word received by the 

receiver as 𝑐′, whose components are 𝑐1′, 𝑐2′, 𝑐𝑁′ and 𝑐𝑖
′ will be same as 𝑐𝑖, if the 𝑖th 

component is not changed. 

Now, the receiver’s goal is to somehow recover back the sender’s message by applying a 

decoding operation which is also going to be a deterministic algorithm. So that, even if up 

to 𝑡 components in the received vector are corrupt, somehow the receiver can recover back 

the message; that is the goal of an (𝑁, 𝑘) 𝑡-error correcting code. And there are plenty of 

real-world applications for this error correcting codes. Say for instance whenever 

communication is coming from satellite to the stations, base stations on the earth. 

Then it could be possible that when the signals are sent, some errors are introduced due to 

the noise in the channel. There the goal will be then to somehow introduce a redundancy 

while communicating the signal through this encoding operation so that, even if some 

noise is introduced, the receiver can recover back the original signals. Or, whenever we 

are talking over the mobile phone and some communication gets disturbed due to the noise 

which is introduced. 

The error correcting codes can help us to ensure that even if some noise is introduced, the 

communication between the two parties, the two ends is error free, it’s smooth. So, we 

have three parameters here. The size of the message, that is 𝑘, the length of the code word 



𝑁 and how many errors we would like to tolerate and there are various 𝑡-error correcting 

codes which exist. 

The maximum number of errors 𝑡 which can be tolerated which can be error corrected is 

a function of your message size and the code word size. So, there are some well-known 

bounds which determines how many errors we can tolerate for a given 𝑘 and a given 𝑁. 

And we cannot beat those bounds. So, we will not go into those bounds and those details, 

because this is not a course on error correcting codes. 
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We will stick to a specific instance of error correcting codes which will be useful later for 

us and this is the Reed-Solomon code. So, let us try to understand the encoding and the 

decoding operations for the Reed-Solomon codes. So, the encoding algorithm is very 

simple, you have the message consisting of 𝑘 elements from the field. To generate the code 

word, we first construct the message encoding polynomial. 

I denote it as 𝑓𝑚 and it is a polynomial of degree 𝑘 − 1. So, it is a 𝑘 − 1 degree polynomial 

and its coefficients are the elements of the message vector. What will be the code word? 

The code word will be consisting of 𝑁 elements from the field, 𝑐1 to 𝑐𝑁. And what are 

these elements? 𝑐1 is the evaluation of the message encoding polynomial at 𝑋 =  𝛼1, 𝑐2 is 

the value of the message encoding polynomial at 𝑋 = 𝛼2, 𝑐𝑖 is the value of the message 

encoding polynomial at 𝑋 = 𝛼𝑖. 



And 𝑐𝑁 is the value of the message encoding polynomial at 𝑋 = 𝛼𝑁. Now what are 

𝛼1, … 𝛼𝑁? They are publicly known system parameters which are distinct elements from 

your field. So, you can imagine that Reed-Solomon code word is nothing but a collection 

of 𝑁 distinct values of the polynomial 𝑓𝑚(𝑋), namely the message encoding polynomial 

evaluated at 𝑁 distinct values. 

So, you can imagine that the code word components are basically 𝑁 distinct points on this 

polynomial 𝑓𝑚(𝑋). I stressed that the components 𝛼1, … 𝛼𝑁, they can be any 𝑁 elements 

from the field. They will be publicly known, and they are fixed once for all while 

computing the Reed-Solomon code word for any message. You have, if you have another 

message say 𝑚′ whose message blocks are 𝑚0
′ , 𝑚1

′  like that 𝑚′𝑘−1. 

Then, we will construct a message encoding polynomial for 𝑚′ whose coefficients will be 

𝑚0
′ , 𝑚1

′ ,…,𝑚𝑘−1
′ . Its degree will be 𝑘 − 1 and now let us denote the code word components 

as 𝑐1′, 𝑐2′, 𝑐𝑁
′ . So, 𝑐1′ will be the value of this message encoding polynomial at 𝛼1 and so 

on. So, the evaluation points namely the points at which the polynomials are going to be 

evaluated, they do not get changed for different messages, they remain the same. 

It is only the message encoding polynomial which will get changed if the message gets 

changed. So, that is the simple Reed-Solomon encoding algorithm. You simply form a 

polynomial out of your message by treating the elements of the message vector as the 

coefficients of your polynomial. And now you evaluate the polynomial at 𝑁 distinct values 

that constitutes your Reed-Solomon code word. 
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Now, let us try to understand how the decoding algorithm works. So, you have the 𝑁 

publicly known distinct elements from the field. And, in the box I have shown the encoding 

algorithm. Now for the decoding algorithm, the input will be a vector of length 𝑁. Ideally, 

it should correspond to some Reed-Solomon code word, but that is need not be the case 

because at most 𝑡 components of the input for this decoding algorithm may be incorrect. 

So, suppose say for instance sender has computed this polynomial and this was the code 

word 𝑐1 to 𝑐𝑁. But, when it reached the receiver, suppose 𝑐2 got changed and it is now a 

different 𝑐2. And, say 𝑐𝑁 got changed and now it is a different 𝑐𝑁. Receiver will not be 

knowing which component is the correct component, which component are the wrong 

component. But it will be knowing that there could be up to 𝑡 incorrect components in the 

vector which it has received. 

The goal of this decoding algorithm is to somehow recover the message encoding 

polynomial and find the locations, where the corresponding components are the incorrect 

ones; that is the goal of this decoding algorithm. So, in some sense you can imagine that 

this decoding algorithm is nothing, but a way of recovering the original polynomial from 

a subset of good points and a subset of bad points, where the exact identity of the good 

points and bad points is not known. 

But we only know the ratio the number of good points and the number of bad points which 

receiver might have. Now, first thing before we try to even attempt to design a decoding 



algorithm is the following. There is a very well-known bound in the coding theory which 

says that the decoding algorithm will be able to give you back the original, the actual 

message encoding polynomial if and only if this condition is satisfied. 

Namely, the difference of the difference between the size of the code word and the message 

should be at least twice the number of errors which you want to error correct. This 

condition is not there, then you can never design a decoding algorithm which will help you 

to get back uniquely the message encoding polynomial; that means, the recovery may be 

now ambiguous. So, we will design the decoding algorithm assuming this condition is 

satisfied. 

If you want to know more about how we get this bound, you can refer to standard texts in 

coding theory. In fact, there are some well-known NPTEL lectures, NPTEL courses 

available on theory of error correcting codes and you can refer to one of them. 
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So, now assuming that the condition 𝑁 − 𝑘 ≥ 2𝑡 is satisfied, we will design our Reed-

Solomon decoding algorithm. 

So, what is our goal? Our goal is to get back the unknown 𝑘 − 1 degree polynomial. Why 

it is unknown? Because, we are now considering from receiver’s perspective, receiver has 

received a code word of size 𝑁. Some of the components are correct, some of the 



components have been changed. It does not know which components are the right one, 

which components are the wrong one. 

But it knows that those components would have been generated from some message 

encoding polynomial whose degree would have been 𝑘 − 1 because the parameters (𝑁, 𝑘) 

and 𝑡 are publicly known. So, (𝑁, 𝑘) and 𝑡 are public parameters here. What the receiver 

knows? Well receiver has received a vector of size 𝑁. So, say it has received the vector 𝑐1, 

𝑐2′, 𝑐3, 𝑐𝑖 and 𝑐′𝑁; that means, we are considering the case when the second and the nth 

component are corrupted. And it also knows the points evaluation points 𝛼1, … 𝛼𝑁 

So, we can imagine that from the viewpoint of the receiver, it has actually a polynomial 

𝑅(𝑋) whose degree is 𝑁 − 1 passing through the codeword which the receiver wants to 

decode. I should not use the term codeword, I should rather use the term vector because 

the received vector need not correspond to a codeword. Namely, it knows a polynomial 

such that 𝑅(𝛼1) =  𝑐1 , 𝑅(𝛼2) =  𝑐2′, 𝑅(𝛼𝑖) = 𝑐𝑖, 𝑅(𝛼𝑁) = 𝑐𝑁
′ . 

So, the circled components here are the ones which have been corrupted. From the 

viewpoint of the receiver there is also an unknown error polynomial whose degree is 𝑡 and 

whose roots are the locations at which errors have been introduced. So, remember there 

are up to 𝑡 locations where error could have been introduced. So, let us denote those 

unknown error locations or the indices as 𝑒1, 𝑒2, … , 𝑒𝑡 and they could be any 𝑡 locations, 

any 𝑡 indices from this collection. 

So, for instance in this example, the errors have occurred at location 2 and location 𝑁. So, 

𝑒1 is basically 𝛼2 and 𝑒2 is 𝛼𝑁. So, these 𝑒 components correspond to those alpha 

components, where errors have been introduced. So, there could be 𝑡 such error 

components 𝑒1, 𝑒2, … , 𝑒𝑡. Again, they are not known yet to the receiver. 
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But it knows the relationship that whatever are those unknown variables, they are from the 

set{𝛼1, … , 𝛼𝑁}. Now, we know that for the receiver this equation holds. Namely, the 

product of the unknown message encoding polynomial with the error polynomial is the 

same as the product of the received polynomial and the error polynomial at all the 𝑋 values 

ranging from 𝛼1, … , 𝛼𝑁. 

Say for instance, let us take it for those 𝛼 indices where errors have not occurred. So, at 

𝛼1 the error has not occurred; that means, 𝑓𝑚(𝛼1) will be 𝑐1 and 𝑅(𝛼1) is also 𝑐1. So, that 

is same, both the sides are multiplied with 𝐸(𝛼1) and 𝐸(𝛼1) is anyhow same. So, this holds 

whereas, at 𝐸(𝛼2) where error has occurred in this specific example, the value of 𝑓𝑚 at 𝛼2 

is 𝑐2. 

And the value of 𝑅(𝛼2) is 𝑐2′ which are different that is fine, but as soon as I multiplied 

both the sides with 𝐸(𝛼2) the product becomes 0. Because my definition of 𝐸(𝑋) 

polynomial is that it vanishes at all those 𝛼 components corresponding to which errors 

have been introduced and this relationship basically constitutes the crux of the decoding 

algorithm. 
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So, even though receiver does not know what is the 𝑓𝑚 polynomial, what the 𝐸 polynomial 

is. It only knows the 𝑅 polynomial, it knows that this relationship holds. Now, let us denote 

the product polynomial on the left-hand side of this equation by the 𝑄(𝑋) polynomial. 

So, we can rewrite the equation as 𝑄(𝑋) will be same as the product of the 𝑅 polynomial 

and the error polynomial for 𝑋 =  𝛼1 to 𝛼𝑁. Now, if we focus on this equation, what is the 

degree of the 𝑄(𝑋) polynomial? It is a 𝑘 − 1 + 𝑡 degree polynomial because, 

𝑓𝑚 polynomial has a degree 𝑘 − 1. The 𝐸 polynomial can have degree 𝑡 and since 𝑄 is the 

product of two polynomials over a field, its degree will be bounded by the sum of the two 

polynomials. 

So, one of the polynomials have degree 𝑘 − 1, another polynomial has degree 𝑡. So, that 

is why the overall degree of 𝑄(𝑋) will be 𝑘 − 1 + 𝑡. Namely, it will have 𝑘 + 𝑡 number 

of coefficients. Now, are those coefficients known to the receiver? The answer is no, they 

are unknown, all of them, because none of the two individual polynomials is known to the 

receiver. Now, what about. So, that is one fact. 

And, now since receiver knows the value, the receiver knows that this equation holds for 

𝑁 number of X values. If we imagine that 𝑄(𝑋) is an unknown polynomial with 𝑘 + 𝑡 

number of coefficients and 𝐸(𝑋) is another polynomial with 𝑡 unknown coefficients, then 

overall for the receiver there are 𝑘 + 2𝑡 number of unknown coefficients. 𝑘 + 𝑡 number 

of coefficients are unknown from the 𝑄(𝑋) polynomial and 𝑡 number of coefficients are 



unknown due to the 𝐸(𝑋) polynomial. Why 𝑡 coefficients from the 𝐸(𝑋) polynomial? 

Because 𝐸(𝑋) is a 𝑡 degree polynomial. 

So, overall, for the receiver, there are total 𝑘 + 2𝑡 number of unknown variables. But the 

receiver also now has 𝑁 number of equations in those unknown variables right. So, we can 

interpret 𝑄(𝑋) as an unknown polynomial, where there are 𝑘 + 𝑡 unknowns and the 

polynomial on the RHS will be a polynomial where some part is known, and some part is 

unknown. 

So, by rearranging the polynomial terms in the polynomial, the polynomial on the right-

hand side will be a polynomial where there are 𝑡 number of unknowns. So, total for the 

receiver there are 𝑘 + 2𝑡 number of unknowns. And now if receiver substitutes 𝑄(𝛼1) =

𝑅(𝛼1) and 𝑅(𝛼1) is basically 𝑐1 which it has received followed by 𝐸(𝛼1), that gives him 

one equation in those 𝑘 + 2𝑡 variables. 

Similarly, if it substitutes 𝑄(𝛼2) =  𝑐2
′ × 𝐸(𝛼2), that gives him another equation in the 

same 𝑘 + 2𝑡 unknown variables. And, like that once it substitutes 𝑄(𝛼𝑁) =  𝑐′𝑁 × 𝐸(𝛼𝑁) 

that gives him another equation in the same 𝑘 + 2𝑡 unknown variables. So, now, there are 

𝑘 + 2𝑡 number of unknown variables and 𝑁 number of equations. 

And remember that we are working with this condition, 𝑁 ≥ 𝑘 + 2𝑡. So, it has at least as 

many equations as the number of unknown variables. And, by solving that system of 

equations, it can find out those 𝑘 + 2𝑡 unknown variables. And, once it finds out those 

𝑘 + 2𝑡 unknown variables, it will know the error location and that helps him to find out 

the exact identity of the locations at which error has occurred. 

And now, once it knows the exact identity of the locations where error has occurred, it can 

find out the message encoding polynomial by ignoring those components. By ignoring 

those components, it will be now able to find out the original message encoding 

polynomial. From the message encoding polynomial receiver will be now able to identify 

the sender’s actual message. So, this is how the decoding algorithm will work. 

Thank you. 


