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Hello everyone. Welcome to this lecture. Till now we have designed byzantine agreement 

protocols assuming n greater than 3t ok. And our goal was perfect security. So, a natural 

question is, is this a necessary condition, if you want to get perfect security and the answer 

is yes. So, now, for the next few lectures we will focus on deriving this necessary 

condition, that why this condition n greater than 3t is necessary for perfectly secure 

byzantine agreement. 

So, we will first show that it is impossible to design a perfectly secure byzantine agreement 

protocol with 3 parties and 1 corruption ok. And then in the follow up lecture we will 

generalize the proof and use this special case of n equal to 3 and t equal to 1 to show that 

this condition n greater than 3 t is necessary. 
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So, let us try to understand why it is impossible to design a perfectly secure byzantine 

agreement protocol with n parties where n is equal to 3 and one of them being corrupt. So, 

if one of the parties out of these three parties is corrupt and say the remaining two honest 

parties have different inputs. One of the honest parties has input 0 and the other honest 

party has the input 1. Then what this corrupt party can do is that it can always cause the 

honest parties to conflict with each other in terms of whatever they conclude.  

Specifically, this corrupt party may behave towards this honest party as if its input is 0 and 

other party's input is 1. Whereas, to the other honest party it might pretend, it might behave 

as if its input is 1 and other party's input is 0. So, you see this party is byzantine corrupt 

and it is using different inputs for different honest parties towards this party. So, let us call 

these three parties as A, B, C. So, A is corrupt and A is reporting to B that its input is 1, 

yeah sorry its input is 0. 

So, to B it will look as if A's input is 0 and her own input is 0. So, it will take 0 as the 

output, but towards C the same party A is now reporting that its input is 1. So, to C it will 

look like as if C and A together have inputs 1. So, C will output 1 and that will be a 

violation of the agreement property because B will be outputting 0 and C will be outputting 

1. So, consistency or the agreement property is violated. 

Now, you might be wondering that why cannot B and C talk with each other in the protocol 

and find out whether A is trying to confuse them and get into conflict. So, if B and C talk 



with each other then that is not going to help because B will report to C that A has reported 

its input to be 0 and C's input as 1 whereas, C will report to B that A has reported its input 

to be 1 and B’s input as 0. 

Now, from the viewpoint of the party B, it is completely confused whether it is the party 

A who is lying or whether the party C who is lying and same is the scenario from the 

viewpoint of the party C. C is totally confused whether the party B is lying or whether the 

party A is lying. So, this communication among the two the honest parties, it is completely 

useless to find out who is lying whether A is causing this confusion among them. 

And that is precisely is the intuition that why cannot we design a perfectly secure BA 

protocol with three parties and one of them being corrupt. Of course, we can design a 

cryptographically secure byzantine agreement protocol ok. So, we can design 

cryptographically secure protocol as well as a statistically secure protocol with n equal to 

3 and t equal to 1. There this argument fails, there this argument breaks because we can 

have a protocol where every party associates its own signature with whatever message it 

is communicating to other. 

In that case this attack strategy by a fails because if it is forwarding if it is reporting its 

input as 0. So, it will be sending a signed version of 0 to this party and it will be sending a 

signed version of 1 to C. And now when B and C talk with each other they will be able to 

conclude that indeed A is the source of conflict. Because now B will be producing a signed 

0 produced by A and C will be producing to be a signed 1 again signed by A.  

And assuming signature forgery is difficult, B and C will conclude that indeed A is actually 

a corrupt party who has unnecessarily reported different inputs to B and C and then B and 

C can take some default decision. But this argument of using signatures completely breaks 

down because if you are assuming perfect security then in the perfect security regimes it 

is possible for an adversary to forge signatures.  

In that case consider a scenario where A was honest and B is the source of confusion and 

B might unnecessarily report to C that A has produced a sign 0 for him. Even though A 

has produced a signed 1 for B ok. So, using signatures and other cryptographic primitives 

completely fails in the presence of computationally unbounded adversaries.  



So, when we are talking about perfect security we cannot use any such gadget and that is 

why for perfect security this attack strategy will always work ok. But this intuition where 

A is the source of confusion and to one honest party it might report a different input and 

to another honest party it might report another input, this is very intuitive, this is informal 

we have to now formalize this argument ok. 
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So, we now show formally that there exists no perfectly secure byzantine agreement 

protocol with three parties tolerating one corruption and the proof will be by contradiction. 

So, we will assume that suppose there is a three party byzantine agreement protocol I call 

it Π!"# among three parties say A, B, C and whenever I say parties they need not be 

physical parties they need not be living entities they could be computers they could be 

processes, there are some entities who are actually running some protocol codes p, q and 

r respectively. 

And this system has the property that if there are three such parties A, B, C who are running 

the codes p, q and r respectively and even if one of the parties get compromised and do 

not run the corresponding code still the termination validity and consistency properties are 

achieved, that is the guarantee given by this Π!"#  protocol. We do not want to go into the 

exact details of pi 3 BA it could be any round protocol it could be doing any set of actions 

and so on ok. 



It is an abstract protocol. Now assuming this Π!"#  protocol we design a new system S ok 

and this system S might look very non-intuitive at a first glance. So, let us first try to 

understand what exactly this system S is. So, this system S is not to solve BA. Its an 

arbitrary system ok. Where we assume that we have two copies each of A, B, C running 

codes p, q, r respectively. 

So, we have two copies of A, I am calling them as A0 and A1, one of the copies of A has 

the input 0 and other copy of A has the input 1. There are two copies of B, one of the 

copies has the input 0 and another copy has 1. And similarly, there are two copies of C ok. 

And each of the copies of A, B, C is running the code p, q, r as per the protocol Π!"# 

assigned. And in this system, there is no corruption.  

And each party will be knowing only its neighbors ok. So, for instance A0. It will be 

knowing that it is talking with C1 and B0. It will not be knowing that it is C1 with input 1 

and B0 with input 0, for A0 its as good as it is talking to a party C and to a party B. 

Similarly from the viewpoint of B0, it will be looking to B0 as if she is talking to the 

neighbors A and C that is all ok. 

So, B naught will be not knowing that there is another copy of C, C 1 there is another copy 

of A, A 1 running in the system and so on. So, this actually models a scenario where every 

entity every party has only a partial knowledge about its network ok unlike the byzantine 

agreement protocols which we have discussed till now where all the parties will be 

knowing the full network configuration who is connected to whom and so on. 

Also to every party in this system S, it will look as if they are a part of Π!"#, why so? So 

for instance let us consider these parts B0, A0 and C0. 
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Then as per the protocol Π!"#, B knows that it will be talking to an entity called A and to 

an entity called C who will be running the codes p and r respectively with some input bits 

and same is the scenario for B0 here. So, to this B0 it will look as if she is participating in 

an instance of Π!"# with a copy of A or with an entity A with some input, but running the 

code p and an entity C who is running the code r.  

So, from the viewpoint of B0, it will look like that A0, B0 and C0 compromise a system 

of 3 parties running the codes p, q, r respectively and participating in Π!"#,. In the same 

way, if I consider for instance the entity A1. Then from the viewpoint of A1, this triplet of 

parties B1 running the code q and party C0 running the code r, will look like as if there are 

3 parties running the codes p, q and r respectively as per the protocol Π!"#,  and so on. I 

stress that the system S is not to solve the byzantine agreement. 

But since everyone is running the codes p, q, r as per the Π!"# protocol and since this Π!"# 

protocol has the liveness and the termination guarantee; that means, after some specific 

number of rounds of communication A, B, C will have output. So, in the system S as well 

each of the six entities will get an output ok, as per the time specified in the protocol Π!"#; 

that means, the output is well defined in system S. 

Now, even though the output is well defined in system S, what we are going to show here 

is that there exists an adversary strategy in the protocol Π!"# which will actually cause the 

parties in this system S to output contradictory values, which will be a contradiction to the 



fact that output of the system value S is well defined. So, basically what we actually are 

going to show is that output of the system is not well defined even though it should be well 

defined because of the liveness validity and consistency properties of Π!"# ok. 
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And I stress that in system S there is no corruption ok. Now what we are going to do is we 

are going to relate system S with the properties that can be concluded from invocations of 

the protocol Π!"#. Now consider an execution alpha of Π!"# where the party A and party 

B are honest and party C is corrupt, input of A is 0 input of B is 0. And now what this 

party C does is the following.  

The party C, it mimics the party C1 as per the system S along this edge CA. When I say 

along the edge CA means to whenever it is communicating to the party A; that means, in 

system S, C1 is not corrupt, I stress C1 is not corrupt because in the system S, I assume 

that no party is corrupt. So, C1 with input 1 would have sent some messages by following 

the code r to A0. 

And it will be continuously communicating to A0 as per the protocol code r, assuming its 

input was 1. So, when I say mimic C1, that is precisely what this corrupt C is doing during 

the execution alpha. So, for instance if the first message sent by C1 to A0 was hey my 

input is 1, then in execution alpha, C is basically talking to A and saying my input is 1.  



Then suppose based on whatever message A0 would have sent to C1, then C 1 would have 

decided to send a set of new messages to A0, those will be the messages which C will be 

communicating to A in the execution alpha during the next round and so on ok. While in 

the execution alpha towards the party B, this corrupt C behaves as if he is going to mimic 

C0 as in this system S.  

So, in this system S, this C0 was not corrupt, its input was 0 and it was running the protocol 

code r and based on its input being 0 and protocol code r it would have exchanged some 

messages with B0. Those are the messages which it is precisely exchanging with B in this 

execution alpha ok. That is what is the strategy of this corrupt C party ok. 

Now, we know that this Π!"# protocol has the validity guarantee. And validity guarantee 

demands that if honest parties during the execution have the same input then that should 

be the final output. So, who are the honest parties in this execution alpha? Its A and B. 

Whether they have the same input? yes. So, I do not care what exactly is the input of the 

corrupt party, to one honest party it is participating with its input being 1, to another honest 

party it is participating with input 0. The validity of Π!"#; that means, the protocol code p 

and q in the execution alpha where the inputs of A and B would have been 0 and 0, should 

have ensured that A and B output 0, irrespective of what messages C is communicating 

with A and B. Now if we consider the view of the party A0 in this system S, it is identical 

to that of A. Now what does view mean here? 

So, view means the messages sent and received by an entity. So, whatever A0 is seeing in 

the system S, that is identical to whatever A would have witnessed in the execution alpha. 

Because in the execution alpha, A would have talked with C1; that means, the messages it 

would have received from C will be identical to what C1 would have communicated to 

A0. And the messages that A0 would have received from B0 will be identical to what the 

entity A would have received from the entity B in the execution alpha. 

So, that is why view wise the view of A0 will be identical as it is in alpha. And due to the 

same argument the view of the party B0 in the system S will be identical to the view of the 

entity B as per the execution alpha. Because in execution alpha the entity B would have 

talked with entity A whose input is 0 running the code p, that is precisely A0. And entity 

B would have talked with a corrupt C who is mimicking C0 ok. 



With its input being 0 that is and running the code r. That is precisely is the party C0. So, 

to B0, it will look like as if it has participated in the execution alpha. Now based on the 

views A0 and B0 have in the system S, they should output whatever the entities A and B 

should have output in the execution alpha ok. So, based on the views of A and B, A and B 

would have output 0 in the execution alpha and since the view of A0 is same as that of A 

and since the view of B0 is same as that of B in the execution alpha, A0 and B0 would 

output 0 in the system S. 

That is what we can conclude regarding the output of the entities A0 and B0 in the system 

S ok. 
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Now let us consider another execution of the protocol pi 3 BA where now the entity A is 

corrupt and B and C are the honest entities and A mimics the entity A0 towards C whose 

input is 1 ok. So, basically this corrupt A is trying to mimic A1 along the edge A B ok. So, 

A1 let us see where it is A1. So, this is A1.  

So, whatever messages A1 with input 1 and protocol code p would have communicated 

with entity B1 whose input would have been 1 and running the protocol code q, same 

messages the corrupt A will be communicating with the party B in the execution beta. 

Whereas, whatever messages A0 with input 0 would have communicated to C1 in the 

system S, those are the messages which A will be now communicating with the entity C 

in the execution beta ok. 



Now, again using the similar argument as we have done for the previous configuration, in 

this configuration B and C are the honest entities during the execution beta and they have 

the same inputs. So, it does not matter what the corrupt A communicates with B and C, 

the protocol code q and r should guarantee that based on the views that B and C have, they 

should output 1 in the system in the execution beta. 

Now, let us compare what is the view of B1 and C1. The view of B1 will be identical to 

that of B as per the execution beta ok. Because B1 will be receiving the same set of 

messages from A1 as it would have received from the corrupt A in the execution beta. And 

it would have received the same messages from C1 as it would have received from the 

honest C during the execution beta. 

So, its view will be identical to whatever is the view of the B. And in the same way if I 

consider the party C1 here in the system S, its view will be whatever is the view of the 

party C in the execution beta. Because C1 will be communicating to A0, that is mimicked 

by this corrupt A and C1 will be talking to B1, that will be anyhow are the messages which 

B going to send to C. 

Now, based on the views that B1 and C1 have in the system S, which actually we have 

argued to be same as in the execution beta, B1 and C1 are going to output 1 because that 

is what B and C are doing in the execution of Π!"#, namely the execution beta ok. So, now 

we have four conclusions; so, we have concluded that A0 should output 0, B0 should 

output 0 in the system S, C1 should output 1 and B1 should output 1 in the system S. 
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Now, let us see another execution gamma of Π!"# where B is corrupt ok. And A and C are 

honest and this corrupt B towards A, it mimics B1 ok. So, this corrupt B towards A it 

mimics B0. So, whatever the honest B in the system S would have exchanged whatever 

messages would it would have communicated to A0, the same messages this corrupt B 

exchanges with A in the execution gamma. 

And whatever messages B1 would have communicated with to C1 in the system S, the 

same messages it sends to the honest C in the execution gamma ok. So, again now if you 

compare, if we consider the properties of Π!"#, in this case in this execution who are the 

honest parties? A and C are the honest parties. Do they have the same input? No. They 

have different inputs. 

So, we cannot trigger the validity property of Π!"#,, but the consistency property of pi 3 

BA guarantees that A and C should have a common output bit say 0. It could be 1 as well, 

but that is determined by the protocol. So, what it means is that in execution gamma where 

A and C are honest with inputs 0 and 1 respectively and where B is behaving maliciously, 

towards one honest party it is mimicking whatever communication B0 would have done 

towards A0. And towards C it is mimicking the communication whatever B1 would have 

done towards C1, cannot cause A and C to output different bits right, even if the corrupt B 

does like that, A and C should output the same thing. Now let us see how it implies a 



contradictory behavior in the system S. If we see the parties A0 and C1 in the system S, 

their views will be now identical to that of A and C as per the execution gamma. 

So, for instance let us consider A0, A0’s input is 0, running the code B, that is what A is 

doing in the execution gamma. A0 is talking with C1, running the code r with input 1, that 

is what A is doing even in the execution gamma. Now the other neighbor of A0 is B0, who 

is running the code q with input 0 that is what the corrupt B is doing towards A in the 

execution gamma. 

And what about C1? C1 is talking with B1, whose input is 1 running the code q. That is 

what the corrupt B is doing towards dishonest C. So, whatever A and C would have output 

in the execution gamma that is what C1 and B1 should do. So, what exactly A and C 

outputs in the execution gamma? They output 0. So, that is why C1 and B1 should also 

output 0 ok. 

So, C1 and A0 should output 0. But now you see we get a contradiction because we have 

already concluded that C1 should output 1 earlier. And now we are concluding that C1 

should output 0 in the system S and that is a contradiction. Because now it shows that the 

system S is not a well defined system. Because every one in the system S is honest 

(remember in the system S no party is corrupt they are exchanging messages based on the 

protocol code and whatever are their respective inputs). So, if there is no corruption then 

the output should be well defined because everyone is following code of Π!"# only, but 

the well defined behavior is not there because we are getting a conclusion that C1 should 

output 0 after time t whatever is the time defined by the liveness property. 

And at the same time we are concluding that C1 should output 1 after the time t. How can 

that be possible in a well defined system? That is coming only because there must be some 

problem with the properties of pi 3BA; that means, pi 3BA does not achieve all the claimed 

properties and that shows a contradiction that pi 3 BA does not exist. Because if pi 3 BA 

exist then this violation of the well defined output property for S should not occur at the 

first place ok. 
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So, that shows that pi 3BA does not exist ok. So, the reference used to derive at the 

impossibility result for n equal to 3 and t equal to 1 is explained in a detailed fashion in 

this textbook. 

Thank you. 


