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Hello everyone, welcome to this lecture. 
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So, in this lecture we will discuss about the characterization for perfectly secure Byzantine 

agreement in incomplete graphs. 
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So, we had already seen that if we are interested to design a perfectly secure Byzantine 

agreement protocol in a network which is modeled by a complete network complete graph, 

then the condition 𝑛 > 3𝑡 is necessary. 

So, 𝐾𝑛 here the notation 𝐾𝑛 it denotes a complete graph with 𝑛 nodes. We now want to 

find out the necessary condition required to design a perfectly secure Byzantine agreement 

protocol in incomplete graphs, where there could be 𝑡 Byzantine faults. 
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So, the characterization or the necessary condition is the following. It can be shown that 

perfectly secure Byzantine agreement in an incomplete graph, where we have 𝑛 nodes and 

up to 𝑡 of them could be Byzantine corrupted is possible if both the two conditions are 

satisfied. The first condition is that 𝑛 has to be compulsorily greater than 3𝑡 and the second 

condition is that the vertex connectivity of the underlying graph underlying network has 

to be at least 2𝑡 + 1. 

So, let us first try to understand what we mean by the vertex connectivity of a graph. I am 

sure people who have studied graph theory they will know what vertex connectivity is. So, 

this vertex connectivity of a graph 𝐺 is denoted by the notation 𝜅(𝐺) and it denotes the 

minimum number of vertices which I have to delete from the graph so that the graph either 

becomes a disconnected graph or ,after deleting those nodes, I am left with a graph which 

has only a single node left. 

The minimum number of such nodes whose deletion either leaves a disconnected graph or 

a graph with a single node is called as the vertex connectivity of that graph and that is 

denoted by the notation 𝜅(𝐺). It is easy to see that 𝜅(𝐺) will be a quantity in the range 0 

to 𝑛 − 1. 0 if the graph 𝐺 is already disconnected. That means, I do not have to delete any 

other node to disconnect the graph 𝐺. Or the vertex connectivity could be 𝑛 − 1 if the 

graph 𝐺 is a complete graph with 𝑛 nodes. Because in a complete graph of 𝑛 nodes where 

there is an edge between every pair of vertices even if I delete up to 𝑛 − 1 nodes, I cannot 

disconnect the graph. 

I can only ensure there that I am left with only a graph consisting of a single node if I 

delete 𝑛 − 1 nodes. So, pictorially let me demonstrate the vertex connectivity few with 

few examples. So, in this graph the vertex connectivity is 2. This is because, for instance, 

suppose I delete the nodes 𝑐 and 𝑓. Then this node 𝑔 will be left alone because as soon as 

I delete the node 𝑐 this edge between 𝑐 and 𝑔 vanishes. 

And the edge between 𝑔 and 𝑓 vanishes if I delete the node 𝑓. Whereas, if I just delete any 

one node in the graph, say for instance if I delete only the node 𝑐, then the graph remains 

connected. Because from 𝑔 I can still reach 𝑓. And through g I can reach to every other 

node in the graph. 



The vertex connectivity of this graph is 0, because it is already disconnected. And this is 

the complete graph 𝐾3. So, its vertex connectivity is 2. If I just delete 𝑐 my graph remains 

connected and if I now remove the node 𝑎 and the edges incident with the node 𝑎, I will 

be left with a single node graph. So, that is why the vertex connectivity will be 2. 
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Now, let me introduce a problem called perfectly reliable message transmission or the 

PRMT problem and this will be useful later while understanding the characterization for 

perfectly secure BA in an incomplete graph. 

So, we are given here a network communication network and we have a sender 𝑆 and we 

have a receiver 𝑅 and they do not have any pre shared information. They do not have any 

pre shared information, but they know the full network topology. 
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Also it is guaranteed that apart from the sender and the receiver up to 𝑡 nodes in this 

network could be under the control of a computationally unbounded Byzantine adversary. 

Our goal is to do the following: We will first abstract this underlying network in the form 

of a collection of a wires or channels between the sender and the receiver. 

So, wires you can imagine to be some kind of communication channels and these wires 

are disjoint. So, 𝑤1 𝑤2 𝑤3 are disjoint wires. So, how do we get 3 wires between 𝑆 and 𝑅 

here? So, how many vertex disjoint paths do we have between 𝑆 and 𝑅? So, we have the 

path 𝑆 to 𝐴 and 𝐴 to 𝑅. We have the path 𝑆 to 𝐷 and then from 𝐷 to 𝑅. Now you might be 

saying that there are two more paths 𝑆 𝐵 𝐴 𝑅 and 𝑆 𝐶 𝑅, but the point is that the node 𝐴 

could get compromised. 

Then any communication which happens between 𝑆 and 𝑅 and which goes through this 

intermediate node 𝐴 will be completely under the control of the adversary. So, that means, 

whatever sender communicates through the path 𝑆 to 𝐴 to 𝑅 and whatever sender 

communicates through the path 𝑆 to 𝐵 and then 𝐵 to 𝐴 and then 𝐴 to 𝑅. Both these paths 

are compromised if 𝐴 gets corrupt. 

So, that is why the best we can do here is to assume that we have three vertex disjoint 

paths. Indeed we have 3 vertex disjoint paths. So, the paths 𝑆 to 𝐴 to 𝑅 and the path 𝑆 to 

𝐵 to 𝐴 to 𝑅. They are not vertex disjoint they share a common node namely A. So, that is 



why both these paths will be abstracted by a single wire 𝑤1, then the path 𝑆 to 𝐷 to 𝑅 will 

be abstracted as wire number 2 and the path 𝑆 to 𝐶 to 𝑅 will be abstracted as a wire 𝑤3 ok. 

So, since up to 𝑡 intermediate nodes could be corrupt among these 𝑛 wires. Not 𝑛 wires 

whatever is the number of wires between 𝑆 to 𝑅 up to 𝑡 wires or channels whatever you 

consider it could be Byzantine corrupt. That means, the communication over those 𝑡 

channels is completely under adversary’s control. Adversary can do whatever it wants over 

those 𝑡 channels. So, it can simply block the communication over those 𝑡 channels or it 

can change the contents over those 𝑡 channels and so on. 

The exact identity of the 𝑡 channels which are corrupted by the adversary will not be known 

to the sender and the receiver because neither sender nor receiver will be knowing the 

exact identity of the corrupt nodes in the network. So, that is why they will not be knowing 

beforehand which wires are going to be under the control of the adversary. Now what is 

the goal here? What is the goal of the PRMT problem? 

So, we are given this setting a network which is modeled by a collection of vertex disjoint 

wires between a sender party and a receiver party and sender will have some message from 

some message space. We want a mechanism a protocol which would allow the sender to 

send its message in a perfectly reliable way to the receiver. That means, we need a protocol 

according to which sender should send some information over these wires. 

So, that even if the communication over those 𝑡 wires is changed or blocked in whatever 

way, receiver should be able to recover back the message and this should hold even if the 

adversary is computationally unbounded. 
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So, let us see a very simple PRMT protocol. Imagine there exist 2𝑡 + 1 wires between the 

sender party and the receiver party. 

Say for instance let us take 𝑡 = 1. So, so we have 3 wires between the sender and the 

receiver and suppose sender has the message 𝑚. Then what the sender can do is the 

following. It simply sends the message 𝑚 along the first path or the first wire, sends the 

same message along the second wire, and sends the same message along the third wire. 

 Since one of these 3 wires could be Byzantine corrupt. Say for instance the second wire 

is Byzantine corrupt, the adversary can change the copy of 𝑚 to 𝑚′ when it is going over 

the second wire. The receiver will not be knowing which wire among these 3 wires have 

delivered the incorrect copy of 𝑚, but what it knows is that since, among the 2𝑡 + 1 wires, 

the majority of wires are honest. 

And when I say honest, I mean to say not under adversary’s control. It knows that it will 

receive at least 𝑡 + 1 copies of sender’s message and there could be at most 𝑡 messages 

which are different from what sender has communicated. So, it can simply output the 

message which has been received 𝑡 + 1 times along 𝑡 + 1 different wires, that is what is 

going to be the senders message. So, that is a very simple PRMT protocol. 
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 Now, coming back to the characterization of perfectly secure BA. So, our characterization 

was that in an incomplete graph if at all you want to design a perfectly secure BA protocol 

then that requires 𝑛 > 3𝑡 as well as the vertex connectivity of the graph to be 2𝑡 + 1. So, 

I will be just showing the sufficiency proof here. So, this characterization is both necessary 

and sufficient because this is an if and only if condition. 

So, I will show that if the condition 𝑛 > 3𝑡 holds and if the vertex connectivity of the 

graph is at least 2𝑡 + 1; that means, both these conditions are there, then there exists a 

perfectly secure BA protocol in an incomplete graph ok. Even if up to 𝑡 nodes or 𝑡 parties 

out of the 𝑛 parties are Byzantine corrupt and the proof is very simple. You take any 

perfectly secure BA protocol over a complete graph with the condition 𝑛 > 3𝑡. 

Say the EIG protocol or the phase king protocol whichever protocol you want where we 

have a complete graph, but now we want to design a protocol over an incomplete graph. 

So, we cannot run the EIG protocol or the phase king two protocol over an incomplete 

graph because in the EIG protocol there are instructions that every party sends a message 

to everyone else. But, in this incomplete graph we do not have a direct channel between 

every pair of parties. 

So, what we do here is the following: We run the existing protocol over the complete graph 

with 𝑛 > 3𝑡 and whenever as part of that protocol a message is supposed to be 

communicated from the party 𝑃𝑖 to party 𝑃𝑗 we check the following. If in the incomplete 



graph the edge 𝑃𝑖 − 𝑃𝑗 is present, then its fine send the message directly. That means 𝑃𝑖 

sends the message directly to 𝑃𝑗 over that channel. 

But if the channel from 𝑃𝑖 to 𝑃𝑗, the edge 𝑃𝑖 − 𝑃𝑗 is not there, then what we can do is the 

following: Since we know that the vertex connectivity of the graph is 2𝑡 + 1, then by 

invoking the Menger’s theorem from the graph theory which states that if your graph is 𝑘 

connected then there exists 𝑘 wires between every pair of nodes in the graph. 

So, that means, if the vertex connectivity of the graph is guaranteed to be 2𝑡 + 1. This 

means that between every pair of parties (𝑃𝑖 , 𝑃𝑗) there are at least 2𝑡 + 1 wires. So, if 𝑃𝑖 

is supposed to send any message to 𝑃𝑗 as per the protocol 𝜋𝐵𝐴 and if the direct channel 

from 𝑃𝑖 to 𝑃𝑗 is not there, then what 𝑃𝑖 can do is it can invoke a PRMT protocol which we 

have discussed just now and send that message to 𝑃𝑗. 

Say for instance if we take this incomplete graph here and say we take 𝑡 = 1 what I am 

saying here is that suppose in the BA protocol 𝑢1 is supposed to send its message to 𝑢3, 

but there is no direct channel from 𝑢1 to 𝑢3. But how many wires are there between 𝑢1 and 

𝑢3? I have the wire 1 namely the path from 𝑢1 to 𝑢2 and 𝑢2 to 𝑢3 that is wire number 1. I 

have another wire from 𝑢1 to 𝑢3 namely the one going through the intermediate node 𝑢4 

that is wire number 2 and I have another wire between 𝑢1 and 𝑢3 going through the 

intermediate node 𝑣2. 

Let me call it 𝑤3, there are 3 wires. Now what 𝑢1 can do is it is supposed to send the 

message 𝑚 in the protocol 𝜋𝐵𝐴. What it can do is it can trigger the previous PRMT 

protocol. So, it will send the message 𝑚 along this wire, this wire and this wire. Say for 

instance the node 𝑢2 or the party who is controlling the node 𝑢2 is Byzantine corrupt. That 

means, the wire 𝑤1 is corrupt then it can forward 𝑚′ instead of 𝑚. 

But, the wires 𝑤3 and 𝑤2 will forward 𝑚 to 𝑢3 and 𝑢3 the party who is controlling 𝑢3 who 

is sitting over the node 𝑢3 will be able to recover 𝑚 and then it will proceed in whatever 

way it is supposed to after receiving the message 𝑚 from the node 𝑢1 according to the 

protocol 𝜋𝐵𝐴.  

If the vertex connectivity of the graph is at least 2𝑡 + 1, then we can emulate a complete 

graph. We can emulate a complete graph 𝐾𝑛 over an incomplete graph; that means, even 



though physically we do not have a complete graph, we can imagine that we have a virtual 

complete graph where every communication between 𝑃𝑖 and 𝑃𝑗 can be emulated through a 

PRMT protocol because there will be at least 2𝑡 + 1 wires or vertex disjoint paths 

guaranteed between 𝑃𝑖 and 𝑃𝑗. 

And now if we have a complete graph either physical for complete graph or a virtual 

complete graph, we know that we have plenty of BA protocols perfect which are perfectly 

secure if the condition 𝑛 > 3𝑡 holds which will be guaranteed because of the first part of 

the necessity condition. So, that shows that you can design the perfectly secure BA 

protocol you can run a perfectly secure BA protocol even over an incomplete graph if you 

have sufficient connectivity in the underlying network. 
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Now, that shows the sufficiency proof. So, whatever we have shown here is the sufficiency 

proof here. Because we showed that if these two conditions are guaranteed then they are 

sufficient to design a perfectly secure BA protocol. Now we will argue about the necessity 

of the condition 1 and condition 2. That means, if we have an incomplete graph and if any 

of these two properties are violated. 

If any of these two properties are violated, then we want to argue that we cannot design 

the perfectly secure BA protocol in the underlying graph. So, imagine that the first 

condition is violated; that means, instead of 𝑛 > 3𝑡 we have the condition 𝑛 ≤ 3𝑡 and say 

my graph is having the network connectivity which is at least 2𝑡 + 1. That means, the 



second condition is not violated it is only the first condition which is violated, then the 

contradiction we get here is that if at all we have a perfectly secure BA protocol in an 

incomplete graph with the condition 𝑛 ≤ 3𝑡. 

Then the same protocol will also be a perfectly secure BA protocol in a complete graph 

with the condition 𝑛 ≤ 3𝑡. But we know that in a complete graph we cannot have any 

perfectly secure BA protocol with the condition 𝑛 ≤ 3𝑡; that means, the existence of 𝜋𝐵𝐴 

which we assume to exist is wrong. 

 Now, what about the necessity of the second condition? Well, the proof is slightly 

involved here. So, I will not go into the exact proof, but the idea there is that if the vertex 

connectivity is not 2𝑡 + 1, then we can show a sequence of inconsistent executions of the 

assumed Byzantine agreement protocol and we can compose them and then we can arrive 

at a contradiction that at least one of the properties of the assumed BA protocol is violated. 
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So, I will not be going through the complete proof, but if you are interested you can refer 

to the textbook by Nancy A. Lynch. With that I end this lecture. 

Thank you. 


